Exercise 2.29

Lembit JUrimagi

Task: Evaluate the sum ), (—1)" i(
k=1 4k —1

Solution: We have a sequence of A (1) and we're looking for a sum S, (2).
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First of all we can rewrite a, as:
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Let's divide both the numerator and denominator of (3) with (2n-1):
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Then let's repeat the same process with (2n+1):
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Adding (4) and (5) together we get:
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Let's bring in new sequences B and C such that:
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We can represent the original sequence A thru B and C:
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The sums of sequences B and C would be:
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From (8) and (9) we can represent the original S, as:
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Using something vaguely similar to perturbation method we can rewrite T, and U, as
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When we replace index k with m so that m = k - 1 in formula (11) we get
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According to (10) addmg formulas (13) and (12) together should give us quadruple of S,
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The names of the indexes don't matter therefore the two sums in (14) are equal and S, is
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