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Binomial coefficients

Let r be a real number and k an integer. The binomial coefficient ““r choose k" is the
real number

(r—1)---(r— k.
<r): r-(r—1) kl(r k+1):% k>0,
k 0 ' " ifk<0.

If r = nis a natural number
In this case,

(Z) _ n-(nfl)v;(-!(nfk—l-l)

is the number of ways we can choose k elements from a set of n elements, in any
order.
Consistently with this interpretation,

n! .
(n): m if0< k<n,
0 if k> n.



Binomial identities cheat sheet

1 for every r real.

= r for every r real.

> 0] for every n integer.

= 0] for every k integer.
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= i( 1) for every r real and k # 0 integer.

=r(;_ 1) for every r real and k integer (also 0).
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(1) = (’kl) + (- ) for every r real and k integer.

[ ZZ:O( ) = 2" for every n > 0 integer.
m Y7 o(=1)%(}) = [n=0] for every n >0 integer.



Unfolding

For every r real and n integer,

kgﬂ (rik) _ (r+z+1)



Unfolding

For every r real and n integer,

Proof
If n <0 both sides vanish; if n=0 then both sides equal 1.

Otherwise, the identity:
(r+n+1> (r—i—n) (r—l—n)
= a4
n n n—1

shows that U, = (”ﬂ“), n >0, is the unique solution to the recurrence:

U = 1,
U Unr + ("F7) Vn>1.

But such recurrence is clearly satisfied by U, =Y]_, ('J,:k). @



Summation on the upper index

For every m,n > 0 integers,
2”: k\ _(n+1
‘o \m T \m+1

Warning: for m=—1 and n=0, the left-hand side is 0, but the right-hand side is 1.



Summation on the upper index

For every m,n > 0 integers,
2”: k\ _(n+1
‘o \m - \m+1

Warning: for m=—1 and n=0, the left-hand side is 0, but the right-hand side is 1.

Proof
The identity:

(ms1)= (i) + ()

shows that U, = (,'7'1*_"_11) is the unique solution to the recurrence:

Uo
Un

[m=0],
Up-1+(]) Vn>1.

But such recurrence is clearly satisfied by U, =Y7_, (,’;)



Going halves

Theorem

For every r real and k nonnegative integer,

(=2 G

Indeed,
fr—1/2)% = r(r—1/2)(r—1)(r—3/2)---(r—k+1)(r—k-+1/2)
2r(2r—1)---(2r—2k+2)(2r -2k +1) _ (2r)**
22k 22k

so that:

e (r=1/2)% . i (2r)% (2k)!
Kk (2K)! (k!)2




Higher order differences

We define the nth order difference by induction on n > 0:
A% =f and A™F1f = A(A"F)

For instance, A2f(x) = A(f(x+1) = f(x)) = f(x+2) —2f(x +1) + f(x).
For every n > 0,
A"F(x) =Y (:)(—1)""‘f(x+k)

k=0

Indeed, if E is the shift and [ is the identity, then A = E —[: as E and | commute, it
is licit to perform

A"=(E-I)"= i‘b EX(—1)"k

Warning: this is only possible because Eo/ = /o E!



The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions defined on N. The following are equivalent:
For every n >0, g(n) = X7_o (1) (—1)%f (k).
For every n >0, f(n) =Y1_o () (~1) g(k).

Note that the role of f and g is symmetrical.



The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions defined on N. The following are equivalent:
For every n >0, g(n) =Xr_o (1) (—1)%f (k).
For every n>0, f(n)=XYq_, (1) (—1)“g(k).

Note that the role of f and g is symmetrical.

If g(n) =X7_o () (—1)%f(k) for every n >0, then for every n >0 also:
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Generating functions

Let
(80,81,825--+,8&ns---)

with n € N be a sequence of generic term g,.
The generating function of the sequence is the power series

N
6(z)= Y gnz"= lim ¥ guz",
N—yeo =0

n=0

which is defined for z in a suitable neighborhood of the origin of the complex plane.



