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1 Exercise 32

32 An arithmetic progression is an infinite set of integers

{an+ b} = {b, a+ b, 2a+ b, 3a+ b, . . .}.

A set of arithmetic progressions {a1n+b1}, . . . , {amn+bm} is called an exact
cover if every nonnegative integer occurs in one and only one of the progressions.
For example, the three progressions {2n}, {4n+1}, {4n+3} constitute an exact
cover. Show that if {a1n+ b1}, . . . , {amn+ bm} is an exact cover such that

2 ≤ a1 ≤ . . . ≤ am, then am−1 = am. (1)

Hint: Use generating functions.

2 Properties of Polynomials on Complex Plane

Theorem 2.1. Fundamental Theorem of Algebra: Every non-constant single-
variable polynomial with complex coefficients has at least one complex root.

Proof will not be provided here.

By rules of polynomial division, for every polynomials f(z) and g(z) where
1 < deg g ≤ deg f , there are unique polynomials h(z) and r(z), with deg r <
deg h such that

f(z) = g(z)h(z) + r(z). (2)

Equality between polynomials means equality of functions, meaning that they
are equal for every value of z

Lemma 2.2. Every polynomial f(z) can be exatly divided by linear polynomial
z − % of it’s root f(%) = 0.
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Proof. By rule of polynomial division, there are uniqe polynomials h and r
with deg r < deg h such that f(z) = h(z)(z − %) + r. As f(%) = 0, we have
0 = h(z)0 + r and thus r = 0.

Lemma 2.3. Every polynomial with degree d has exactly d roots

Proof. Proof by induction. We choose base d = 1, then root %1 is trivial solution
of polynomial z− %1 = 0. Induction step. If f(z) is a plynomial of degree d = n,
that by (2.1) has one root %n, then we can exactly divide

f(z) = (z − %n)g(z) (3)

Degree of g(z) is n− 1.

Polynomial, where coefficent of highest degree of z is 1, we call monic. Monic
polynomial can be written as product of linear polynomials of it’s root’s f(z) =
(z − %1)(z − %2) . . . (z − %n).

Root %i is called multiple root of f(z) if there is another equal root ∃j 6=
i, %j = %i.

Lemma 2.4. Any multiple root % of f(z) is also a root of derivative of f ′(z).

Proof. If f(z) = (z−%)2g(z), then we calculate derivative by parts f ′(z) = 2(z−
%)g(z)+(z−%)2g′(z) and therefore f ′(%) = 2(%−%)g(%)+(%−%)2g′(%) = 0.

3 Complex Roots of 1

For proof of equation (1) with generating functions, we first need to look at
properties of polynomials having form

1− zk , where k ∈ N . (4)

Lemma 3.1. The polynomial zk − 1 has no multiple root

Proof. Let % be any root of polynomial f(z) = zk − 1. That means %k = 1
and therefore % 6= 0 as 0k = 0. Derivative of polynomial is f ′(z) = kzk−1, let’s
calculate it at root %, f ′(%) = k%k−1 = k

%%
k = k

% 6= 0. This is true for any root,
thus all roots are unique, there is no multiple roots.

Lemma 3.2. Polynomial of degree i, f(z) = zi − 1, has a root %, that is not a
root of polynomial with lower degree g(z) = zj − 1, j < i.

Proof. Let P be the set of all roots of f P = {%1, %2, . . . , %i} and Ω be the
set of all roots of g Ω = {ω1, ω2, . . . , ωj}. By lemmas (2.3) and (3.1) P has
exactly i distinct elements and Ω has exactly j distinct elements. We can bulid
correspondence between P and Ω and conclude that there is one root ψ that
belongs to P and is not an element of Ω.

j < i ⇒ ∃ψ such that ψ ∈ P and ψ /∈ Ω. (5)
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4 Proof with Generating Functions

Further we look at generating functions inside convergence radius |z| < 1
m is the number of covering sequencies.
The sequence of all natural numbers {1, 2, 3, . . .} is represented by generating

function

f(z) =

∞∑
j=0

zj =
1

1− z
(6)

The covering sequencies

{ajn+ bj} where j ∈ [1, . . . ,m] (7)

are represented by generating functions

gj(z) =

∞∑
k=0

zajk+bj =
zbj

1− zaj
(8)

As sequencies (7) form exact cover of N and each natural number is counted
exactly once, we can present it’s generating function as sum of generating func-
tions of covering sequencies

f(z) =

m∑
j=1

gj(z) (9)

1

1− z
=

m∑
j=1

zbj

1− zaj
(10)

Now we separate from the sum the last summand

1

1− z
=

m∑
j=1

zbj

1− zaj
(11)

1

1− z
=

m−1∑
j=1

zbj

1− zaj
+

zbm

1− zam
(12)

zbm

1− zam
=

1

1− z
−
m−1∑
j=1

zbj

1− zaj
(13)

Let’s look at roots of polynomials in denominators.
First we check the convergence of generating functions.
All they have form (4). The roots are different roots of 1, solutions of equa-

tion zk = 1. So all those roots are situated exactly on convergence radius of our
generating functions, we can perform calculations as close as needed to the roots
from inside the unit circle.
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Proof. Proof by contradiction: we assume

am−1 < am, (14)

that means
am−1 6= am. (15)

From lemma (3.2), inital condition (1) and our assumption, we know that
there exists ψam = 1 that is a root of 1 − zam and is not a root any other
polynomial 1−zai , where i < m. By construction of sequencies we have bm < am
and thus ψbm 6= 0. We look at the limit, where z closes to ψ, that is on the
convergence radius, from inside

lim
z→ψ−

zbm

1− zam
=

ψbm

1− ψam
=

ψbm

1− 1
=∞ (16)

In the same time, when we look at the limit

lim
z→ψ−

(
1

1− z
−
m−1∑
j=1

zbj

1− zaj
) (17)

all summands are finite, there is finte number of summands and therefore this
must be also a finite value. Equation (13) must be true everywhere inside the
convergence radius and thus we have the contradiction. Therefore our assump-
tion (14) must be wrong and we can deduce am−1 = am.
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