
Exercise 1.15
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Problem: Josephus had a friend who was saved by getting into the next-to-last position.
What is I(n), the number of the penultimate survivor when every second person is executed?

Solution: Let’s first compute I(n) for some small n.

n Order of elimination I(n)
1 1 ⊥
2 2, 1 2
3 2, 1, 3 1
4 2, 4, 3, 1 3
5 2, 4, 1, 5, 3 5

We say that I(1) is not defined since we need at least two participants to have a penul-
timate survivor.

We can observe that for all n > 2, we start the elimination process (counting) from
position 1, we eliminate position 2 and then need to solve the same problem, but with size
one smaller and where the position 1 is the current position 3. This gives us the following
equations for solving the problem:

I(2) = 2 (1)

I(n) = ((I(n− 1) + 1) mod n) + 1, ∀n > 2 (2)

In the step case we rename the resulting position by adding 2, but we do it in two steps to
compensate for the fact that we start counting from 1 instead of 0.

Similarily to the Josephus problem, we can observe that if we start with 2n people, the
first pass through the circle eliminates half of the participants and the next to be eliminated
is 3 (we are left with 1, 3, 5, . . . , 2n−3, 2n−1). This is the same as solving the problem with
n people, but the number of each position has been doubled and decreased by one. Starting
with 2n+1 people and after the first pass the position 1 is the next to be eliminated and after
that we are left with the same problem, but with n people (3, 5, 7, . . . , 2n − 1, 2n + 1) and
their numbers are doubled and increased by one. This gives us the more efficient recurrence:

I(2) = 2 (3)

I(3) = 1 (4)

I(2n) = 2 ∗ I(n)− 1, ∀n > 2 (5)

I(2n + 1) = 2 ∗ I(n) + 1, ∀n > 2 (6)
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Here we do not need to do modular arithmetic because the problem is avoided, doing a
recursive call to n can return at most n and this means that the step cases cannot overflow.

Using either of the two recurrences we can now compute a bigger table of I(n).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I(n) 2 1 3 5 1 3 5 7 9 11 1 3 5 7 9

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
I(n) 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15

From the table we can immediatly spot a pattern, I(n) is counting increasing sequences of
odd numbers (except when n = 2). The starting position of each of the sequences is shaded
in the table. We can also observe that the length of every such sequence is the value of n
at the starting point of that sequence, which means that we are counting to 3, 6, 12, 24 and
so on. This is a good place to observe that these are sums of two consecutive powers of 2:
1+2, 2+4, 4+8, 8+16 and also that 2m +2m−1 +2m +2m−1 = 2∗2m +2∗2m−1 = 2m+1 +2m.
This gives us the following equation for computing I(n):

I(2m + 2m−1 + l) = 2l + 1, m ≥ 0 ∧ 0 ≤ l < 2m + 2m−1 (7)

We will now prove this by induction on m. When m = 0 we must take l = 1/2 which gives
us:

I(20 + 2−1 + 1/2) = 2 ∗ 1/2 + 1 = 1 + 1 = 2

and we see that the base case is satisfied. The step case is in two parts, depending on whether
l is even or odd. If 2m+1 + 2m + l = 2n then l is even and

I(2m+1 + 2m + l) = 2 ∗ I(2m + 2m−1 + l/2)− 1

= 2 ∗ (2(l/2) + 1)− 1

= 2l + 1

by (5) and the induction hypothesis. If 2m+1 + 2m + l = 2n + 1 then l is odd and

I(2m+1 + 2m + l) = 2 ∗ I(2m + 2m−1 + (l − 1)/2) + 1

= 2 ∗ (2((l − 1)/2) + 1) + 1

= 2l + 1

by (6) and the induction hypothesis. This completes the proof of (7).
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