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Binomial coe�cients

De�nition

Let r be a real number and k an integer. The binomial coe�cient �r choose k� is the
real number (

r

k

)
=

 r · (r −1) · · ·(r −k +1)

k!
=

rk

k!
if k > 0 ,

0 if k < 0 .

If r = n is a natural number

In this case, (
n

k

)
=

n · (n−1) · · ·(n−k +1)

k!

is the number of ways we can choose k elements from a set of n elements, in any
order.
Consistently with this interpretation,

(
n

k

)
=


n!

k!(n−k)!
if 06 k 6 n ,

0 if k > n .



Binomial identities cheat sheet

(r
0

)
= 1 for every r real.(r

1

)
= r for every r real.(n

n

)
= [n > 0] for every n integer.(0

k

)
= [k = 0] for every k integer.(r

k

)
= r

k

(r−1
k−1
)
for every r real and k 6= 0 integer.

k
(r
k

)
= r
(r−1
k−1
)
for every r real and k integer (also 0).(r

k

)
=
(r−1

k

)
+
(r−1
k−1
)
for every r real and k integer.

∑
n
k=0

(n
k

)
= 2n for every n > 0 integer.

∑
n
k=0(−1)k

(n
k

)
= [n = 0] for every n > 0 integer.



Unfolding

Theorem

For every r real and n integer,

∑
k6n

(
r +k

k

)
=

(
r +n+1

n

)



Unfolding

Theorem

For every r real and n integer,

∑
k6n

(
r +k

k

)
=

(
r +n+1

n

)

Proof

If n < 0 both sides vanish; if n = 0 then both sides equal 1.
Otherwise, the identity: (

r +n+1

n

)
=

(
r +n

n

)
+

(
r +n

n−1

)

shows that Un =
(r+n+1

n

)
, n > 0, is the unique solution to the recurrence:

U0 = 1 ,
Un = Un−1 +

(r+n
n

)
∀n > 1 .

But such recurrence is clearly satis�ed by Un = ∑
n
k=0

(r+k
k

)
.



Summation on the upper index

Theorem

For every m,n > 0 integers,
n

∑
k=0

(
k

m

)
=

(
n+1

m+1

)
Warning: for m =−1 and n = 0, the left-hand side is 0, but the right-hand side is 1.



Summation on the upper index

Theorem

For every m,n > 0 integers,
n

∑
k=0

(
k

m

)
=

(
n+1

m+1

)
Warning: for m =−1 and n = 0, the left-hand side is 0, but the right-hand side is 1.

Proof

The identity: (
n+1

m+1

)
=

(
n

m+1

)
+

(
n

m

)
shows that Un =

(n+1
m+1

)
is the unique solution to the recurrence:

U0 = [m = 0] ,
Un = Un−1 +

(n
m

)
∀n > 1 .

But such recurrence is clearly satis�ed by Un = ∑
n
k=0

(k
m

)
.



Going halves

Theorem

For every r real and k nonnegative integer,(
r

k

)(
r −1/2

k

)
= 2−2k

(
2r

2k

)(
2k

k

)

Indeed,

rk (r −1/2)k = r(r −1/2)(r −1)(r −3/2) · · ·(r −k +1)(r −k +1/2)

=
2r(2r −1) · · ·(2r −2k +2)(2r −2k +1)

22k
=

(2r)2k

22k
:

so that:
rk

k!

(r −1/2)k

k!
= 2−2k

(2r)2k

(2k)!

(2k)!

(k!)2



Higher order di�erences

We de�ne the nth order di�erence by induction on n > 0:

∆0f = f and ∆n+1f = ∆(∆nf )

For instance, ∆2f (x) = ∆(f (x +1)− f (x)) = f (x +2)−2f (x +1) + f (x).

