Exact cover last sequencies
 Homework 2 for ITT9131 Concrete Mathematics

Jaan Priisalu

December 20, 2016

1 Exercise 32

32 An arithmetic progression is an infinite set of integers

$$
\{a n+b\}=\{b, a+b, 2 a+b, 3 a+b, \ldots\} .
$$

A set of arithmetic progressions $\left\{a_{1} n+b_{1}\right\}, \ldots,\left\{a_{m} n+b_{m}\right\}$ is called an exact cover if every nonnegative integer occurs in one and only one of the progressions. For example, the three progressions $\{2 n\},\{4 n+1\},\{4 n+3\}$ constitute an exact cover. Show that if $\left\{a_{1} n+b_{1}\right\}, \ldots,\left\{a_{m} n+b_{m}\right\}$ is an exact cover such that

$$
\begin{equation*}
2 \leq a_{1} \leq \ldots \leq a_{m}, \text { then } a_{m-1}=a_{m} \tag{1}
\end{equation*}
$$

Hint: Use generating functions.

2 Properties of Polynomials on Complex Plane

Theorem 2.1. Fundamental Theorem of Algebra: Every non-constant singlevariable polynomial with complex coefficients has at least one complex root.

Proof will not be provided here.
By rules of polynomial division, for every polynomials $f(z)$ and $g(z)$ where $1<\operatorname{deg} g \leq \operatorname{deg} f$, there are unique polynomials $h(z)$ and $r(z)$, with $\operatorname{deg} r<$ degh such that

$$
\begin{equation*}
f(z)=g(z) h(z)+r(z) . \tag{2}
\end{equation*}
$$

Equality between polynomials means equality of functions, meaning that they are equal for every value of z

Lemma 2.2. Every polynomial $f(z)$ can be exatly divided by linear polynomial $z-\varrho$ of it's root $f(\varrho)=0$.

Proof. By rule of polynomial division, there are uniqe polynomials h and r with deg $r<d e g h$ such that $f(z)=h(z)(z-\varrho)+r$. As $f(\varrho)=0$, we have $0=h(z) 0+r$ and thus $r=0$.

Lemma 2.3. Every polynomial with degree d has exactly d roots
Proof. Proof by induction. We choose base $d=1$, then root ϱ_{1} is trivial solution of polynomial $z-\varrho_{1}=0$. Induction step. If $\mathrm{f}(\mathrm{z})$ is a plynomial of degree $d=n$, that by (2.1) has one root ϱ_{n}, then we can exactly divide

$$
\begin{equation*}
f(z)=\left(z-\varrho_{n}\right) g(z) \tag{3}
\end{equation*}
$$

Degree of $g(z)$ is $n-1$.
Polynomial, where coefficent of highest degree of z is 1 , we call monic. Monic polynomial can be written as product of linear polynomials of it's root's $f(z)=$ $\left(z-\varrho_{1}\right)\left(z-\varrho_{2}\right) \ldots\left(z-\varrho_{n}\right)$.

Root ϱ_{i} is called multiple root of $f(z)$ if there is another equal root $\exists j \neq$ $i, \varrho_{j}=\varrho_{i}$.

Lemma 2.4. Any multiple root ϱ of $f(z)$ is also a root of derivative of $f^{\prime}(z)$.
Proof. If $f(z)=(z-\varrho)^{2} g(z)$, then we calculate derivative by parts $f^{\prime}(z)=2(z-$ $\varrho) g(z)+(z-\varrho)^{2} g^{\prime}(z)$ and therefore $f^{\prime}(\varrho)=2(\varrho-\varrho) g(\varrho)+(\varrho-\varrho)^{2} g^{\prime}(\varrho)=0$.

3 Complex Roots of 1

For proof of equation (1) with generating functions, we first need to look at properties of polynomials having form

$$
\begin{equation*}
1-z^{k} \text {, where } k \in N \tag{4}
\end{equation*}
$$

Lemma 3.1. The polynomial $z^{k}-1$ has no multiple root
Proof. Let ϱ be any root of polynomial $f(z)=z^{k}-1$. That means $\varrho^{k}=1$ and therefore $\varrho \neq 0$ as $0^{k}=0$. Derivative of polynomial is $f^{\prime}(z)=k z^{k-1}$, let's calculate it at root $\varrho, f^{\prime}(\varrho)=k \varrho^{k-1}=\frac{k}{\varrho} \varrho^{k}=\frac{k}{\varrho} \neq 0$. This is true for any root, thus all roots are unique, there is no multiple roots.