Three basic principles

Every complex-valued function of a complex variable having complex derivative
in a neighborhood of the origin of the complex plane is the generating function
of some sequence.

Every sequence {g,}n>0 of complex numbers such that
M = limsup {/|gn| < o
n

admits a generating function, defined for |z| < R=1/M.
Every such sequence is uniquely determined by its generating function.

We can thus use all the standard operations on sequences and their generating
functions, without caring about definition, convergence, etc., provided we do so under
the tacit assumption that we are in a “small enough” circle centered in the origin of
the complex plane.



Basic operations with generating functions

Let (go,&1,82,-..) and (ho, h1,ha,...) be sequences of complex numbers.
Let G(z) =Y ,>08n2" and H(z) =Y ,>0 hnz" be their generating functions.
The following operations are well defined in a neighborhood of the origin:

sequence generic term | g.f.
<0tgo+ﬁhoy0¢g1 +Bh1,0g +Bh,...) agn+Bhy | aG(z)+BH(z)
(0,...,0,80,81,---) gn—m[n>m| | z"G(z2) — .
(8m»Bma1,8mi2s---) Gnim M
<a1,2a2,333, > (n+1)gn+1 G’(Z)

0,2, %,..) E22[n>0] | Jo G(w)dw
(goho,goh1 +g1ho,goh2 +g1h1 +g2ho,-..) | Xi_o8khnk | G(2) H(z)

where:
= undefined-0 = 0 by convention.
m [ZG(w)dw = [} zG(tz)dt = (z) with ' = G and [(0) =0.



Derivatives of the generating function

If G(z) =Yn>0&n2", then for every k >0,

¢W(z)= Y (n+k)gniuz"

n=0



Derivatives of the generating function

If G(z) = Yn>0&n2", then for every k >0,

G(k)(z) = Z (n+k)Kg,,+kz"

n=0

The thesis is true for k =0 as n® is an empty product.

If the thesis is true for k, then

Gkt(z) = Y (n+ K).ng 2" [n > 1]

n=0

Y (n+ 14K (n+1) gni1 k2"

n=0

Y (n+1+4 kYt g, 12"

n=0



Derivatives of the generating function

If G(z) = Yn>08n2", then for every k >0,

G(k)(z) = Z (n+ k)ﬁg,,_,_kz"

n=0

Corollary

For every n > 0,

nt 1 n k G(n)(o)
8n = Egn = m kz>:0(n+k)*g,,+k0 = T
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Counting with Generating Functions

Choosing k-subset from n-set

Binomial theorem yields:

(G)():- () ()0000) =




Counting with Generating Functions

Choosing k-subset from n-set

Binomial theorem yields:

(G)():- () ()0000) =

m Thus, the coefficient of x in (1+x)" is the number of ways to choose k
distinct items from a set of size n.

m For example, the coefficient of x2 is , the number of ways to choose 2 items
from a set with n elements.

m Similarly, the coefficient of x"*1

from a n-set, which is zero.

is the number of ways to choose n+1 items



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket 7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .o/:

m If any natural number of elements can be selected:

A(x):l+x+x2—|—x3+-~:—



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket .7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .<:

m If any natural number of elements can be selected:

1
A(x) =14 x+x2 53 o=
1—x
m If any even number of elements can be selected:
A(x):1+x2+x4+xe+---:;
1—x2



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket o7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .o/:

m If any natural number of elements can be selected:

1
AX)=1+x+x2+x34... =
1-—x
m If any even number of elements can be selected:
A(x):1+x2+x4+x6+--~: 1
1—x2

m If any positive even number of elements can be selected:

AX)=x2 +x* 4+ x8 +... =

@



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket o (a (multi)set of identical elements) is the function A(x) that's
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.