Theorem

For every n > 0,

∆nf (x) =
n

∑
k=0

(
n

k

)
(−1)n−k f (x +k)

Indeed, if E is the shift and I is the identity, then ∆ = E − I : as E and I commute, it
is licit to perform

∆n = (E − I )n =
n

∑
k=0

E k (−I )n−k

Warning: this is only possible because E ◦ I = I ◦E !



The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions de�ned on N. The following are equivalent:

1 For every n > 0, g(n) = ∑
n
k=0

(n
k

)
(−1)k f (k).

2 For every n > 0, f (n) = ∑
n
k=0

(n
k

)
(−1)kg(k).

Note that the role of f and g is symmetrical.



The binomial inversion formula

Theorem (Binomial inversion formula)

Let f and g be two complex- functions de�ned on N. The following are equivalent:

1 For every n > 0, g(n) = ∑
n
k=0

(n
k

)
(−1)k f (k).

2 For every n > 0, f (n) = ∑
n
k=0

(n
k

)
(−1)kg(k).

Note that the role of f and g is symmetrical.

Proof

If g(n) = ∑
n
k=0

(n
k

)
(−1)k f (k) for every n > 0, then for every n > 0 also:

n

∑
k=0

(
n

k

)
(−1)kg(k) =

n

∑
k=0

(
n

k

)
(−1)k

k

∑
m=0

(
k

m

)
(−1)mf (m)

=

= ∑
06m6k6m

nm(n−m)k−m

k!

k!

m!(k−m)!
(−1)k−mf (m)

=
n

∑
m=0

(
n

m

)( n

∑
k=m

(−1)k−m
(
n−m

k−m

))
f (m)

=
n

∑
m=0

(
n

m

)
[m = n] f (m) = f (n) .
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Generating functions

Let
〈g0,g1,g2, . . . ,gn, . . .〉

with n ∈ N be a sequence of generic term gn.
The generating function of the sequence is the power series

G(z) = ∑
n>0

gnz
n = lim

N→∞

N

∑
n=0

gnz
n ,

which is de�ned for z in a suitable neighborhood of the origin of the complex plane.



Three basic principles

1 Every complex-valued function of a complex variable having complex derivative
in a neighborhood of the origin of the complex plane is the generating function
of some sequence.

2 Every sequence {gn}n>0 of complex numbers such that

M = limsup
n

n
√
|gn|< ∞

admits a generating function, de�ned for |z |< R = 1/M.

3 Every such sequence is uniquely determined by its generating function.

We can thus use all the standard operations on sequences and their generating
functions, without caring about de�nition, convergence, etc., provided we do so under
the tacit assumption that we are in a �small enough� circle centered in the origin of
the complex plane.



Basic operations with generating functions

Let 〈g0,g1,g2, . . .〉 and 〈h0,h1,h2, . . .〉 be sequences of complex numbers.
Let G(z) = ∑n>0 gnz

n and H(z) = ∑n>0 hnz
n be their generating functions.

The following operations are well de�ned in a neighborhood of the origin:

sequence generic term g.f.
〈αg0 + βh0,αg1 + βh1,αg2 + βh2, . . .〉 αgn + βhn αG(z) + βH(z)
〈0, . . . ,0,g0,g1, . . .〉 gn−m[n >m] zmG(z)

〈gm,gm+1,gm+2, . . .〉 gn+m
G(z)−∑

m−1
k=0 gkz

k

zm
〈a1,2a2,3a3, . . .〉 (n+1)gn+1 G ′(z)
〈0,a0, a12 , . . .〉 gn−1

n [n > 0]
∫ z
0 G(w)dw

〈g0h0,g0h1 +g1h0,g0h2 +g1h1 +g2h0, . . .〉 ∑
n
k=0 gkhn−k G(z) ·H(z)

where:

undefined ·0 = 0 by convention.∫ z
0 G(w)dw =

∫ 1
0 zG(tz)dt = Γ(z) with Γ′ = G and Γ(0) = 0.