Lemma 3.2. Polynomial of degree $i, f(z)=z^{i}-1$, has a root ϱ, that is not a root of polynomial with lower degree $g(z)=z^{j}-1, j<i$.

Proof. Let P be the set of all roots of $f P=\left\{\varrho_{1}, \varrho_{2}, \ldots, \varrho_{i}\right\}$ and Ω be the set of all roots of $g \Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{j}\right\}$. By lemmas (2.3) and (3.1) P has exactly i distinct elements and Ω has exactly j distinct elements. We can bulid correspondence between P and Ω and conclude that there is one root ψ that belongs to P and is not an element of Ω.

$$
\begin{equation*}
j<i \Rightarrow \exists \psi \text { such that } \psi \in P \text { and } \psi \notin \Omega . \tag{5}
\end{equation*}
$$

4 Proof with Generating Functions

Further we look at generating functions inside convergence radius $|z|<1$ m is the number of covering sequencies.
The sequence of all natural numbers $\{1,2,3, \ldots\}$ is represented by generating function

$$
\begin{equation*}
f(z)=\sum_{j=0}^{\infty} z^{j}=\frac{1}{1-z} \tag{6}
\end{equation*}
$$

The covering sequencies

$$
\begin{equation*}
\left\{a_{j} n+b_{j}\right\} \text { where } j \in[1, \ldots, m] \tag{7}
\end{equation*}
$$

are represented by generating functions

$$
\begin{equation*}
g_{j}(z)=\sum_{k=0}^{\infty} z^{a_{j} k+b_{j}}=\frac{z^{b_{j}}}{1-z^{a_{j}}} \tag{8}
\end{equation*}
$$

As sequencies (7) form exact cover of N and each natural number is counted exactly once, we can present it's generating function as sum of generating functions of covering sequencies

$$
\begin{gather*}
f(z)=\sum_{j=1}^{m} g_{j}(z) \tag{9}\\
\frac{1}{1-z}=\sum_{j=1}^{m} \frac{z^{b_{j}}}{1-z^{a_{j}}} \tag{10}
\end{gather*}
$$

Now we separate from the sum the last summand

$$
\begin{gather*}
\frac{1}{1-z}=\sum_{j=1}^{m} \frac{z^{b_{j}}}{1-z_{j}^{a}} \tag{11}\\
\frac{1}{1-z}=\sum_{j=1}^{m-1} \frac{z^{b_{j}}}{1-z_{j}^{a}}+\frac{z^{b_{m}}}{1-z^{a_{m}}} \tag{12}\\
\frac{z^{b_{m}}}{1-z^{a_{m}}}=\frac{1}{1-z}-\sum_{j=1}^{m-1} \frac{z^{b_{j}}}{1-z^{a_{j}}} \tag{13}
\end{gather*}
$$

Let's look at roots of polynomials in denominators.
First we check the convergence of generating functions.
All they have form (4). The roots are different roots of 1, solutions of equation $z^{k}=1$. So all those roots are situated exactly on convergence radius of our generating functions, we can perform calculations as close as needed to the roots from inside the unit circle.

Proof. Proof by contradiction: we assume

$$
\begin{equation*}
a_{m-1}<a_{m} \tag{14}
\end{equation*}
$$

that means

$$
\begin{equation*}
a_{m-1} \neq a_{m} . \tag{15}
\end{equation*}
$$

From lemma (3.2), inital condition (1) and our assumption, we know that there exists $\psi^{a_{m}}=1$ that is a root of $1-z^{a_{m}}$ and is not a root any other polynomial $1-z^{a_{i}}$, where $i<m$. By construction of sequencies we have $b_{m}<a_{m}$ and thus $\psi^{b_{m}} \neq 0$. We look at the limit, where z closes to ψ, that is on the convergence radius, from inside

$$
\begin{equation*}
\lim _{z \rightarrow \psi^{-}} \frac{z^{b_{m}}}{1-z^{a_{m}}}=\frac{\psi^{b_{m}}}{1-\psi^{a_{m}}}=\frac{\psi^{b_{m}}}{1-1}=\infty \tag{16}
\end{equation*}
$$

In the same time, when we look at the limit

$$
\begin{equation*}
\lim _{z \rightarrow \psi^{-}}\left(\frac{1}{1-z}-\sum_{j=1}^{m-1} \frac{z^{b_{j}}}{1-z^{a_{j}}}\right) \tag{17}
\end{equation*}
$$

all summands are finite, there is finte number of summands and therefore this must be also a finite value. Equation (13) must be true everywhere inside the convergence radius and thus we have the contradiction. Therefore our assumption (14) must be wrong and we can deduce $a_{m-1}=a_{m}$.

