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Binomial coefficients

Let r be a real number and k an integer. The binomial coefficient ““r choose k" is the
real number

(r—1)---(r— k.
<r): r-(r—1) kl(r k+1):% k>0,
k 0 ' " ifk<0.

If r = nis a natural number
In this case,

(Z) _ n-(nfl)v;(-!(nfk—l-l)

is the number of ways we can choose k elements from a set of n elements, in any
order.
Consistently with this interpretation,

n! .
(n): m if0< k<n,
0 if k> n.



Binomial theorem

(a+b)"= Zn: (Z) akp"k

k=0
for any integer n > 0.

Proof. Expanding (a+ b)" = (a+b)(a+b)---(a+ b) yields the sum of the
2" products of the form ejez---e,, where each ¢; is a or b. These
terms are composed by selecting from each factor (a+ b) either a or
b. For example, if we select a k times, then we must choose b n— k
times. So, we can rearrange the sum as

n
(a+b)"= Z Gl e
k=0

where the coefficient C is the number of ways to select k elements

(k factors (a+ b)) from a set of n elements (from the production of

n factors (a+ b)(a+b)---(a+b)).

That is why the coefficient Cy is called "(from) n choose k" and

denoted by (7). Q.E.D. @



Binomial coefficients and combinations

The number of k-subsets of an n-set is

() = we

Proof. At first, determine the number of k-element sequences: there are n
choices for the first element of the sequence; for each, there are n—1
choices for the second; and so on, until there are n— k+1 choices
for the k-th. This gives n(n—1)...(n— k+1) = nk choices in all. And
since each k-element subset has exactly k! different orderings, this
number of sequences counts each subset exactly k! times. To get
our answer, divide by k!:

() =% = o

Q.E.D.



Binomial coefficients and combinations

The number of k-subsets of an n-set is

() = we

Proof. At first, determine the number of k-element sequences: there are n
choices for the first element of the sequence; for each, there are n—1
choices for the second; and so on, until there are n— k+1 choices
for the k-th. This gives n(n—1)...(n— k+1) = nk choices in all. And
since each k-element subset has exactly k! different orderings, this
number of sequences counts each subset exactly k! times. To get
our answer, divide by k!:

() =% = o

Q.E.D.

Some other notations used for the "n choose k" in literature:
C/?v C(nvk)7 nCk, an-




Properties of Binomial Coefficients

Yi—o () =2": A set of n elements has 2" subsets.

i o(=1)k(}) = [n=0]: In a nonempty set, the number of subsets with odd
cardinality is equal to the number of sets with even cardinality.

Proof. m Take a= b =1 in the binomial theorem:
2 ()= & (oo
= 1K1k = (1+1)"=2"
=0 \k im0 \K

m Take a=—1and b=1:

£ (0) = £ (1) oty -

k=0

Q.E.D.
@



Another Property For n > 0 Integer

Symmetry of binomial coefficients

(D) =(,",) for every n>0.

Proof. For 0 < k < n direct conclusion from Theorem 2:

()= 7= (")

otherwise, both sides vanish. Q.E.D.



Another Property For n > 0 Integer

Symmetry of binomial coefficients

(1) =(,") for every n>0.
Proof. For 0 < k < n direct conclusion from Theorem 2:

(Z) :k!(nniik)!: (,,fk);

otherwise, both sides vanish. Q.E.D.

Only if n is nonnegative!

For n=—1 and k>0,

while for k <0,



Yet Another Property

If n,k >0, then (7_1)+ (") = (7).

Proof.

m Note that
1 1_k+n—k n

BT M) Ha—0)°
m Multiplying this by (n—1)! and dividing by (k—1)!(n—k—1)!, we get

(n—=1)! (n—1)! . n(n—1)!
(k—1){(n—k)(n—k—1)! + k(k—1)!(n—k—1)! ~ k(k—1)/(n—k)(n—k—1)!

m This can be rewritten after some simplifying transformations as:

(n—1)! (n—1)! n!

(k—D)l(n—k)! " ki(n—k—1)1 _ kl(n—k)!

Q.E.D. @
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Pascal’s Triangle

1 5 10 10 5 1
1 6 15 20 15 6 1

Blaise Pascal
(1623-1662)

m Pascal Triangle is symmetric with respect to the vertical line
through its apex.

m Every number is the sum of the two numbers immediately above it.



