Generating Functions

ITT9131 Konkreetne Matemaatika

Chapter Seven
Domino Theory and Change
Basic Maneuvers
Solving Recurrences
Special Generating Functions
Convolutions
Exponential Generating Functions
Dirichlet Generating Functions

Contents

1 Basic Maneuvers

- Intermezzo: Power series and infinite sums

2 Solving recurrences
■ Example: Fibonacci numbers revisited

3 Partial fraction expansion

Next section

1 Basic Maneuvers

- Intermezzo: Power series and infinite sums

2 Solving recurrences
 - Example: Fibonacci numbers revisited

3 Partial fraction expansion

Generating functions and sequences

Let $\left\langle g_{n}\right\rangle=\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle$ be a sequence of complex numbers: for example, the solution of a recurrence equation.
We associate to $\left\langle g_{n}\right\rangle$ its generating function, which is the power series

$$
G(z)=\sum_{n \geqslant 0} g_{n} z^{n}:
$$

such series is defined in a suitable neighborhood of the origin.

Given a closed form for $G(z)$, we will see how to:

- Determine a closed form for g_{n}.
- Compute infinite sums.
- Solve recurrence equations.

If convenient, we will sum over all integers, under the tacit assumption that:

$$
g_{n}=0 \text { whenever } n<0 .
$$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$

- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$

- $\int_{0}^{z} G(w) \mathrm{d} w=\sum_{n \geqslant 1} \frac{1}{n} g_{n-1} z^{n}$
where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$

- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$

where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=1}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$

where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=1}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$

where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=1}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$

where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=0}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=1}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$
- $F(z) G(z)=\sum_{n}\left(\sum_{k} f_{k} g_{n-k}\right) z^{n}, \quad$ in particular, $\frac{1}{1-z} G(z)=\sum_{n}\left(\sum_{k \leqslant n} g_{k}\right) z^{n}$

Generating function manipulations

Let $F(z)$ and $G(z)$ be the generating functions for the sequences $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$.
We put $f_{n}=g_{n}=0$ for every $n<0$, and undefined $\cdot 0=0$.

- $\alpha F(z)+\beta G(z)=\sum_{n}\left(\alpha f_{n}+\beta g_{n}\right) z^{n}$
- $z^{m} G(z)=\sum_{n} g_{n-m}[n \geqslant m] z^{n}, \quad$ integer $m \geqslant 0$
- $\frac{G(z)-\sum_{k=1}^{m-1} g_{k} z^{k}}{z^{m}}=\sum_{n} g_{n+m}[n \geqslant 0] z^{n}, \quad \quad$ integer $m \geqslant 0$
- $G(c z)=\sum_{n} c^{n} g_{n} z^{n}$
- $G^{\prime}(z)=\sum_{n}(n+1) g_{n+1} z^{n}$
- $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$
- $F(z) G(z)=\sum_{n}\left(\sum_{k} f_{k} g_{n-k}\right) z^{n}$,
in particular, $\frac{1}{1-z} G(z)=\sum_{n}\left(\sum_{k \leqslant n} g_{k}\right) z^{n}$
- $\int_{0}^{z} G(w) \mathrm{d} w=\sum_{n \geqslant 1} \frac{1}{n} g_{n-1} z^{n}$,
where $\int_{0}^{z} G(w) \mathrm{d} w=z \int_{0}^{1} G(z t) \mathrm{d} t$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

$$
\text { - }\langle 1,0,0,0,0,0, \ldots\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}[n=0] z^{n}=1
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle$
\leftrightarrow
- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
\leftrightarrow

$$
\begin{aligned}
& \sum_{n \geqslant 0}[n=0] z^{n}=1 \\
& \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}
\end{aligned}
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer
$\begin{array}{lll}\bullet\langle 1,0,0,0,0,0, \ldots\rangle & \leftrightarrow & \sum_{n \geqslant 0}[n=0] z^{n}=1 \\ -\langle 0, \ldots, 0,1,0,0, \ldots\rangle & \leftrightarrow & \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}\end{array}$

- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0} z^{n}=\frac{1}{1-z}
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}[n=0] z^{n}=1$
- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}$
- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow
$\sum_{n \geqslant 0} z^{n}=\frac{1}{1-z}$
- $\langle 1,-1,1,-1,1,-1, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[n=0] z^{n}=1$
- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}$
- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0} z^{n}=\frac{1}{1-z}
$$