Examples of GF selecting items from a set .«:

m If any natural number of elements can be selected:

AX)=14+x+x2+x3+...= ——

m If any number of elements multiple of 5 can be selected:

AX)=14x5 +x104x15 ... = T8



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket o7 (a (multi)set of identical elements) is the function A(x) that’s
expansion into power series has coefficient a; =1 of x' iff i can be selected into
the subset, otherwise a; = 0.
Examples of GF selecting items from a set .o/:

m If any natural number of elements can be selected:

1
AX)=1+x+x2+x34... =

m If at most four elements can be selected:

1—
AX)=14+x+x2+x3+x* = 7 x

—X

m If at most one element can be selected:

1—
A(x) = 17);:1—4—x @




Counting elements of two sets

Convolution Rule

Let A(x) be the generating function for selecting an item from (multi)set 7,
and let B(x), be the generating function for selecting an item from
(multi)set B. If o and A are disjoint, then the generating function for
selecting items from the union &/ U2 is the product A(x)- B(x).

Proof. To count the number of ways to select n items from &/ U2 we have to select j
items from </ and n—j items from %, where j € {0,1,2,...,n}.
Summing over all the possible values of j gives a total of

aoby+aib,—1+azbp_2+---+apho

ways to select n items from &/ UZ. This is precisely the coefficient of x" in the series
for A(x)-B(x) Q.E.D.



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings with her:
m three, four, or five dogs;
m a cage with several pairs of rabbits;
m and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 07



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings with her:
m three, four, or five dogs;
m a cage with several pairs of rabbits;
m and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 07

Using generating functions

Let D(z), R(z), and C(z) be the generating functions of the number of ways the old
lady can walk dogs, rabbits, and crocodiles, respectively:

1

D(z) =23+ 2% + 25; R(z):1+22+24+...:172;
—Z

C(z)=1+4z
The generating function A(z) of the number of ways the old lady can walk pets is thus:

z?'—i-z“-‘,-z5

Az) = D(2)- R(z) - C(2) = =2



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings with her:
m three, four, or five dogs;
m a cage with several pairs of rabbits;
m and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 07

Solution

For m > 0 integer, G(z) =z is the generating function of g, =[n= m].
G(z) =1/(1—2z) is the generating function of g, =1.
Then for every n> 0, the number of ways the old lady can walk her pets is:

5 n 5
an=[2AZ)= Y Y ik=ml= Y [n>m]
m=3 k=0 m=3
For example, for n =6 the old lady has three choices:
m three pairs of rabbits;
m four dogs and one pair of rabbits; @
m three dogs, one pair of rabbits, and the crocodile.
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Generating function for arbitrary binomial coefficients

Theorem (Generalized binomial theorem)

For every r e R,



Generating function for arbitrary binomial coefficients

Theorem (Generalized binomial theorem)

For every r e R,

(1+z) =Y (;)z”

n=0

Indeed, let G(z) = (14 z)" where r is an arbitrary real number:
m By differentiating n >0 times, G()(z) =r---(r—1)---(r—n+1)-(1+2)"".

m Then,
GM©) _rm_(r
nl ol \n

m As nis arbitrary and the correspondence between sequences and generating
functions is one-to-one, the thesis follows.




Generating function for arbitrary binomial coefficients

Theorem (Generalized binomial theorem)

For every r e R,

(1+z) =Y (’:>z

n=0

Indeed, let G(z) = (14 z)" where r is an arbitrary real number:
m By differentiating n > 0 times, G(")(z) =r-(r=1)---(r—n+1)-(1+2z)"".

m Then,
GM©) _rm_(r
nl ol \n

m As nis arbitrary and the correspondence between sequences and generating
functions is one-to-one, the thesis follows.

oy (1/2)Zn
n

n=0




Vandermonde's identity

Binomial theorem provides the generating function:

(1+2)=Y) (;)z" and (1+z2°=Y (Z)z"

n=0 n=0

Convolution yields:

Z (r—i—s)zn
n>o \ 1

(1 +Z)r+s

(1+2)"-(1+2)

(£0)=)(z())
£(£0)07)7



Vandermonde's identity (2)

Equating coefficients of z¥ on both sides of this equation gives:

Vandermonde's convolution:

£(0)62)=(7)




Vandermonde's identity (2)

Equating coefficients of z¥ on both sides of this equation gives:

Vandermonde's convolution:
i r s _[r+s
=5 k)\n—k) n

1 QR IG)

1 1
1 2 1
:
1 4 6 4 1
1 5 10 10 5 1
[1] [6] [15] 20 15 6 1
1 7 21 35 35 21 7 1



Vandermonde's identity (3)

Special case r = s = n yields:

()-£@0)-56)



Vandermonde's identity (3)

Special case r = s = n yields:
2n\ 2": n n - Z m\ 2
n) =0 \k/ \n—k - o k

n2 | a2

Example: (3)2 +(1) + G+ (

1 1
11 11
1 2 1 1 4 1
1 3 3 1 1 9 9 1
1 4 6 4 1

1 7 51 35 35 21 7 1 1+16+36+16+1=70

1 8 28 56 (70| 56 28 8 1



Sequence ((7),0,~(7),0,(3),0.~(5

Let's take sequences

(O E)-()-) = rormer
(-3 (2)-) o=

Then the convolution corresponds to the function (1 +2z)™(1—z)™ = (1 —2z2)™ that
gives the identity of binomial coefficients:

J; ('J") (nT j) (1Y =(-1)" (n'72) [n is even]

and




Other useful binomial identities

Sign change and falling powers

(-1)"r*=(n—r—1)2VreRVYn>0
Proof: (—=1)"-r-(r—1)---(r—n+2)-(r—n+1)=(n—r—1)-(n—r—=2)---(1—=r)-(—r)



Other useful binomial identities

Sign change and falling powers

(-1)"r*=(n—r—1)*VreRYn>0
Proof: (—1)"-r-(r—1)---(r—n+2)-(r—n+1)=(n—r—1)-(n—=r—=2)---(1=r)-(=r)

Generating function for binomial coefficients with upper index increasing

For every r > 0,
— r+n
(1- r+1_2( 1)”( )HZZ( n )Zn
n=0
In addition, if r = m is an integer,

1

a =L )= (")

n=0

and by shifting,

zm . m+n T n
(1- z)rn+17n§0( m )Zm "7'1;)(,”)2" @



Generating functions cheat sheet

ef = z
50 n!
1 = anzn
1-az fsr
r r n
1+2z) = ( )z , reR
n=0 n
1 (r+n n
= z, re]R
(1—z)+t S\ n
1
T = <m+n)z,,’ meN
(1-2) =6 m
5 (m)
= z, mEN
(1—z)m+1 S \m
1 z"
In = —
11—z sin
1 1
In = H,z"




Generating functions and recurrences

Solve the recurrence:

U = 1,
U, = Up1+n+3Vn>1.



Generating functions and recurrences

Solve the recurrence:

UO = 1,
U, = U, 1+n+3Vn=>1.

Setting up the problem

Let G(z) =Y ,>0 Unz". The initial condition tells us that G(0) =1. For n>1:
m U,_1 is the coefficient of z” in zG(z).
m n is the coefficient of z” in ﬁ because n+1 is of ﬁ
zZ
=z
(We must remove the constant term, because the recurrence only holds for
n>1)

Then G(z) satisfies the following functional equation:

m 1 is the coefficient of z" in 1—271 =

3z
G(z2)=14+2G(2)+ —— i 2)2 +—Z @



Generating functions and recurrences

Solve the recurrence:

UO = 1,
U, = U, 1+n+3Vn=>1.

Expressing as power series

We can rewrite the functional equation as:

z 3z

1
=it o tae

We know that q
z
13= E z" and -2z = E nz"

n=0 n=0

For the middle summand, we observe:

z 1

(172)322%(172)2 =§Z("+1)nz"—1:):(";rl)zn @

n>1 n=0




Generating functions and recurrences

Solve the recurrence:

U = 1,
U, = U, 1+n+3Vn=>1.

Reconstructing the coefficients

Our functional equation is thus equivalent to:

LUz =L+ ¥ ("3 43 L L et

n=0 n=0 n=0 n=0n=0
By linearity and uniqueness it must then be:
1
U,,=1+w+3n ¥n>0
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