Warmup: The hexagon property

Statement

For every n>2 and 0 < k < n,

()6



Warmup: The hexagon property

Statement

For every n>2 and 0 < k < n,

o) (i) () =) G

Interpretation

m Looking at Pascal’s triangle in the previous slide, the six numbers in the
expression above form a “hexagon” around (Z)

m Then the hexagon property says that the product of the odd-numbered corners
of the hexagon equals that of the even-numbered corners.



Warmup: The hexagon property

Statement

For every n>2 and 0 < k < n,

(22) () () = () () ()

Proof

Consider the expression of the binomial coefficients as a ratio of product of primes.
At the numerator, both sides contribute with (n—1)!-n!-(n+1)!

At the denominator:

m The left hand side contributes with:
(k=) (n—k)!-(k+1)'-(n—k—=1)!-k!-(n+1—k)!
m The right-hand side contributes with:
kl-(n=1—k)!-(k=1)!-(n—k+1)!-(k+1)!-(n—k)!

The contributions of the two sides are thus equal, and the thesis follows. @



Special values

=1 for every r real.

r for every r real.

u
~~
xS H O

I

=7(;Z 1) for every r real and k # 0 integer.

m k(;) =r(;_7) for every r real and k integer (also 0).
) =[n= 0] for every n integer.

) [k = 0] for every k integer.



The polynomial argument

For every r real and k integer,



The polynomial argument

For every r real and k integer,




The polynomial argument

For every r real and k integer,

Wait! There's a problem:

We can have r appear in the lower index only if it is an integer!



The polynomial argument

Theorem
For every r real and k integer,

(r—k)(l:) =(r—k)( k) r(,i;il) :r(rzl)

An issue which is only apparent

= (r—k)(;) and r(", 1) are polynomials in r of degree k+1.
m These two polynomials take equal values on each r > 0 integer.
m But two distinct polynomials of degree d can have at most d roots in common!



The polynomial argument

For every r real and k integer,
r r—1
=0(e)=(")

o) =0, ) =, 35 = (7))

Another use: The addition formula

As (1) and (') + (;=}) are polynomials in r of degree k that take the same values in
the k+1 points r =0,1,...,n, by the polynomial argument we can conclude that:

r r—1 r—1
(k>=( K )-i—(k_l) VreR VkeZ.



Next section

Generating Functions



Power series of functions

Example: Functions expanded as power series

2 X3 x4

5 y
i_l 2 42 42
§: =1t 5+ oy

) ( 1)n 2n+1 X3 X5 X7
sin(x) n;, @nr1)l X7 3 T 120 5040

1 = ZX":1+x+x2+x3+x4+---
1-x =



Power series of functions (2)

Power series of a function

m A power series of the function f is an infinite series of the form

oo

f(x)= Z:()zv,,()<—c)":ao—l—al(x—<:)-i—az()<—t:)2—‘,—ag,(><—c)3—|—~--7

where c,ap,as,... are constants. (Taylor series)



Power series of functions (2)

Power series of a function

m A power series of the function f is an infinite series of the form

oo

f(x)= Z:()zv,,()<—c)":ao—l—al(x—<:)-i—az()<—t:)2—‘,—ag,(><—c)3—|—~--7

where c,ap,as,... are constants. (Taylor series)

m Special case ¢ =0 provides a Maclaurin series:

f(x)= Z anx" = ag+a1x + asx®+azx> + -
n=0



Power series of functions (2)

Power series of a function

m A power series of the function f is an infinite series of the form

f(x)=Y an(x—c)" =ap+ai(x—c)+as(x—c)?+az(x—c)3+--,
n=0
where c,ap,as,... are constants. (Taylor series)

m Special case ¢ =0 provides a Maclaurin series:

f(x)= Z anx" = ag+a1x + asx®+azx> + -
n=0

m Coefficients are defined as
f(")(c)

n!

an =



Power series of functions (3)

Example: Generating functions

S =l+x+5+5+5+ (1,1,4,3, 4,
sin(x)=x— %+ & — st (0.1,-3,0, 55,0~ 55,
1,1,1,1,--)

/ﬁ:1+x+x2+x3+x4+m
Al

Generating functions ... .. of the sequences



Generating Functions

The generating function for the infinite sequence (go,&1,82,-..) is
the power series

G(x)=go+aix+&x*+gx°+ =Y gux"
n=0

Some simple examples

(0,0,0,0,...) <— 040x+0x>+0x>*+---=0
(1,0,0,0,...) +— 140x+0x>4+0x3+...=1
(2,3,1,0,...) — 243x+1x2+0x3+ - =2+43x+1x3



More examples (1)

(L1,1,1,...) «— 14+x+x2+x3+ =1

—X

S = 14+x+x24+x3+---
xS = x+x2+x3 4.

