
Exercise 5.38

Hendrik Maarand

Problem: Show that all nonnegative integers n can be represented uniquely in the form
n =

(
a
1

)
+
(
b
2

)
+
(
c
3

)
where a, b, and c are integers with 0 ≤ a < b < c.

Existence: Let’s first show that all nonnegative integers can indeed be represented this
way.

We need to find a c such that
(
c
3

)
≤ n. This can be done by finding the maximum c from

the sequence 〈0, 1, . . . 〉 that satisfies the criteria. The maximum exists since
(
c
3

)
is a strictly

increasing function of c in the range [3,+∞) and 0 everywhere else. Similar arguments apply
for

(
b
2

)
and

(
a
1

)
.

c′ = max c.

(
c

3

)
≤ n n′ = n−

(
c′

3

)
b′ = max b.

(
b

2

)
≤ n′ n′′ = n′ −

(
b′

2

)
a′ = max a.

(
a

1

)
≤ n′′ n′′′ = n′′ −

(
a′

1

)
= n′′ = n′′ − n′′ = 0

For this choice of a′, b′, and c′ to be a valid representation, we need to show that 0 ≤
a′ < b′ < c′.

By our choice of c′ we know that

n <

(
c′ + 1

3

)
which is equivalent to

n−
(
c′

3

)
<

(
c′ + 1

3

)
−
(
c′

3

)
which after applying the definition of n′ and the binomial identity

(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
gives

n′ <

(
c′

2

)
Since

(
b′

2

)
≤ n′ <

(
c′

2

)
it must be the case that b′ < c′. We can apply similar reasoning

to get a′ < b′. Since a′ is chosen from 〈0, 1, . . . 〉 we have that 0 ≤ a′ < b′ < c′ and thus(
a′

1

)
+
(
b′

2

)
+
(
c′

3

)
is a valid representation of n.
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Uniqueness: To show that the representation is unique we need to show that we cannot
find another triple (a′′, b′′, c′′) that is also a valid representation of n.

We must only consider c′′ that are less than c′ since otherwise we would overflow n. Let’s
consider the case where we pick c′′ so that b′ < c′′. This means that we are left with extra(
c′

3

)
−

(
c′′

3

)
that we need to redistribute between the other two binomials. Let’s say that we

wish to decrease c′ by m, that is c′′ = c′ − m. We can do this by applying the identity(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
m times.

n =

(
a′

1

)
+

(
b′

2

)
+

(
c′

3

)
(1)

=

(
a′

1

)
+

(
b′

2

)
+

(
c′ − 1

2

)
+

(
c′ − 1

3

)
(2)

=

(
a′

1

)
+

(
b′

2

)
+

(
c′ − 1

2

)
+ . . . +

(
c′ −m

2

)
+

(
c′ −m

3

)
(3)

=

(
a′

1

)
+

(
b′

2

)
+

(
c′ − 1

2

)
+ . . . +

(
c′ −m + 1

2

)
(4)

+

(
c′ −m− 1

1

)
+

(
c′ −m− 1

2

)
+

(
c′ −m

3

)
In equation 3 we are in a situation where

(
c′−m

3

)
is the term

(
c′′

3

)
we want and now we

need to deal with
(
b′

2

)
+

(
c′−1
2

)
+ . . . +

(
c′−m

2

)
to find b′′. We can observe that b′′ can be

at most c′ −m− 1 and we can extract
(
c′−m−1

2

)
by applying the binomial identity to

(
c′−m

2

)
arriving at equation 4. Now we need to deal with

(
b′

2

)
+
(
c′−1
2

)
+ . . . +

(
c′−m+1

2

)
+
(
c′−m−1

1

)
to find a′′. We can start by adding

(
a′

1

)
and

(
c′−m−1

1

)
to get

(
a′+c′−m−1

1

)
. For this to be valid,

a′ + c′ −m− 1 < c′ −m− 1 must hold, which implies that a′ < 0 which cannot be since a′

is nonnegative.
We also need to consider the case where we choose c′′ such that c′′ ≤ b′ which means that

we also need to decrease b′. By applying similar reasoning, if we try to decrease b′ by p, we
can see that it is not possible.

n′ =

(
a′

1

)
+

(
b′

2

)
=

(
a′

1

)
+

(
b′ − 1

1

)
+ . . . +

(
b′ − p

1

)
+

(
b′ − p

2

)
Here we can add

(
a′

1

)
and

(
b′−p
1

)
to get

(
a′+b′−p

1

)
in which case it must be that a′+ b′−p <

b′ − p which implies that a′ < 0 which again is not possible. Therefore, it must be that(
a′

1

)
+
(
b′

2

)
+
(
c′

3

)
is a unique representation of n.
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