- $\langle 1,-1,1,-1,1,-1, \ldots\rangle$
\leftrightarrow
$\sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}$
- $\langle 1,0,1,0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[2 \mid n] z^{n}=\frac{1}{1-z^{2}}
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[n=0] z^{n}=1$
- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}$
- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow
$\sum_{n \geqslant 0} z^{n}=\frac{1}{1-z}$
- $\langle 1,-1,1,-1,1,-1, \ldots\rangle$
\leftrightarrow
$\sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}$
- $\langle 1,0,1,0,1,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}[2 \mid n] z^{n}=\frac{1}{1-z^{2}}$
- $\langle 1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[m \mid n] z^{n}=\frac{1}{1-z^{m}}
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle$

$$
\begin{array}{ll}
\leftrightarrow & \sum_{n \geqslant 0}[n=0] z^{n}=1 \\
\leftrightarrow & \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}
\end{array}
$$

- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0} z^{n}=\frac{1}{1-z}
$$

- $\langle 1,-1,1,-1,1,-1, \ldots\rangle$

$$
\leftrightarrow \quad \sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}
$$

- $\langle 1,0,1,0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[2 \mid n] z^{n}=\frac{1}{1-z^{2}}
$$

- $\langle 1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[m \mid n] z^{n}=\frac{1}{1-z^{m}}
$$

- $\langle 1,2,3,4,5,6, \ldots\rangle$

$$
\leftrightarrow \quad \sum_{n \geqslant 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

Basic sequences and their generating functions

For $m \geqslant 0$ integer

- $\langle 1,0,0,0,0,0, \ldots\rangle$

$$
\begin{array}{ll}
\leftrightarrow & \sum_{n \geqslant 0}[n=0] z^{n}=1 \\
\leftrightarrow & \sum_{n \geqslant 0}[n=m] z^{n}=z^{m}
\end{array}
$$

- $\langle 0, \ldots, 0,1,0,0, \ldots\rangle$
- $\langle 1,1,1,1,1,1, \ldots\rangle$
\leftrightarrow
$\leftrightarrow \quad \sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}$
- $\langle 1,0,1,0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[2 \mid n] z^{n}=\frac{1}{1-z^{2}}
$$

- $\langle 1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}[m \mid n] z^{n}=\frac{1}{1-z^{m}}
$$

- $\langle 1,2,3,4,5,6, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}}
$$

- $\langle 1,2,4,8,16,32, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0} 2^{n} z^{n}=\frac{1}{1-2 z}
$$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

$$
\text { - }\langle 1,4,6,4,1,0,0, \ldots\rangle \quad \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}
$$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}$
- $\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}$
- $\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}$
- $\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}
$$

- $\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}$
$\cdot\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle \quad \leftrightarrow$

$$
\sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}
$$

- $\left\langle 1, c, c^{2}, c^{3}, \ldots\right\rangle$
\leftrightarrow

$$
\sum_{n \geqslant 0} c^{n} z^{n}=\frac{1}{1-c z}
$$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}$
- $\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}$
- $\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}$
- $\left\langle 1, c, c^{2}, c^{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0} c^{n} z^{n}=\frac{1}{1-c z}$
- $\left\langle 1,\binom{m+1}{m},\binom{m+2}{m},\binom{m+3}{m}, \ldots\right\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}\binom{m+n}{m} z^{n}=\frac{1}{(1-z)^{m+1}}$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}$
- $\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}$
- $\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}$
- $\left\langle 1, c, c^{2}, c^{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0} c^{n} z^{n}=\frac{1}{1-c z}$
- $\left\langle 1,\binom{m+1}{m},\binom{m+2}{m},\binom{m+3}{m}, \ldots\right\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}\binom{m+n}{m} z^{n}=\frac{1}{(1-z)^{m+1}}$
- $\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 1} \frac{1}{n} z^{n}=\ln \frac{1}{1-z}$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4}$
- $\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}$
- $\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}$
- $\left\langle 1, c, c^{2}, c^{3}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 0} c^{n} z^{n}=\frac{1}{1-c z}$
- $\left\langle 1,\binom{m+1}{m},\binom{m+2}{m},\binom{m+3}{m}, \ldots\right\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}\binom{m+n}{m} z^{n}=\frac{1}{(1-z)^{m+1}}$
- $\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 1} \frac{1}{n} z^{n}=\ln \frac{1}{1-z}$
- $\left\langle 0,1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots\right\rangle$
$\leftrightarrow \quad \sum_{n \geqslant 1} \frac{(-1)^{n+1}}{n} z^{n}=\ln (1+z)$