Subtract the equations:

(1-x)S=1 ehk S=——



More examples (1)

(1,1,1,1,..) < 1+x+x2+x34-- =L

—X

S = l4+x+x+x3+--
xS = x+x2+x34--

Subtract the equations:

(1-x)S=1 ehk S=-——

NB! This formula converges only for —1 < x < 1.

Actually, we don't worry about convergence issues.

@



More examples (2)

(a,ab,ab?,ab’,...) «— a+abx+ab’x®+ab’x* 4 =

Like in the previous example:

S = atabx+ab?’x®+ab3x3+--.
bxS = abx + ab’x® + ab>x3 + - --

Subtract and get:

_a
11— bx

(1—bx)S=a ehk S



More examples (3)

Taking in the last example a= 0,5 and b =1 yields

0,5

0,5+0,5x+0,5x*>+0,5x3 4 --- = .
— X



More examples (3)

Taking in the last example a= 0,5 and b =1 yields
0,5

0,5+0,5X+0,5X2+0,5x3+---:1 (1)
—X
Taking a=0,5 and b= —1, gives
2 3 075
0,5—0,5x+0,5x"—0,5x" +++- = —— (2)
14+ x



More examples (3)

Taking in the last example a= 0,5 and b =1 yields
0,5

O,5+O,5x+0,5x2+0,5x3+---:1 . (1)
Taking a=0,5 and b= —1, gives

0,5—0,5x+0,5x% — 0,553 - = 2> (2)

) ) 9 M 1+X

Adding equations (1) and (2), we get the generating function of the
sequence (1,0,1,0,1,0,...):

0,5 0,5 1 1

T s 4xba o — _ _
P 1—x+1+x (I—-x)(14+x) 1—x2




Next subsection

Generating Functions
m Intermezzo: Analytic functions



The complex derivative

Let ACC, f: A—C, and z an internal point of A.
The complex derivative of f in z is (if exists) the quantity

F(z) = Alirgo f(z+Az)—f(z)

Az
If f/(z) exists, then:
m For Az = Ax,
af . f(z+Ax)—f(2) 0
- = | —~ 7 YJ_F
dx (2) ax5o Ax (z)
m For Az=iAy,
ar .. f(z+iAy)—1f(z) .,
dy (2) "ax 5o iAy if(z)
As i-i=—1, we get the Cauchy-Riemann condition
o o
dx Ic?y B

If Ais open and f has complex derivative in every point of A, e say that f is @
holomophic in A.



Convergence of sequences of functions

Pointwise convergence

Let f,: A— C be functions. The (pointwise) limit of the sequence {f,},>0 is the

function defined by
f(z)= ILm fa(2)
fi—y00

for every z € A where the limit exists.

For power series: }.,>9anz" = limpy_ Z,’Lo anz".



Convergence of sequences of functions

Pointwise convergence

Let f, : A— C be functions. The (pointwise) limit of the sequence {f,}n>0 is the
function defined by

f(z) = lim f,(z
(2) = lim fi(2)
for every z € A where the limit exists.

For power series: ¥ ,~9anz" = limy_e Z,’YZO anz".

Uniform convergence

The sequence of functions {f,},>¢ of functions converges uniformly to f in A if:
Ve > 03ng >0 suchthat Vn > n Vz € A.|f(z) —f(z)| <€ :

that is, if pointwise convergence is independent of the point.

2

m The sequence f(x) = efxz[\x| < n] converges to f(x) =e " uniformly in R.

m The sequence f,(x) = [x > n] converges to zero in R, but not uniformly.



Consequences of uniform convergence

Continuity of the limit

Uniform limit of continuous functions is continuous.

Not true for simply pointwise convergence:

1-nx if0<x<1/n,

iffn(x):{ 0 B e, then ,!mcfn(x):[x:O].

Swap limits

If f, converges uniformly in A, then:

lim lim f,(z) = lim lim f,(z) Yz € A

z—2g N—0 n—o0 z—2g

Swap limit with differentiation

If f, — f uniformly in A, all the £, are differentiable, and f; converges uniformly, then

f is differentiable and:
f'(z) = lim f(z)
5



The convergence radius of a power series

The convergence radius of the power series

S(z)=Y an(z—2z)"

n=0

R— 1
limsup,,~o {/]an|

with the conventions 1/0 =o0, 1/00 =0.



