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Generating functions and sequences

Let 〈gn〉= 〈g0,g1,g2, . . .〉 be a sequence of complex numbers: for example, the solution
of a recurrence equation.
We associate to 〈gn〉 its generating function, which is the power series

G(z) = ∑
n>0

gnz
n :

such series is de�ned in a suitable neighborhood of the origin.

Given a closed form for G(z), we will see how to:

Determine a closed form for gn.

Compute in�nite sums.

Solve recurrence equations.

If convenient, we will sum over all integers, under the tacit assumption that:

gn = 0 whenever n < 0.



Generating function manipulations

Let F (z) and G(z) be the generating functions for the sequences 〈fn〉 and 〈gn〉.

We put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF (z) + βG(z) = ∑
n

(αfn + βgn)zn

zmG(z) = ∑
n

gn−m [n >m]zn, integer m > 0

G(z)−∑
m−1
k=0 gk z

k

zm = ∑
n

gn+m [n > 0]zn, integer m > 0

G(cz) = ∑
n

cngnz
n

G ′(z) = ∑
n

(n+1)gn+1z
n

zG ′(z) = ∑
n

ngnz
n

F (z)G(z) = ∑
n

(
∑
k

fkgn−k

)
zn, in particular,

1

1−z
G(z) = ∑

n

(
∑
k6n

gk

)
zn

∫ z

0

G(w)dw = ∑
n>1

1

n
gn−1z

n, where
∫ z

0

G(w)dw = z
∫

1

0

G(zt)dt
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n>0

2nzn =
1

1−2z



Basic sequences and their generating functions (2)

For m > 0 integer and for c ∈ C

• 〈1,4,6,4,1,0,0, . . .〉 ↔ ∑
n>0

(
4

n

)
zn = (1+ z)4
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↔ ∑
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Warmup: A simple generating function

Problem

Determine the generating function G(z) of the sequence

gn = 2n +3n ,n > 0

Solution

For α ∈ C, the generationg function of 〈αn〉n>0 is Gα (z) = 1

1−αz .

By linearity, we get

G(z) = G2(z) +G3(z) =
1

1−2z
+

1

1−3z
.



Extracting the even- or odd-numbered terms of a sequence

Let 〈g0,g1,g2, . . .〉 ↔ G(z).

Then
G(z) +G(−z) = ∑

n

gn (1+ (−1)n)zn = 2∑
n

gn [n is even]zn

Therefore

〈g0,0,g2,0,g4, . . .〉 ↔
G(z) +G(−z)

2
= ∑

n

g2n z
2n

Similarly

〈0,g1,0,g3,0,g5, . . .〉 ↔
G(z)−G(−z)

2
= ∑

n

g2n+1 z
2n+1

〈g0,g2,g4, . . .〉 ↔ ∑
n

g2n z
n

〈g1,g3,g5, . . .〉 ↔ ∑
n

g2n+1 z
n
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Extracting the even- or odd-numbered terms of a sequence
(2)

Example: 〈1,0,1,0,1,0, . . .〉 ↔ F (z) = 1

1−z2

We have

〈1,1,1,1,1, . . .〉 ↔ G(z) =
1

1−z
.

Then the generating function for 〈1,0,1,0,1,0, . . .〉 is

1

2
(G(z) +G(−z)) =

1

2

(
1

1−z
+

1

1+ z

)
=

1

2
· 1+ z +1−z

(1−z)(1+ z)
=

1

1−z2



Extracting the even- or odd-numbered terms of a sequence
(3)

Example: 〈0,1,3,8,21, . . .〉= 〈f0, f2, f4, f6, f8, . . .〉

We know that
〈0,1,1,2,3,5,8,13,21 . . .〉 ↔ F (z) =

z

1−z−z2
.