Derivatives of the generating function

Theorem

If G(z) = ∑n>0 gnz
n, then for every k > 0,

G (k)(z) = ∑
n>0

(n+k)kgn+kz
n



Derivatives of the generating function

Theorem

If G(z) = ∑n>0 gnz
n, then for every k > 0,

G (k)(z) = ∑
n>0

(n+k)kgn+kz
n

The thesis is true for k = 0 as n0 is an empty product.
If the thesis is true for k, then

G (k+1)(z) = ∑
n>0

(n+k)kngn+kz
n−1[n > 1]

= ∑
n>0

(n+1+k)k (n+1)1gn+1+kz
n

= ∑
n>0

(n+1+k)k+1gn+1+kz
n



Derivatives of the generating function

Theorem

If G(z) = ∑n>0 gnz
n, then for every k > 0,

G (k)(z) = ∑
n>0

(n+k)kgn+kz
n

Corollary

For every n > 0,

gn =
nn

n!
gn =

1

n! ∑
k>0

(n+k)ngn+k0
k =

G (n)(0)

n!
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Counting with Generating Functions

Choosing k-subset from n-set

Binomial theorem yields:

〈(n
0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
,0,0,0, . . .

〉
←→

←→
(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + . . .+

(
n

n

)
xn = (1+x)n

Thus, the coe�cient of xk in (1+x)n is the number of ways to choose k
distinct items from a set of size n.

For example, the coe�cient of x2 is , the number of ways to choose 2 items
from a set with n elements.

Similarly, the coe�cient of xn+1 is the number of ways to choose n+1 items
from a n-set, which is zero.



Counting with Generating Functions

Choosing k-subset from n-set

Binomial theorem yields:

〈(n
0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
,0,0,0, . . .

〉
←→

←→
(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + . . .+

(
n

n

)
xn = (1+x)n

Thus, the coe�cient of xk in (1+x)n is the number of ways to choose k
distinct items from a set of size n.

For example, the coe�cient of x2 is , the number of ways to choose 2 items
from a set with n elements.

Similarly, the coe�cient of xn+1 is the number of ways to choose n+1 items
from a n-set, which is zero.



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is the function A(x) that's

expansion into power series has coe�cient ai = 1 of x i i� i can be selected into
the subset, otherwise ai = 0.

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(x) = 1+x +x2 +x3 + · · ·= 1

1−x



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is the function A(x) that's

expansion into power series has coe�cient ai = 1 of x i i� i can be selected into
the subset, otherwise ai = 0.

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(x) = 1+x +x2 +x3 + · · ·= 1

1−x

If any even number of elements can be selected:

A(x) = 1+x2 +x4 +x6 + · · ·= 1

1−x2



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is the function A(x) that's

expansion into power series has coe�cient ai = 1 of x i i� i can be selected into
the subset, otherwise ai = 0.

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(x) = 1+x +x2 +x3 + · · ·= 1

1−x

If any even number of elements can be selected:

A(x) = 1+x2 +x4 +x6 + · · ·= 1

1−x2

If any positive even number of elements can be selected:

A(x) = x2 +x4 +x6 + · · ·= x2

1−x2



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is the function A(x) that's

expansion into power series has coe�cient ai = 1 of x i i� i can be selected into
the subset, otherwise ai = 0.

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(x) = 1+x +x2 +x3 + · · ·= 1

1−x

If any number of elements multiple of 5 can be selected:

A(x) = 1+x5 +x10 +x15 + · · ·= 1

1−x5



Building Generating Functions that Count

The generating function for the number of ways to choose n elements from a
1-basket A (a (multi)set of identical elements) is the function A(x) that's

expansion into power series has coe�cient ai = 1 of x i i� i can be selected into
the subset, otherwise ai = 0.