Basic sequences and their generating functions (2)

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

- $\langle 1,4,6,4,1,0,0, \ldots\rangle$

$$
\cdot\left\langle 1, c,\binom{c}{2},\binom{c}{3}, \ldots\right\rangle
$$

$$
\begin{array}{ll}
\leftrightarrow & \sum_{n \geqslant 0}\binom{4}{n} z^{n}=(1+z)^{4} \\
\leftrightarrow & \sum_{n \geqslant 0}\binom{c}{n} z^{n}=(1+z)^{c}
\end{array}
$$

$$
\cdot\left\langle 1, c,\binom{c+1}{2},\binom{c+2}{3}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 0}\binom{c+n-1}{n} z^{n}=\frac{1}{(1-z)^{c}}
$$

$$
\cdot\left\langle 1, c, c^{2}, c^{3}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 0} c^{n} z^{n}=\frac{1}{1-c z}
$$

$$
\text { - }\left\langle 1,\binom{m+1}{m},\binom{m+2}{m},\binom{m+3}{m}, \ldots\right\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0}\binom{m+n}{m} z^{n}=\frac{1}{(1-z)^{m+1}}
$$

$$
\cdot\left\langle 0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 1} \frac{1}{n} z^{n}=\ln \frac{1}{1-z}
$$

$$
\cdot\left\langle 0,1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 1} \frac{(-1)^{n+1}}{n} z^{n}=\ln (1+z)
$$

$$
\cdot\left\langle 1,1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots\right\rangle
$$

$$
\leftrightarrow \quad \sum_{n \geqslant 0} \frac{1}{n!} z^{n}=\mathrm{e}^{z}
$$

Warmup: A simple generating function

Problem

Determine the generating function $G(z)$ of the sequence

$$
g_{n}=2^{n}+3^{n}, n \geqslant 0
$$

Warmup: A simple generating function

Problem

Determine the generating function $G(z)$ of the sequence

$$
g_{n}=2^{n}+3^{n}, n \geqslant 0
$$

Solution

- For $\alpha \in \mathbb{C}$, the generationg function of $\left\langle\alpha^{n}\right\rangle_{n \geqslant 0}$ is $G_{\alpha}(z)=\frac{1}{1-\alpha z}$.
- By linearity, we get

$$
G(z)=G_{2}(z)+G_{3}(z)=\frac{1}{1-2 z}+\frac{1}{1-3 z} .
$$

Extracting the even- or odd-numbered terms of a sequence

Let $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle \leftrightarrow G(z)$.
Then

$$
G(z)+G(-z)=\sum_{n} g_{n}\left(1+(-1)^{n}\right) z^{n}=2 \sum_{n} g_{n}[n \text { is even }] z^{n}
$$

Therefore

$$
\left\langle g_{0}, 0, g_{2}, 0, g_{4}, \ldots\right\rangle \leftrightarrow \frac{G(z)+G(-z)}{2}=\sum_{n} g_{2 n} z^{2 n}
$$

Extracting the even- or odd-numbered terms of a sequence

Let $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle \leftrightarrow G(z)$.
Then

$$
G(z)+G(-z)=\sum_{n} g_{n}\left(1+(-1)^{n}\right) z^{n}=2 \sum_{n} g_{n}[n \text { is even }] z^{n}
$$

Therefore

$$
\left\langle g_{0}, 0, g_{2}, 0, g_{4}, \ldots\right\rangle \leftrightarrow \frac{G(z)+G(-z)}{2}=\sum_{n} g_{2 n} z^{2 n}
$$

Similarly

$$
\left\langle 0, g_{1}, 0, g_{3}, 0, g_{5}, \ldots\right\rangle \leftrightarrow \frac{G(z)-G(-z)}{2}=\sum_{n} g_{2 n+1} z^{2 n+1}
$$

