Exercise 1.15

Hendrik Maarand

Problem: Josephus had a friend who was saved by getting into the next-to-last position. What is $I(n)$, the number of the penultimate survivor when every second person is executed?

Solution: Let's first compute $I(n)$ for some small n.

n	Order of elimination	$I(n)$
1	1	\perp
2	2,1	2
3	$2,1,3$	1
4	$2,4,3,1$	3
5	$2,4,1,5,3$	5

We say that $I(1)$ is not defined since we need at least two participants to have a penultimate survivor.

We can observe that for all $n>2$, we start the elimination process (counting) from position 1, we eliminate position 2 and then need to solve the same problem, but with size one smaller and where the position 1 is the current position 3 . This gives us the following equations for solving the problem:

$$
\begin{align*}
& I(2)=2 \tag{1}\\
& I(n)=((I(n-1)+1) \bmod n)+1, \quad \forall n>2 \tag{2}
\end{align*}
$$

In the step case we rename the resulting position by adding 2 , but we do it in two steps to compensate for the fact that we start counting from 1 instead of 0 .

Similarily to the Josephus problem, we can observe that if we start with $2 n$ people, the first pass through the circle eliminates half of the participants and the next to be eliminated is 3 (we are left with $1,3,5, \ldots, 2 n-3,2 n-1$). This is the same as solving the problem with n people, but the number of each position has been doubled and decreased by one. Starting with $2 n+1$ people and after the first pass the position 1 is the next to be eliminated and after that we are left with the same problem, but with n people $(3,5,7, \ldots, 2 n-1,2 n+1)$ and their numbers are doubled and increased by one. This gives us the more efficient recurrence:

$$
\begin{align*}
I(2) & =2 \tag{3}\\
I(3) & =1 \tag{4}\\
I(2 n) & =2 * I(n)-1, \quad \forall n>2 \tag{5}\\
I(2 n+1) & =2 * I(n)+1, \quad \forall n>2 \tag{6}
\end{align*}
$$

Here we do not need to do modular arithmetic because the problem is avoided, doing a recursive call to n can return at most n and this means that the step cases cannot overflow.

Using either of the two recurrences we can now compute a bigger table of $I(n)$.

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$I(n)$	2	1	3	5	1	3	5	7	9	11	1	3	5	7	9
n	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$I(n)$	11	13	15	17	19	21	23	1	3	5	7	9	11	13	15

From the table we can immediatly spot a pattern, $I(n)$ is counting increasing sequences of odd numbers (except when $n=2$). The starting position of each of the sequences is shaded in the table. We can also observe that the length of every such sequence is the value of n at the starting point of that sequence, which means that we are counting to $3,6,12,24$ and so on. This is a good place to observe that these are sums of two consecutive powers of 2 : $1+2,2+4,4+8,8+16$ and also that $2^{m}+2^{m-1}+2^{m}+2^{m-1}=2 * 2^{m}+2 * 2^{m-1}=2^{m+1}+2^{m}$. This gives us the following equation for computing $I(n)$:

$$
\begin{equation*}
I\left(2^{m}+2^{m-1}+l\right)=2 l+1, \quad m \geq 0 \wedge 0 \leq l<2^{m}+2^{m-1} \tag{7}
\end{equation*}
$$

We will now prove this by induction on m. When $m=0$ we must take $l=1 / 2$ which gives us:

$$
I\left(2^{0}+2^{-1}+1 / 2\right)=2 * 1 / 2+1=1+1=2
$$

and we see that the base case is satisfied. The step case is in two parts, depending on whether l is even or odd. If $2^{m+1}+2^{m}+l=2 n$ then l is even and

$$
\begin{aligned}
I\left(2^{m+1}+2^{m}+l\right) & =2 * I\left(2^{m}+2^{m-1}+l / 2\right)-1 \\
& =2 *(2(l / 2)+1)-1 \\
& =2 l+1
\end{aligned}
$$

by (5) and the induction hypothesis. If $2^{m+1}+2^{m}+l=2 n+1$ then l is odd and

$$
\begin{aligned}
I\left(2^{m+1}+2^{m}+l\right) & =2 * I\left(2^{m}+2^{m-1}+(l-1) / 2\right)+1 \\
& =2 *(2((l-1) / 2)+1)+1 \\
& =2 l+1
\end{aligned}
$$

by (6) and the induction hypothesis. This completes the proof of (7).