The convergence radius of a power series

Definition
The convergence radius of the power series

S(z)= Z an(z—20)"

n=0

R— 1
limsup,~q ¥/|an| ’

with the conventions 1/0 =o0, 1/00 =0.

m For ¢ €C, ¥ ,50"z" has convergence radius 1/|c|.
Z"
m Y,-; — has convergence radius 1.
' n

n
z s q
m Y >0 ol has infinite convergence radius.



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center zg and convergence radius R.

If R>0, then S(z) converges uniformly on every closed and bounded subset of
the open disk Dg(zp) of center zy and radius R.

If R <, then S(z) does not converge at any point z such that [z—z| > R.



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center zg and convergence radius R.

If R>0, then S(z) converges uniformly on every closed and bounded subset of
the open disk Dg(zp) of center zy and radius R.

If R <, then S(z) does not converge at any point z such that [z—z| > R.

=Y. 2,7((_ —|)-1)Z converges uniformly in {|z| < 1}.
n
= Y. -0 fH—) does not exist.



The Abel-Hadamard theorem

Statement

Let S(z) be a power series of center zg and convergence radius R.

If R>0, then S(z) converges uniformly on every closed and bounded subset of
the open disk Dg(zp) of center zy and radius R.

If R <, then S(z) does not converge at any point z such that [z—z| > R.

n

m Y0 m
(2i)

n
] does not exist.
Zn)O n+1

z" converges uniformly in {|z| <1}.

Consequence for generating functions

If limsup,>q {/|gn| < e,
then the generating function of g, is well defined in a neighborhood of 0.



Exploiting power series

Let S(z) =Y ps0an(z—20)" for |[z—zp| < r.

For any such z we can approximate S(z) with its partial sum

Sn(z) = Z an(z—20)"

0<n<N

The quantity |S(z) — Sy(z)| can be made arbitrarily small by setting N large
enough.

The choice of n can be made good for every z such that |z—z| < p <r.

Arithmetic operations are sufficient to compute Sy(z).



Power series are holomorphic functions

m Let S(z) =Y ,>0an(z—20)" and let R > 0 be its convergence radius.

m The function

T(z)= g{]%(an(zfzo) Z nap(z—2zo)" Z(n+1 ani1(z—20)"

n=>0

is still a power series.

limsup /|(n+1)an+1| = limsup {/|an]| :
n=0 n=0

so T(z) also has convergence radius R.

m But

m By the Abel-Hadamard theorem, for every z € Dg(zp),

§'(2)= ¥ (n+1)ana(z~20)" = T(2)

n=0



Holomorphic functions are power series locally

Laurent’s theorem

Let f be holomorphic in a disk
D (z0) ={z€C | |z—z| < r}.

Then there exist a sequence {an},>0 of complex numbers such that:
The power series S(z) = Y,50an(z—20)" has convergence radius R > r.
For every z € D,(z9) we have S(z) = f(z).

A function which is “locally a power series” at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.



Holomorphic functions are power series locally

Laurent’s theorem

Let f be holomorphic in a disk
D/ (z0) ={z€C | |z—z| < r}.

Then there exist a sequence {an},>0 of complex numbers such that:
The power series S(z) =Y,50an(z—20)" has convergence radius R > r.
For every z € D,(z9) we have S(z) = f(z).

A function which is “locally a power series” at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.

Counterexample in real analysis
Let f(x) = e 1/* for x=£0, £(0) =0.
m Then f is infinitely differentiable in R . ..

m ...but the Taylor series in x =0 vanishes!



Holomorphic functions are power series locally

Laurent’s theorem

Let f be holomorphic in a disk
D/ (z0) ={z€C | |z—2z| < r}.

Then there exist a sequence {an},>0 of complex numbers such that:
The power series S(z) = Y50 an(z —20)" has convergence radius R > r.
For every z € D,(z9) we have S(z) = f(z).

A function which is “locally a power series” at each point is called analytic.
For complex functions of a complex variable, analyticity is the same as holomorphy.

Consequence for generating functions

Every function that is analytic in a neighborhood of the origin
is the generating function of some sequence.