Extracting the even- or odd-numbered terms of a sequence

Let $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle \leftrightarrow G(z)$.
Then

$$
G(z)+G(-z)=\sum_{n} g_{n}\left(1+(-1)^{n}\right) z^{n}=2 \sum_{n} g_{n}[n \text { is even }] z^{n}
$$

Therefore

$$
\left\langle g_{0}, 0, g_{2}, 0, g_{4}, \ldots\right\rangle \leftrightarrow \frac{G(z)+G(-z)}{2}=\sum_{n} g_{2 n} z^{2 n}
$$

Similarly

$$
\left\langle 0, g_{1}, 0, g_{3}, 0, g_{5}, \ldots\right\rangle \leftrightarrow \frac{G(z)-G(-z)}{2}=\sum_{n} g_{2 n+1} z^{2 n+1}
$$

$$
\begin{aligned}
&\left\langle g_{0}, g_{2}, g_{4}, \ldots\right\rangle \leftrightarrow \sum_{n} g_{2 n} z^{n} \\
&\left\langle g_{1}, g_{3}, g_{5}, \ldots\right\rangle \leftrightarrow \sum_{n} g_{2 n+1} z^{n}
\end{aligned}
$$

Extracting the even- or odd-numbered terms of a sequence (2)

Example: $\langle 1,0,1,0,1,0, \ldots\rangle \leftrightarrow F(z)=\frac{1}{1-z^{2}}$
We have

$$
\langle 1,1,1,1,1, \ldots\rangle \leftrightarrow G(z)=\frac{1}{1-z} .
$$

Then the generating function for $\langle 1,0,1,0,1,0, \ldots\rangle$ is

$$
\frac{1}{2}(G(z)+G(-z))=\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1+z}\right)=\frac{1}{2} \cdot \frac{1+z+1-z}{(1-z)(1+z)}=\frac{1}{1-z^{2}}
$$

Extracting the even- or odd-numbered terms of a sequence (3)

Example: $\langle 0,1,3,8,21, \ldots\rangle=\left\langle f_{0}, f_{2}, f_{4}, f_{6}, f_{8}, \ldots\right\rangle$

We know that

$$
\langle 0,1,1,2,3,5,8,13,21 \ldots\rangle \leftrightarrow F(z)=\frac{z}{1-z-z^{2}}
$$

Then the generating function for $\left\langle f_{0}, 0, f_{2}, 0, f_{4}, 0, \ldots\right\rangle$ is

$$
\begin{aligned}
\sum_{n} f_{2 n} z^{2 n} & =\frac{1}{2}\left(\frac{z}{1-z-z^{2}}+\frac{-z}{1+z-z^{2}}\right) \\
& =\frac{1}{2} \cdot \frac{z+z^{2}-z^{3}-z+z^{2}+z^{3}}{\left(1-z^{2}\right)^{2}-z^{2}} \\
& =\frac{z^{2}}{1-3 z^{2}+z^{4}}
\end{aligned}
$$

This gives

$$
\langle 0,1,3,8,21, \ldots\rangle \leftrightarrow \sum_{n} f_{2 n} z^{n}=\frac{z}{1-3 z+z^{2}}
$$

Next subsection

1 Basic Maneuvers
■ Intermezzo: Power series and infinite sums

2 Solving recurrences

- Example: Fibonacci numbers revisited

3 Partial fraction expansion

Reviewing the convergence radius

Definition

The convergence radius of the power series $\sum_{n \geqslant 0} a_{n}\left(z-z_{0}\right)^{n}$ is the value R defined by:

$$
\frac{1}{R}=\underset{n \geqslant 0}{\limsup } \sqrt[n]{\left|a_{n}\right|},
$$

with the conventions $1 / 0=\infty, 1 / \infty=0$.

The Abel-Hadamard theorem

Let $\sum_{n \geqslant 0} a_{n}\left(z-z_{0}\right)^{n}$ be a power series of convergence radius R.
1 If $R>0$, then the series converges uniformly in every closed and bounded subset of the disk of center z_{0} and radius R.
2 If $R<\infty$, then the series does not converge at any point z such that $\left|z-z_{0}\right|>R$.

