Exercise 2.29

Lembit Jürimägi

Task: Evaluate the sum $\sum_{k=1}^{n}(-1)^{k} \frac{k}{4 k^{2}-1}$
Solution: We have a sequence of A (1) and we're looking for a sum $S_{n}(2)$.

$$
\begin{gather*}
a_{n}=(-1)^{n} \frac{n}{4 n^{2}-1} \tag{1}\\
S_{n}=\sum_{k=1}^{n} a_{k} \tag{2}
\end{gather*}
$$

First of all we can rewrite a_{n} as:

$$
\begin{equation*}
a_{n}=(-1)^{n} \frac{n}{(2 n-1)(2 n+1)} \tag{3}
\end{equation*}
$$

Let's divide both the numerator and denominator of (3) with (2n-1):

$$
\begin{align*}
a_{n} & =\frac{n}{\frac{n}{2 n-1}} \\
& =\quad \frac{(-1)^{n}}{2} \frac{2 n-1}{2 n+1}+\frac{1}{2 n-1} \tag{4}\\
& =\frac{(-1)^{n}}{2}\left(\frac{1}{2 n+1}+\frac{1}{(2 n-1)(2 n+1)}\right)
\end{align*}
$$

Then let's repeat the same process with $(2 n+1)$:

$$
\begin{align*}
a_{n} & =\frac{n}{\frac{n}{2 n+1}} \\
& =\quad \frac{(-1)^{n}}{2} \frac{2 n+1}{2 n-1}-\frac{1}{2 n+1} \tag{5}\\
& =\frac{(-1)^{n}}{2 n-1}\left(\frac{1}{2 n-1}-\frac{1}{(2 n-1)(2 n+1)}\right)
\end{align*}
$$

Adding (4) and (5) together we get:

$$
\begin{array}{cc}
2 a_{n}= & \frac{(-1)^{n}}{2}\left(\frac{1}{2 n+1}+\frac{1}{(2 n-1)(2 n+1)}+\frac{1}{2 n-1}-\frac{1}{(2 n-1)(2 n+1)}\right) \\
a_{n}= & \frac{(-1)^{n}}{4}\left(\frac{1}{2 n+1}+\frac{1}{2 n-1}\right) \tag{6}
\end{array}
$$

Let's bring in new sequences B and C such that:

$$
\begin{align*}
& b_{n}=(-1)^{n} \frac{1}{2 n-1} \\
& c_{n}=(-1)^{n} \frac{1}{2 n+1} \tag{7}
\end{align*}
$$

We can represent the original sequence A thru B and C :

$$
\begin{equation*}
a_{n}=\frac{1}{4}\left((-1)^{n} \frac{1}{2 n-1}+(-1)^{n} \frac{1}{2 n+1}\right)=\frac{1}{4}\left(b_{n}+c_{n}\right) \tag{8}
\end{equation*}
$$

The sums of sequences B and C would be:

$$
\begin{align*}
& T_{n}=\sum_{k=1}^{n} b_{k}=\sum_{k=1}^{n}(-1)^{k} \frac{1}{2 k-1} \\
& U_{n}=\sum_{k=1}^{n} c_{k}=\sum_{k=1}^{n}(-1)^{k} \frac{1}{2 k+1} \tag{9}
\end{align*}
$$

From (8) and (9) we can represent the original S_{n} as:

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} \frac{1}{4}\left(b_{k}+c_{k}\right)=\frac{1}{4}\left(\sum_{k=1}^{n} b_{k}+\sum_{k=1}^{n} c_{k}\right)=\frac{1}{4}\left(T_{n}+U_{n}\right) \tag{10}
\end{equation*}
$$

Using something vaguely similar to perturbation method we can rewrite T_{n} and U_{n} as:

$$
\begin{align*}
& T_{n}=b_{1}+\sum_{k=2}^{n} b_{k}=-1 \frac{1}{2 \cdot 1-1}+\sum_{k=2}^{n}(-1)^{k} \frac{1}{2 k-1} \tag{11}\\
& U_{n}=\sum_{1}^{n-1} c_{k}+c_{n}=\sum_{k=1}^{n-1}(-1)^{k} \frac{1}{2 k+1}+(-1)^{n} \frac{1}{2 n+1} \tag{12}
\end{align*}
$$

When we replace index k with m so that $m=k-1$ in formula (11) we get:

$$
\begin{equation*}
T_{n}=-1+\sum_{m=1}^{n-1}(-1)^{m+1} \frac{1}{2(m+1)-1}=-1+(-1) \sum_{m=1}^{n-1}(-1)^{m} \frac{1}{2 m+1} \tag{13}
\end{equation*}
$$

According to (10) adding formulas (13) and (12) together should give us quadruple of S_{n} :

$$
\begin{equation*}
4 S_{n}=-1-\sum_{m=1}^{n-1}(-1)^{m} \frac{1}{2 m+1}+\sum_{k=1}^{n-1}(-1)^{k} \frac{1}{2 k+1}+(-1)^{n} \frac{1}{2 n+1} \tag{14}
\end{equation*}
$$

The names of the indexes don't matter therefore the two sums in (14) are equal and S_{n} is:

$$
\begin{equation*}
S_{n}=\frac{1}{4}\left(-1+(-1)^{n} \frac{1}{2 n+1}\right) \tag{15}
\end{equation*}
$$

