Exercise 5.38

Hendrik Maarand

Problem: Show that all nonnegative integers n can be represented uniquely in the form $n=\binom{a}{1}+\binom{b}{2}+\binom{c}{3}$ where a, b, and c are integers with $0 \leq a<b<c$.

Existence: Let's first show that all nonnegative integers can indeed be represented this way.

We need to find a c such that $\binom{c}{3} \leq n$. This can be done by finding the maximum c from the sequence $\langle 0,1, \ldots\rangle$ that satisfies the criteria. The maximum exists since $\binom{c}{3}$ is a strictly increasing function of c in the range $[3,+\infty)$ and 0 everywhere else. Similar arguments apply for $\binom{b}{2}$ and $\binom{a}{1}$.

$$
\begin{aligned}
c^{\prime} & =\max c \cdot\binom{c}{3} \leq n & n^{\prime} & =n-\binom{c^{\prime}}{3} \\
b^{\prime} & =\max b \cdot\binom{b}{2} \leq n^{\prime} & n^{\prime \prime} & =n^{\prime}-\binom{b^{\prime}}{2} \\
a^{\prime} & =\max a \cdot\binom{a}{1} \leq n^{\prime \prime} & n^{\prime \prime \prime} & =n^{\prime \prime}-\binom{a^{\prime}}{1} \\
& =n^{\prime \prime} & & =n^{\prime \prime}-n^{\prime \prime}=0
\end{aligned}
$$

For this choice of a^{\prime}, b^{\prime}, and c^{\prime} to be a valid representation, we need to show that $0 \leq$ $a^{\prime}<b^{\prime}<c^{\prime}$.

By our choice of c^{\prime} we know that

$$
n<\binom{c^{\prime}+1}{3}
$$

which is equivalent to

$$
n-\binom{c^{\prime}}{3}<\binom{c^{\prime}+1}{3}-\binom{c^{\prime}}{3}
$$

which after applying the definition of n^{\prime} and the binomial identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ gives

$$
n^{\prime}<\binom{c^{\prime}}{2}
$$

Since $\binom{b^{\prime}}{2} \leq n^{\prime}<\binom{c^{\prime}}{2}$ it must be the case that $b^{\prime}<c^{\prime}$. We can apply similar reasoning to get $a^{\prime}<b^{\prime}$. Since a^{\prime} is chosen from $\langle 0,1, \ldots\rangle$ we have that $0 \leq a^{\prime}<b^{\prime}<c^{\prime}$ and thus $\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2}+\binom{c^{\prime}}{3}$ is a valid representation of n.

Uniqueness: To show that the representation is unique we need to show that we cannot find another triple ($a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$) that is also a valid representation of n.

We must only consider $c^{\prime \prime}$ that are less than c^{\prime} since otherwise we would overflow n. Let's consider the case where we pick $c^{\prime \prime}$ so that $b^{\prime}<c^{\prime \prime}$. This means that we are left with extra $\binom{c^{\prime}}{3}-\binom{c^{\prime \prime}}{3}$ that we need to redistribute between the other two binomials. Let's say that we wish to decrease c^{\prime} by m, that is $c^{\prime \prime}=c^{\prime}-m$. We can do this by applying the identity $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} m$ times.

$$
\begin{align*}
n & =\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2}+\binom{c^{\prime}}{3} \tag{1}\\
& =\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2}+\binom{c^{\prime}-1}{2}+\binom{c^{\prime}-1}{3} \tag{2}\\
& =\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2}+\binom{c^{\prime}-1}{2}+\ldots+\binom{c^{\prime}-m}{2}+\binom{c^{\prime}-m}{3} \tag{3}\\
& =\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2}+\binom{c^{\prime}-1}{2}+\ldots+\binom{c^{\prime}-m+1}{2} \tag{4}\\
& +\binom{c^{\prime}-m-1}{1}+\binom{c^{\prime}-m-1}{2}+\binom{c^{\prime}-m}{3}
\end{align*}
$$

In equation 3 we are in a situation where $\binom{c^{\prime}-m}{3}$ is the term $\binom{c^{\prime \prime}}{3}$ we want and now we need to deal with $\binom{b^{\prime}}{2}+\binom{c^{\prime}-1}{2}+\ldots+\binom{c^{\prime}-m}{2}$ to find $b^{\prime \prime}$. We can observe that $b^{\prime \prime}$ can be at most $c^{\prime}-m-1$ and we can extract $\binom{c^{\prime}-m-1}{2}$ by applying the binomial identity to $\binom{c^{\prime}-m}{2}$ arriving at equation 4 . Now we need to deal with $\binom{b^{\prime}}{2}+\binom{c^{\prime}-1}{2}+\ldots+\binom{c^{\prime}-m+1}{2}+\binom{c^{\prime}-m-1}{1}$ to find $a^{\prime \prime}$. We can start by adding $\binom{a^{\prime}}{1}$ and $\binom{c^{\prime}-m-1}{1}$ to get $\binom{a^{\prime}+c^{\prime}-m-1}{1}$. For this to be valid, $a^{\prime}+c^{\prime}-m-1<c^{\prime}-m-1$ must hold, which implies that $a^{\prime}<0$ which cannot be since a^{\prime} is nonnegative.

We also need to consider the case where we choose $c^{\prime \prime}$ such that $c^{\prime \prime} \leq b^{\prime}$ which means that we also need to decrease b^{\prime}. By applying similar reasoning, if we try to decrease b^{\prime} by p, we can see that it is not possible.

$$
\begin{aligned}
n^{\prime} & =\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2} \\
& =\binom{a^{\prime}}{1}+\binom{b^{\prime}-1}{1}+\ldots+\binom{b^{\prime}-p}{1}+\binom{b^{\prime}-p}{2}
\end{aligned}
$$

Here we can add $\binom{a^{\prime}}{1}$ and $\binom{b^{\prime}-p}{1}$ to get $\binom{a^{\prime}+b^{\prime}-p}{1}$ in which case it must be that $a^{\prime}+b^{\prime}-p<$ $b^{\prime}-p$ which implies that $a^{\prime}<0$ which again is not possible. Therefore, it must be that $\binom{a^{\prime}}{1}+\binom{b^{\prime}}{2}+\binom{c^{\prime}}{3}$ is a unique representation of n.