Power series and infinite sums

The problem

- Consider an infinite sum of the form $\sum_{n \geqslant 0} a_{n} \beta^{n}$.
- Suppose that we are given a closed form for the generating function $G(z)$ of the sequence $\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$.
- Can we deduce that $\sum_{n \geqslant 0} a_{n} \beta^{n}=G(\beta)$?

Power series and infinite sums

The problem

- Consider an infinite sum of the form $\sum_{n \geqslant 0} a_{n} \beta^{n}$.
- Suppose that we are given a closed form for the generating function $G(z)$ of the sequence $\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$.
- Can we deduce that $\sum_{n \geqslant 0} a_{n} \beta^{n}=G(\beta)$?

Answer: It depends!

Let R be the convergence radius of the power series $\sum_{n \geqslant 0} a_{n} z^{n}$.

- If $|\beta|<R$: YES
by the Abel-Hadamard theorem and uniqueness of analytic continuation.
- If $|\beta|>R$: NO by the Abel-Hadamard theorem.
- If $|\beta|=R$: Sometimes yes, sometimes not!

Warmup: A sum with powers and harmonic numbers

The problem
Compute $\sum_{n \geqslant 0} H_{n} / 10^{n}$

Warmup: A sum with powers and harmonic numbers

The problem

Compute $\sum_{n \geqslant 0} H_{n} / 10^{n}$

Solution

This looks like the sum of the power series $\sum_{n \geqslant 0} H_{n} z^{n}$ at $z=1 / 10$ - if it exists \ldots

- For $n \geqslant 1$ it is $1 \leqslant H_{n} \leqslant n$: therefore, the convergence radius is 1 .
- We know that the generating function of $g_{n}=H_{n}$ is $G(z)=\frac{1}{1-z} \ln \frac{1}{1-z}$.
- As we are within the convergence radius of the series, we can replace the sum of the series with the value of the function.

In conclusion,

$$
\sum_{n \geqslant 0} \frac{H_{n}}{10^{n}}=\frac{1}{1-\frac{1}{10}} \ln \frac{1}{1-\frac{1}{10}}=\frac{10}{9} \ln \frac{10}{9} .
$$

Abel's summation formula

Statement

- Let $S(z)=\sum_{n \geqslant 0} a_{n} z^{n}$ be a power series with center 0 and convergence radius 1 .
- If

$$
S=\sum_{n \geqslant 0} a_{n}=S(1)
$$

exists, then $S(z)$ converges uniformly in $[0,1]$.

- In particular,

$$
L=\lim _{x \rightarrow 1^{-}} S(x), x \in[0,1]
$$

also exists, and coincides with S.

Abel's summation formula

Statement

- Let $S(z)=\sum_{n \geqslant 0} a_{n} z^{n}$ be a power series with center 0 and convergence radius 1 .
- If

$$
S=\sum_{n \geqslant 0} a_{n}=S(1)
$$

exists, then $S(z)$ converges uniformly in $[0,1]$.

- In particular,

$$
L=\lim _{x \rightarrow 1^{-}} S(x), x \in[0,1]
$$

also exists, and coincides with S.

The converse does not hold!

For $|z|<1$ we have:

$$
\sum_{n \geqslant 0}(-1)^{n} z^{n}=\frac{1}{1+z}
$$

Then $L=\frac{1}{2}$ but S does not exist.

Tauber's theorem

Statement

- Let $S(z)=\sum_{n \geqslant 0} a_{n} z^{n}$ be a power series with center 0 and convergence radius 1 .
- If

$$
L=\lim _{x \rightarrow 1^{-}} S(x), x \in[0,1]
$$

exists and in addition

$$
\lim _{n \rightarrow \infty} n a_{n}=0
$$

then $S=S(1)$ also exists, and coincides with L.