Examples of GF selecting items from a set A :

If any natural number of elements can be selected:

A(x) = 1+x +x2 +x3 + · · ·= 1

1−x

If at most four elements can be selected:

A(x) = 1+x +x2 +x3 +x4 =
1−x5

1−x

If at most one element can be selected:

A(x) =
1−x2

1−x
= 1+x



Counting elements of two sets

Convolution Rule

Let A(x) be the generating function for selecting an item from (multi)set A ,
and let B(x), be the generating function for selecting an item from

(multi)set B. If A and B are disjoint, then the generating function for
selecting items from the union A ∪B is the product A(x) ·B(x).

Proof. To count the number of ways to select n items from A ∪B we have to select j
items from A and n− j items from B, where j ∈ {0,1,2, . . . ,n}.
Summing over all the possible values of j gives a total of

a0bn +a1bn−1 +a2bn−2 + · · ·+anb0

ways to select n items from A ∪B. This is precisely the coe�cient of xn in the series
for A(x) ·B(x) Q.E.D.



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings with her:

three, four, or �ve dogs;

a cage with several pairs of rabbits;

and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 0?



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings with her:

three, four, or �ve dogs;

a cage with several pairs of rabbits;

and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 0?

Using generating functions

Let D(z), R(z), and C(z) be the generating functions of the number of ways the old
lady can walk dogs, rabbits, and crocodiles, respectively:

D(z) = z3 + z4 + z5 ; R(z) = 1+ z2 + z4 + · · ·= 1

1−z2
; C(z) = 1+ z

The generating function A(z) of the number of ways the old lady can walk pets is thus:

A(z) = D(z) ·R(z) ·C(z) =
z3 + z4 + z5

1−z



Warmup: The old lady and her pets

The problem

When a certain old lady walks her pets, she brings with her:

three, four, or �ve dogs;

a cage with several pairs of rabbits;

and (sometimes) her crocodile.

In how many ways can she walk n pets, for n > 0?

Solution

For m > 0 integer, G(z) = zm is the generating function of gn = [n = m].
G(z) = 1/(1−z) is the generating function of gn = 1.
Then for every n > 0, the number of ways the old lady can walk her pets is:

an = [zn]A(z) =
5

∑
m=3

n

∑
k=0

[k = m] =
5

∑
m=3

[n >m]

For example, for n = 6 the old lady has three choices:

three pairs of rabbits;

four dogs and one pair of rabbits;

three dogs, one pair of rabbits, and the crocodile.
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Generating function for arbitrary binomial coe�cients

Theorem (Generalized binomial theorem)

For every r ∈ R,

(1+ z)r = ∑
n>0

(
r

n

)
zn



Generating function for arbitrary binomial coe�cients

Theorem (Generalized binomial theorem)

For every r ∈ R,

(1+ z)r = ∑
n>0

(
r

n

)
zn

Indeed, let G(z) = (1+ z)r where r is an arbitrary real number:

By di�erentiating n > 0 times, G (n)(z) = r · · ·(r −1) · · ·(r −n+1) · (1+ z)r−n.

Then,
G (n)(0)

n!
=

rn

n!
=

(
r

n

)
As n is arbitrary and the correspondence between sequences and generating
functions is one-to-one, the thesis follows.



Generating function for arbitrary binomial coe�cients

Theorem (Generalized binomial theorem)

For every r ∈ R,

(1+ z)r = ∑
n>0

(
r

n

)
zn

Indeed, let G(z) = (1+ z)r where r is an arbitrary real number:

By di�erentiating n > 0 times, G (n)(z) = r · · ·(r −1) · · ·(r −n+1) · (1+ z)r−n.

Then,
G (n)(0)

n!
=

rn

n!
=

(
r

n

)
As n is arbitrary and the correspondence between sequences and generating
functions is one-to-one, the thesis follows.