Then the generating function for 〈f0,0, f2,0, f4,0, . . .〉 is

∑
n

f2nz
2n =

1

2

(
z

1−z−z2
+

−z
1+ z−z2

)
=

1

2
· z + z2−z3−z + z2 + z3

(1−z2)2−z2

=
z2

1−3z2 + z4

This gives

〈0,1,3,8,21, . . .〉 ↔ ∑
n

f2n z
n =

z

1−3z + z2
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Reviewing the convergence radius

De�nition

The convergence radius of the power series ∑n>0 an(z−z0)n is the value R de�ned by:

1

R
= limsup

n>0

n
√
|an| ,

with the conventions 1/0 = ∞, 1/∞ = 0.

The Abel-Hadamard theorem

Let ∑n>0 an(z−z0)n be a power series of convergence radius R.

1 If R > 0, then the series converges uniformly in every closed and bounded subset
of the disk of center z0 and radius R.

2 If R < ∞, then the series does not converge at any point z such that |z−z0|> R.



Power series and in�nite sums

The problem

Consider an in�nite sum of the form ∑n>0 anβn.

Suppose that we are given a closed form for the generating function G(z) of the
sequence 〈a0,a1,a2, . . .〉.
Can we deduce that ∑n>0 anβn = G(β)?



Power series and in�nite sums

The problem

Consider an in�nite sum of the form ∑n>0 anβn.

Suppose that we are given a closed form for the generating function G(z) of the
sequence 〈a0,a1,a2, . . .〉.
Can we deduce that ∑n>0 anβn = G(β)?

Answer: It depends!

Let R be the convergence radius of the power series ∑n>0 anz
n.

If |β |< R: YES
by the Abel-Hadamard theorem and uniqueness of analytic continuation.

If |β |> R: NO by the Abel-Hadamard theorem.

If |β |= R: Sometimes yes, sometimes not!



Warmup: A sum with powers and harmonic numbers

The problem

Compute ∑n>0Hn/10
n



Warmup: A sum with powers and harmonic numbers

The problem

Compute ∑n>0Hn/10
n

Solution

This looks like the sum of the power series ∑n>0Hnz
n at z = 1/10 � if it exists . . .

For n > 1 it is 16Hn 6 n: therefore, the convergence radius is 1.

We know that the generating function of gn = Hn is G(z) = 1

1−z ln
1

1−z .

As we are within the convergence radius of the series, we can replace the sum of
the series with the value of the function.

In conclusion,

∑
n>0

Hn

10n
=

1

1− 1

10

ln
1

1− 1

10

=
10

9
ln
10

9
.



Abel's summation formula

Statement

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1.

If
S = ∑

n>0
an = S(1)

exists, then S(z) converges uniformly in [0,1].

In particular,
L = lim

x→1−
S(x) , x ∈ [0,1]

also exists, and coincides with S .



Abel's summation formula

Statement

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1.

If
S = ∑

n>0
an = S(1)

exists, then S(z) converges uniformly in [0,1].

In particular,
L = lim

x→1−
S(x) , x ∈ [0,1]

also exists, and coincides with S .

The converse does not hold!

For |z |< 1 we have:

∑
n>0

(−1)nzn =
1

1+ z

Then L =
1

2
but S does not exist.



Tauber's theorem

Statement

Let S(z) = ∑n>0 anz
n be a power series with center 0 and convergence radius 1.

If
L = lim

x→1−
S(x) , x ∈ [0,1]

exists and in addition
lim
n→∞

nan = 0

then S = S(1) also exists, and coincides with L.
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Solving recurrences

Given a sequence 〈gn〉 that satis�es a given recurrence, we seek a closed form
for gn in terms of n.

"Algorithm"

1 Write down a single equation that expresses gn in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g−1 = g−2 = · · ·= 0.

2 Multiply both sides of the equation by zn and sum over all n. This gives, on the
left, the sum ∑n gnz

n, which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(z).

3 Solve the resulting equation, getting a closed form for G(z).

4 Expand G(z) into a power series and read o� the coe�cient of zn; this is a
closed form for gn.
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Example: Fibonacci numbers revisited

Step 1 The recurrence

gn =

 0, if n 6 0;
1, if n = 1;

gn−1 +gn−2 if n > 1;

can be represented by the single equation

gn = gn−1 +gn−2 + [n = 1],

where n ∈ (−∞,+∞).
This is because the �simple� Fibonacci recurrence gn = gn−1 +gn−2
holds for every n > 2 by construction, and for every n 6 0 as by
hypothesis gn = 0 if n < 0; but for n = 1 the left-hand side is 1 and
the right-hand side is 0, so we need the correction summand [n = 1].



Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by zn ...

· · · · · · · · ·

g−2z
−2 = g−3z

−2 +g−4z
−2 + [−2 = 1]z−2

g−1z
−1 = g−2z

−1 +g−3z
−1 + [−1 = 1]z−1

g0 = g−1 +g−2 + [0 = 1]

g1z = g0z +g−1z + [1 = 1]z

g2z
2 = g1z

2 +g0z
2 + [2 = 1]z2

g3z
3 = g2z

3 +g1z
3 + [3 = 1]z3

· · · · · · · · ·

... and sum over all n.

∑
n

gnz
n = ∑

n

gn−1z
n +∑

n

gn−2z
n +∑

n

[n = 1]zn



Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) = ∑n gnz
n and transform

G(z) = ∑
n

gnz
n = ∑

n

gn−1z
n +∑

n

gn−2z
n +∑

n

[n = 1]zn =

= ∑
n

gnz
n+1 +∑

n

gnz
n+2 + z =

= zG(z) + z2G(z) + z

Solving the equation yields

G(z) =
z

1−z−z2

Step 4 Expansion the equation into power series G(z) = ∑gnz
n gives us the

solution (see next slides):

gn =
Φn− Φ̂n

√
5
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Motivation

A generating function is often in the form of a rational function

R(z) =
P(z)

Q(z)
,

where P and Q are polynomials.
Our goal is to �nd "partial fraction expansion" of R(z), i.e. represent R(z) in
the form

R(z) = S(z) +T (z),

where S(z) has known expansion into the power series, and T (z) is a
polynomial.
A good candidate for S(z) is a �nite sum of functions like

S(z) =
a1

(1−ρ1z)m1+1
+

a2
(1−ρ2z)m2+1

+ · · ·+ a`
(1−ρ`z)m`+1

We have proven the relation

a

(1−ρz)m+1
= ∑

n>0

(
m+n

m

)
aρ

nzn

Hence, the coe�cient of zn in expansion of S(z) is

sn = a1

(
m1 +n

m1

)
ρ
n
1 +a2

(
m2 +n

m2

)
ρ
n
2 + · · ·a`

(
m` +n

m`

)
ρ
n
` .
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Step 1: Finding ρ1,ρ2, . . . ,ρm

Suppose Q(z) has the form

Q(z) = 1+q1z +q2z
2 + · · ·+qmz

m, where qm 6= 0.

The �re�ected� polynomial QR has a relation to Q:

QR(z) = zm +q1z
m−1 +q2z

m−2 + · · ·+qm−1z +qm

= zm
(
1+q1

1

z
+q2

1

z2
+ · · ·+qm−1

1

zm−1
+qm

1

zm

)
= zmQ

(
1

z

)
If ρ1,ρ2, . . . ,ρm are roots of QR , then (z−ρi )|QR(z):

QR(z) = (z−ρ1)(z−ρ2) · · ·(z−ρm)

Then (1−ρiz)|Q(z):

Q(z) = zm(
1

z
−ρ1)(

1

z
−ρ2) · · ·(1

z
−ρm) = (1−ρ1z)(1−ρ2z) · · ·(1−ρmz)
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Step 1: Finding ρ1,ρ2, . . . ,ρm (2)

In all, we have proven

Lemma

QR(z) = (z−ρ1)(z−ρ2) · · ·(z−ρm) i� Q(z) = (1−ρ1z)(1−ρ2z) · · ·(1−ρmz)

Example: Q(z) = 1−z−z2

QR(z) = z2−z−1

This QR(z) has roots

z1 =
1+
√
5

2
= Φ and z2 =

1−
√
5

2
= Φ̂

Therefore QR(z) = (z−Φ)(z− Φ̂) and Q(z) = (1−Φz)(1− Φ̂z).
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