Next section

1 Basic Maneuvers

- Intermezzo: Power series and infinite sums

2 Solving recurrences

- Example: Fibonacci numbers revisited

3 Partial fraction expansion

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Next subsection

1 Basic Maneuvers

- Intermezzo: Powe series and infinite sums

2 Solving recurrences

- Example: Fibonacci numbers revisited

3 Partial fraction expansion

Example: Fibonacci numbers revisited

Step 1 The recurrence

$$
g_{n}=\left\{\begin{array}{cl}
0, & \text { if } n \leqslant 0 \\
1, & \text { if } n=1 \\
g_{n-1}+g_{n-2} & \text { if } n>1
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=g_{n-1}+g_{n-2}+[n=1],
$$

where $n \in(-\infty,+\infty)$.
This is because the "simple" Fibonacci recurrence $g_{n}=g_{n-1}+g_{n-2}$ holds for every $n \geqslant 2$ by construction, and for every $n \leqslant 0$ as by hypothesis $g_{n}=0$ if $n<0$; but for $n=1$ the left-hand side is 1 and the right-hand side is 0 , so we need the correction summand [$n=1$].

Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by $z^{n} \ldots$

$$
\begin{aligned}
g_{-2} z^{-2} & =g_{-3} z^{-2}+g_{-4} z^{-2}+[-2=1] z^{-2} \\
g_{-1} z^{-1} & =g_{-2} z^{-1}+g_{-3} z^{-1}+[-1=1] z^{-1} \\
g_{0} & =g_{-1}+g_{-2}+[0=1] \\
g_{1} z & =g_{0} z+g_{-1} z+[1=1] z \\
g_{2} z^{2} & =g_{1} z^{2}+g_{0} z^{2}+[2=1] z^{2} \\
g_{3} z^{3} & =g_{2} z^{3}+g_{1} z^{3}+[3=1] z^{3}
\end{aligned}
$$

and sum over all n.

$$
\sum_{n} g_{n} z^{n}=\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}
$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z= \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Solving the equation yields

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z= \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Solving the equation yields

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Step 4 Expansion the equation into power series $G(z)=\sum g_{n} z^{n}$ gives us the solution (see next slides):

$$
g_{n}=\frac{\Phi^{n}-\widehat{\Phi}^{n}}{\sqrt{5}}
$$

Next section

1 Basic Maneuvers

- Intermezzo: Power series and infinite sums

2 Solving recurrences

- Example: Fibonacci numbers revisited

3 Partial fraction expansion

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions like

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}
$$

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions like

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}
$$

- We have proven the relation

$$
\frac{a}{(1-\rho z)^{m+1}}=\sum_{n \geqslant 0}\binom{m+n}{m} a \rho^{n} z^{n}
$$

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)}
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions like

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}
$$

- We have proven the relation

$$
\frac{a}{(1-\rho z)^{m+1}}=\sum_{n \geqslant 0}\binom{m+n}{m} a \rho^{n} z^{n}
$$

- Hence, the coefficient of z^{n} in expansion of $S(z)$ is

$$
s_{n}=a_{1}\binom{m_{1}+n}{m_{1}} \rho_{1}^{n}+a_{2}\binom{m_{2}+n}{m_{2}} \rho_{2}^{n}+\cdots a_{\ell}\binom{m_{\ell}+n}{m_{\ell}} \rho_{\ell}^{n} .
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

- If $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ are roots of Q^{R}, then $\left(z-\rho_{i}\right) \mid Q^{R}(z)$:

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right)
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

- If $\rho_{\mathbf{1}}, \rho_{2}, \ldots, \rho_{m}$ are roots of Q^{R}, then $\left(z-\rho_{i}\right) \mid Q^{R}(z)$:

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right)
$$

- Then $\left(1-\rho_{i} z\right) \mid Q(z)$:

$$
Q(z)=z^{m}\left(\frac{1}{z}-\rho_{1}\right)\left(\frac{1}{z}-\rho_{2}\right) \cdots\left(\frac{1}{z}-\rho_{m}\right)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}(2)$

In all, we have proven

Lemma

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right) \text { iff } Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Example: $Q(z)=1-z-z^{2}$

This $Q^{R}(z)$ has roots

Φ
and

Therefore $Q^{R}(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\phi} z)$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}(2)$

In all, we have proven

Lemma

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right) \text { iff } Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Example: $Q(z)=1-z-z^{2}$

$$
Q^{R}(z)=z^{2}-z-1
$$

This $Q^{R}(z)$ has roots

$$
z_{1}=\frac{1+\sqrt{5}}{2}=\Phi \quad \text { and } \quad z_{2}=\frac{1-\sqrt{5}}{2}=\widehat{\phi}
$$

Therefore $Q^{R}(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\phi} z)$.