Example

√
1+ z = ∑

n>0

(
1/2

n

)
zn



Vandermonde's identity

Binomial theorem provides the generating function:

(1+ z)r = ∑
n>0

(
r

n

)
zn and (1+ z)s = ∑

n>0

(
s

n

)
zn

Convolution yields:

∑
n>0

(
r + s

n

)
zn = (1+ z)r+s

= (1+ z)r · (1+ z)s

=

(
∑
n>0

(
r

n

)
zn

)
·

(
∑
n>0

(
s

n

)
zn

)

= ∑
n>0

(
n

∑
k=0

(
r

k

)(
s

n−k

))
zn



Vandermonde's identity (2)

Equating coe�cients of zk on both sides of this equation gives:

Vandermonde's convolution:

n

∑
k=0

(
r

k

)(
s

n−k

)
=

(
r + s

n

)

Convolution yields

1

1

1

1

1

1

1

1

1

1 9

8

7

6

5

4

3

2

1

1

3

6

10

15

21

28

36 84

56

35

20

10

4

1

1

5

15

35

70

126 126

56

21

6

1

1

7

28

84 36

8

1

1

9 1

(
9

2

)
=

(
3

0

)(
6

2

)
+

(
3

1

)(
6

1

)
+

(
3

2

)(
6

0

)



Vandermonde's identity (2)

Equating coe�cients of zk on both sides of this equation gives:

Vandermonde's convolution:

n

∑
k=0

(
r

k

)(
s

n−k

)
=

(
r + s

n

)

Convolution yields

1

1

1

1

1

1

1

1

1

1 9

8

7

6

5

4

3

2

1

1

3

6

10

15

21

28

36 84

56
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20

10

4

1

1

5
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6

1

1

7

28

84 36

8

1

1

9 1

(
9

2

)
=

(
3

0

)(
6

2

)
+

(
3

1

)(
6

1

)
+

(
3

2

)(
6

0

)



Vandermonde's identity (3)

Special case r = s = n yields:

(
2n

n

)
=

n

∑
k=0

(
n

k

)(
n

n−k

)
= ∑

k>0

(
n

k

)2

Example:
(
4
0

)2
+
(
4
1

)2
+
(
4
2

)2
+
(
4
3

)2
+
(
4
4

)2
=
(
8
4

)
1

1

1

1

1

1

1

1

1 8

7

6

5

4

3

2

1

1

3

6

10

15

21

28 56

35

20

10

4

1

1

5

15

35

70 56

21

6

1

1

7

28 8

1

1

1

1

1

1

1 16

9

4

1

1

9

36 16

1

1

1+16+36+16+1 = 70



Vandermonde's identity (3)

Special case r = s = n yields:

(
2n

n

)
=

n

∑
k=0

(
n

k

)(
n

n−k

)
= ∑

k>0

(
n

k

)2

Example:
(
4
0

)2
+
(
4
1

)2
+
(
4
2

)2
+
(
4
3

)2
+
(
4
4

)2
=
(
8
4

)
1

1

1

1

1

1

1

1

1 8

7

6

5

4

3

2

1

1

3

6

10

15

21

28 56

35

20

10

4

1

1

5

15

35

70 56

21

6

1

1

7

28 8

1

1

1

1

1

1

1 16

9

4

1

1

9

36 16

1

1

1+16+36+16+1 = 70



Sequence
〈(m

0

)
,0,−

(m
1

)
,0,
(m
2

)
,0,−

(m
3

)
,0,
(m
4

)
,0, . . . ,

〉
Let's take sequences〈(

m

0

)
,

(
m

1

)
,

(
m

2

)
, . . . ,

(
m

n

)
, . . .

〉
←→ F (z) = (1+ z)m

and 〈(
m

0

)
,−
(
m

1

)
,

(
m

2

)
, . . . ,(−1)n

(
m

n

)
, . . .