The identity principle for analytic functions

Statement

Let A be a connected open subset of the complex plane.
Let f: A— C be an analytic function.
Suppose f is not identically zero in A.

Then all the zeroes of f in A are isolated:
If zo € A and f(z9) =0, then there exists r > 0 such that f(z) # 0 for every z
such that 0 <|z—z| <r.



The identity principle for analytic functions

Statement

m Let A be a connected open subset of the complex plane.
m Let f: A— C be an analytic function.
m Suppose f is not identically zero in A.

m Then all the zeroes of f in A are isolated:
If zo € A and f(z0) =0, then there exists r > 0 such that f(z) # 0 for every z

such that 0 <|z—z| < r.

Corollary: Uniqueness of analytic continuation

Let:
m | a nonempty interval of the real line;
m A a connected open subset of the complex plane such that / C A; and
m f:/— R a continuous function.
Then there exists at most one function analytic in A which coincides with f on /.



The identity principle for analytic functions

Statement

m Let A be a connected open subset of the complex plane.
m Let f: A— C be an analytic function.
m Suppose f is not identically zero in A.

m Then all the zeroes of f in A are isolated:
If zp € A and f(z9) =0, then there exists r > 0 such that f(z) # 0 for every z
such that 0 < |z—z| <r.

Consequence for generating functions

Every sequence {gn}n>0 of complex numbers such that limsup,>q {/|gn| < o°
is uniquely determined by its generating function.



14+2+43+44...=—1/12177

The series
n>1

converges for every real value s > 1: for example, for s =2,

1 T
L2

n>1

The Riemann zeta function is the unique analytic function {(s), defined for
s € C\ {1}, such that {(s) =Y ,>1 n~° for every real s> 1.

m It happens that {(—1) = —1/12.
m This does not mean that ¥,>; n=—1/12!

m Instead, it means that the formula {(s) =Y,>1 n"° can be assumed valid only
when s is real and greater than 1.



Basic generating functions

G(2) | | (g0,81,82,83,--) | &n
z", meN | zeC (,...,0,1,0,...,) [n=m]
e* zeC <1717%7%7"'> il
—1)[n/2]
cosz zeC (1,0,—3,0,...) %{n mod 2 = 0]
—1)ln/2]
sinz zeC (0,1,0,-1,...) %-[n mod 2 = 1]
—il 3 o
(1+2)* |zl <1 (1,0, %% )7%7- ((’)’C):F
1
T lzZ| <1/]a] | (1,,0%,03,...) a”
1 1
11 4. Z.0=
Inlfz lz| <1 O1, 55 Focoo) - [n>10], conv. 0=0
—-1)" 1
In(1+z) |z| <1 <0,1,—%,%, ) %-[n>0], cony. 6~0=O




Analytic functions and generating functions: A summary

Every function that is analytic in a neighborhood of the origin of the complex
plane is the generating function of some sequence.
Reason why: Laurent’s theorem.

Every sequence {g,}n>0 of complex numbers such that
limsup \/|gn| < o
n

admits a generating function.
Reason why: The Abel-Hadamard theorem.

Every such sequence is uniquely determined by its generating function.
Reason why: Uniqueness of analytic continuation.

We can thus use all the standard operations on sequences and their generating
functions, without caring about definition, convergence, etc., provided we do so under
the tacit assumption that we are in a “small enough” circle centered in the origin of
the complex plane.



Next subsection

Generating Functions

m Operations on Generating Functions



Operations on Generating Functions

1. Scaling
If
(fo, fi,f2,...) «— F(x),
then
(cfo,chi,cho,...) «— c-F(x),
for any c € R.

Proof-

(cfo,ch,chy,...) <+ cly+chx+chx®+---=
= c(h+hx+thxP+-)=
cF(x)

Q.E.D.



Operations on Generating Functions (2)

2. Addition

If (fo,f,f,...) «— F(x)and (go,g1,82,...) <— G(x), then

(fo+go,fi+&1,b+g,...) +— F(x)+G(x).

Proof.

(fo+ 8, h+81, h+ge ... Y, (fatgn)x" =

= <iofnx"> + (ig,,x”) =
= F(x)+ G(x)

Q.E.D.



Operations on Generating Functions (3)

3. Right-shift

If (fo,f,f,...) «— F(x), then

(0,0,...,0,f,f1,f2,...) +— x¥-F(x).
N——

k zeros

Proof.

(0,0,...,0,f, A1, B,...) «— fox¥ + Aix* 4 foxk+2 4 =
=xK(fo+ Ax+hx?+-) =
=xk-F(x)

Q.E.D.



Operations on Generating Functions (4)

4. Differentiation

If (fo,f,f,...) «— F(x), then

(h,2h,3f,...) +— F'(x).

Proof-
(f,2f,3f;,...) > fi + 26X+ 3BXx° +... =

d
d
=& )

Q.E.D.



Operations on Generating Functions (4)

4. Differentiation

If (fo,f,f,...) <— F(x), then

(h,2h,3f,...) +— F'(x).

m (1,1,1,..)

fuy
_

—X

—1 =

—
m (1,23, )« S5 = o

o



Operations on Generating Functions (5)

5. Integration

If (fo,f,fa,...) < F(x), then

111 x
0. f 2 ofy..) / F(z2)dz.
¢ 0,5f,3f, 45 ) i (2)

Proof.
1,11 1, , 1, 4 1,
<0,ﬁ),§ﬂ,§6,z&,><—)f6X+§ﬂX +3f2X +4f£«>,X oo =
X
— [+ fiz+ 62+ 52+ )z =
0

= /OX F(z)dz
Q.ED. @



Operations on Generating Functions (5)

5. Integration
If (fo,fi,f,...) «— F(x), then

1.1 1 x
0,f,=fi, 2o, ~F,...) s / Fl2ik,
( 0,534 ) i (2)




Operations on Generating Functions (6)

6. Convolution (product)

If (fo,f1,f2,...) +— F(2), (go,&1,82,--.) — G(z), and

n
hn = fogn+fign-1+fagn—2+--+fogo = Z axbp_x = Z aibj
k=0 i+j=k

then <h0,h1,h2,...> — F(Z)G(Z)



Operations on Generating Functions (6)

6. Convolution (product)

If (fo,f1,f2,...) «— F(2), (g0,81,82,...) +— G(z), and

n
hn = fogn+fign-1+fagn2+---+fug0 = Z axbnp_k = Z aibj
k=0 itj=k

then <h0,h1,h2,...> — F(Z)'G(Z).
Proof.

F(x)-G(x)= (f0+f1x+f2x2 +...)(g0 +g1x+g2x2+...)
= fogo + (fog1 + f1go)x + (fogz + fig1 + fago)x* + ..

Q.E.D.



Operations on Generating Functions (6)

6. Convolution (product)

If (fo,f1,f2,...) «<— F(2), (g0,&1,82,---) +— G(z), and

n
hn = fogn+ fign-1+fagn2+ " +fag0o= Y, akbpk= Y. ajb;
k=0 i+j=k

then (hg,h1,h2,...) «— F(z)-G(2).
Proof.
F(x) - G(x)=(fo+Ax+fhx®+..)(go+g1x+gx>+...)
= fogo + (fog1 + figo)x + (fogz + fig1 + f280)x° + ...

Q.E.D. Notice that all terms involving the same power of x lie on a /sloped diagonal:

| g0x®  @x! gx®  gxd
x° | fgox’ fogix' fogax®  fogzx®
fixl | figox! figix?  figex3
£x? | hgox® fgix®
f3x3 | fagox® .



Operations on Generating Functions (6)

6. Convolution (product)

If (fo,f1,f2,...) «— F(2), (g0,81,82,-.-) +— G(z), and

n
hn = fogn+fign-1+Ffagn2+-+fgo= Y abpk= Y, aib
k=0 i+j=k

then <h0,h1,h27...> — F(Z)G(Z)

Example

<171,1,1.._>40,1%,%...) = <1~071-0+1-1,1~0+1~1+1~%,~~~>
1 1 1
= 1,142,142+,
(0,1, t3 1543, )

(0, H1, Hz, H3,--)

Hence
1 1

AP n_——--.
i (e )



Operations on Generating Functions (7)

1

1,1,1,1,...) ¢ ———
<7 ) b > 1—X

d 1 1
1.2,3.4,... — =
(1,2,3,4,...) dx1—x (1—x)?