〉
←→ G(z) = F (−z) = (1−z)m

Then the convolution corresponds to the function (1+ z)m(1−z)m = (1−z2)m that
gives the identity of binomial coe�cients:

n

∑
j=0

(
m

j

)(
m

n− j

)
(−1)j = (−1)n/2

(
m

n/2

)
[n is even]



Other useful binomial identities

Sign change and falling powers

(−1)nrn = (n− r −1)n ∀r ∈ R ∀n > 0

Proof: (−1)n · r · (r −1) · · ·(r −n+2) · (r −n+1) = (n− r −1) · (n− r −2) · · ·(1− r) · (−r)



Other useful binomial identities

Sign change and falling powers

(−1)nrn = (n− r −1)n ∀r ∈ R ∀n > 0

Proof: (−1)n · r · (r −1) · · ·(r −n+2) · (r −n+1) = (n− r −1) · (n− r −2) · · ·(1− r) · (−r)

Generating function for binomial coe�cients with upper index increasing

For every r > 0,

1

(1−z)r+1
= ∑

n>0
(−1)n

(
−1− r

n

)
zn = ∑

n>0

(
r +n

n

)
zn

In addition, if r = m is an integer,

1

(1−z)m+1
= ∑

n>0

(
m+n

n

)
zn = ∑

n>0

(
m+n

m

)
zn

and by shifting,
zm

(1−z)m+1
= ∑

n>0

(
m+n

m

)
zm+n = ∑

n>0

(
n

m

)
zn



Generating functions cheat sheet

ez = ∑
n>0

zn

n!

1

1−αz
= ∑

n>0
α
nzn

(1+ z)r = ∑
n>0

(
r

n

)
zn , r ∈ R

1

(1−z)r+1
= ∑

n>0

(
r +n

n

)
zn , r ∈ R

1

(1−z)m+1
= ∑

n>0

(
m+n

m

)
zn , m ∈ N

zm

(1−z)m+1
= ∑

n>0

(
n

m

)
zn , m ∈ N

ln
1

1−z
= ∑

n>1

zn

n

1

1−z
ln

1

1−z
= ∑

n>1
Hnz

n



Generating functions and recurrences

Problem

Solve the recurrence:

U0 = 1 ,

Un = Un−1 +n+3 ∀n > 1 .



Generating functions and recurrences

Problem

Solve the recurrence:

U0 = 1 ,

Un = Un−1 +n+3 ∀n > 1 .

Setting up the problem

Let G(z) = ∑n>0Unz
n. The initial condition tells us that G(0) = 1. For n > 1:

Un−1 is the coe�cient of zn in zG(z).

n is the coe�cient of zn in z
(1−z)2

, because n+1 is of 1
(1−z)2

.

1 is the coe�cient of zn in 1
1−z−1 =

z

1−z
.

(We must remove the constant term, because the recurrence only holds for
n > 1.)

Then G(z) satis�es the following functional equation:

G(z) = 1+ zG(z) +
z

(1−z)2
+

3z

1−z



Generating functions and recurrences

Problem

Solve the recurrence:

U0 = 1 ,

Un = Un−1 +n+3 ∀n > 1 .

Expressing as power series

We can rewrite the functional equation as:

G(z) =
1

1−z
+

z

(1−z)3
+

3z

(1−z)2

We know that
1

1−z
= ∑

n>0
zn and

z

(1−z)2
= ∑

n>0
nzn

For the middle summand, we observe:

z

(1−z)3
=

z

2

d

dz

1

(1−z)2
=

z

2 ∑
n>1

(n+1)nzn−1 = ∑
n>0

(
n+1

2

)
zn



Generating functions and recurrences

Problem

Solve the recurrence:

U0 = 1 ,

Un = Un−1 +n+3 ∀n > 1 .

Reconstructing the coe�cients

Our functional equation is thus equivalent to:

∑
n>0

Unz
n = ∑

n>0
zn + ∑

n>0

(
n+1

2

)
zn +3 ∑

n>0
∑
n>0

nzn

By linearity and uniqueness it must then be:

Un = 1+
n(n+1)

2
+3n ∀n > 0
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