1 X

0,1,2,3,... . =
<7 b R > X (1_X)2 (1_X)2

d X 14+ x

(1,4,9,16,...) < e i e
. 1+x  x(1+x)
(0,1,4,9,...) «—x Ax) (-




Counting with Generating Functions

Choosing k-subset from n-set

Binomial theorem yields:

QO (oo —
- (0) i @X* (Z)X2+-~+ (Z)x"=<1+x)"



Counting with Generating Functions

Choosing k-subset from n-set

Binomial theorem yields:

QO (oo —
- (o) i @” (g)x2+--~+ (Z)x"=(1+x)"

m Thus, the coefficient of x¥ in (14 x)" is the number of ways to
choose k distinct items from a set of size n.

m For example, the coefficient of x? is , the number of ways to choose
2 items from a set with n elements.

m Similarly, the coefficient of x"*! is the number of ways to choose @
n—+1 items from a n-set, which is zero.



Next subsection

Generating Functions

m Building Generating Functions that Count



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket 7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .o/:

m If any natural number of elements can be selected:

A(x):l+x+x2—|—x3+-~:—



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket .7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .<:

m If any natural number of elements can be selected:

1
A(x) =14 x+x2 53 o=
1—x
m If any even number of elements can be selected:
A(x):1+x2+x4+xe+---:;
1—x2



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket o7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .o/:

m If any natural number of elements can be selected:

1
AX)=1+x+x2+x34... =
1-—x
m If any even number of elements can be selected:
A(x):1+x2+x4+x6+--~: 1
1—x2

m If any positive even number of elements can be selected:

AX)=x2 +x* 4+ x8 +... =

@



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket o (a (multi)set of identical elements) is the function A(x) that's
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .«:

m If any natural number of elements can be selected:

AX)=14+x+x2+x3+...= ——

m If any number of elements multiple of 5 can be selected:

AX)=14x5 +x104x15 ... = T8



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket o7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.
Examples of GF selecting items from a set .o/:

m If any natural number of elements can be selected:

1
AX)=1+x+x2+x34... =

m If at most four elements can be selected:

1—
AX)=14+x+x2+x3+x* = 7 x

—X

m If at most one element can be selected:

1—
A(x) = 17);:1—4—x @




Counting elements of two sets

Convolution Rule

Let A(x) be the generating function for selecting an item from (multi)set 7,
and let B(x), be the generating function for selecting an item from
(multi)set B. If o and A are disjoint, then the generating function for
selecting items from the union &/ U2 is the product A(x)- B(x).

Proof. To count the number of ways to select n items from &/ U2 we have to select j
items from </ and n—j items from %, where j € {0,1,2,...,n}.
Summing over all the possible values of j gives a total of

aoby+aib,—1+azbp_2+---+apho

ways to select n items from &/ UZ. This is precisely the coefficient of x" in the series
for A(x)-B(x) Q.E.D.



How many positive integer solutions does the equation

X1+ x> = n have?

We accept any natural number can be solution for xq, i.e generating function for
I

selection a value for this variable is A(x) =1+x+x>+x3+-- = 11

m same for variable x;



How many positive integer solutions does the equation

X1+ x> = n have?

m \We accept any natural number can be solution for xq, i.e generating function for

selection a value for this variable is A(x) =1+x+x>+x3+-- = 11

1

m same for variable xi;

H(x) =

Q+x+x2 3+ YA x x5+ )=

T (A 4+x+x2+x34+ )+ x(Q+x+x24+3+-- )+
2L x+x2+x3+ )3+ x+xP 3+ )+ =
1

2 3 n e —
142x4+3x"+4x+---+(n+1)x"+ a2



How many positive integer solutions does the equation

X1+ x> = n have?

m \We accept any natural number can be solution for xq, i.e generating function for
selection a value for this variable is A(x) =1+ x+x%+x3 4+ = L

m same for variable xi;

Hx) = @Q+x+x2+x3+)Q+x+x2+x3+)=
= 1. (14+x+x24+3+ ) +x(A+x+x2+x3+ )+
2L x+x2+x3+ )3+ x+xP 3+ )+ =
1

el 2 3 e n DI R —
= 142x+3x"+4x>+---+(n+1)x"+ a2

Indeed, this equation has n+1 solutions:

0O+n = n
1+(n—1) = n
2+(n—-2) = n

to = 0 ]



Number of solutions of the equation x; +xo+---+xx = n

Theorem

The number of ways to distribute n identical objects
into k bins is (”+ﬁ_1).

Proof.

The number of ways to distribute n objects equals to the number of solutions of
X1+ x2 + -+ xx = n that is coefficient of x" of the generating function
G(x)=1/(1—x)k=(1—-x)"k.



Number of solutions of the equation x; +xo+---+xx = n

Theorem

The number of ways to distribute n identical objects
into k bins is ("+S_1).

Proof.

The number of ways to distribute n objects equals to the number of solutions of
X1+ x2 + -+ xx = n that is coefficient of x" of the generating function
G(x)=1/(1—x)k=(1—-x)"k.

For recollection: Maclaurin series (a Taylor series

expansion of a function about 0):

f‘//(o) > + f//l(o)

ol X Tl S dbsoodt

f(x) = £(0)+ F'(0)x +

()
mxn+...
n!




Equation x; +xo+---+xx = n (2)

Continuation of the proof ...

m let’s differentiate G(x) = (1 —

G'(x)
GII(X)
G///(X)

G("(x)

X)’k:

k(1 —x)~(k+D)

k(k+1)(1 —x)~(k+2)
k(k+1)(k+2)(1 —x) (k+3)
k(k+1)--(k+n—1)(1—x)~(k+n)

m Coefficient of x" can be evaluated as:

G(M(0)

n!

k(k+1)---(k+n—-1)
n! -

(k+n-1)1

(k—1)'n!

- (1)

Q.E.D.



Distribute n objects into k bins so that there is at least one
object in each bin

Theorem

The number of positive solutions of the equation
X1+XxXo+:-+Xk=n is (Z:i)

Idea of the proof. Possible number of objects in a single bin (x; > 0)
could be generated by the function

CX)=x+x°+x3+- - =x(14+x+x>+---) = X

1—x

Similarly to the previous theorem, the number distributions is the
coefficient of x" of the generating function

Xk
H(X) = CK(x) = TF

Q.E.D. @



Example: 100 Euro

How many ways 100 Euro can be changed using smaller banknotes?



Example: 100 Euro

How many ways 100 Euro can be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

1
A(X)=X0+X5—|—X10+X15+---=1_X5
B(x):x°+x10+x20+x3°+~~-:ﬁ
C(x):x°+xzo+x40+x60+-~:ﬁ
D(x):x°+x5°+x1°°+x15°+---:ﬁ



Example: 100 Euro

How many ways 100 Euro can be changed using smaller banknotes?

Generating functions for selecting banknotes of 5, 10, 20 or 50 Euros:

1
Ax)=x0 +x% +x10 4 x5 .. = T35
B(x):x°+x1°+x2°+x3°+~~-:ﬁ
C(x):x°+xzo+x40+x60+-~:ﬁ
D(x):x°+x5°+x1°°+x15°+---:ﬁ
Generating function for the task
1

P(x) = A(x)B(x) C(x)D(x) =

(1—x5)(1—x10)(1 — x20)(1 —x50)

@



Example: 100 Euro (2)

1. Observation:

NS

x
«

4L

(1-x5)(1 x5 1250 2,55 | 42,95 43,100 43,105 3,145 4 ,4,150 | y_
1+ x®4.+x%5 12550 12,55 0,95 3100 3,105 | 3,145 4, 150  _

x5 _ ... _,A5_,50 555 5 95 5 100 3,105 3,145 3,150 , 155 _
1
1 4 504,100, 150, 200,  _
1 x50

Thus:

P = AP = sy —smy = &, |16 +2) 2 = Z o

k=0 k=0



Example: 100 Euro (2)

1. Observation:

(L=x5)(1 4+ x5 4 x5 1250 1 9,55 . 5,95 3,100 3,105 3,145 4 ;4,150 , \_
1+ x® 4. +x%5 12550 15,55 . 0,95 3,100 3,105 | 3,145 4, 150  _

5 _..._,A5_, 50 5 55 595 100 3 105 . _ 3 145 3 150 , 155 _  _
—1 4 x50, 100,150 200,  _ 17:;50
Thus:
FO0 = ACID() = ey = X (| 15| 1) = I o
(1-x®)(1—x%0) — S\[10 =
2. Similarly:
6(x) = B(IC(x) = ——go——5: = ¥ (H +1)ka Y gt
(1—x10)(1 —x29) So\L2 =

@



Example: 100 Euro (3)

m Convolution:
P(x)=F(x)G(x) =Y cnx

k>0

m The coefficient of x1%° equals to
c20 = fog1o + f280 + fags + - + 2080

10
=Y fgo-k
k=0

- (5] (%))

ey

=1(6+5+5+4+4)+2(3+3+2+2+1)+3-1=
=24422+3=49
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