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Generating functions and sequences

Let (gn) = (g0,81,82,---) be a sequence of complex numbers: for example, the solution
of a recurrence equation.
We associate to (gn) its generating function, which is the power series

G(z)= Z gnz" :

n=0

such series is defined in a suitable neighborhood of the origin.

Given a closed form for G(z), we will see how to:
m Determine a closed form for gj,.
m Compute infinite sums.
m Solve recurrence equations.
If convenient, we will sum over all integers, under the tacit assumption that:

&n =0 whenever n < 0.



Generating function manipulations

Let F(z) and G(z) be the generating functions for the sequences (f,) and (g,).
We put f, = g, =0 for every n <0, and undefined-0 = 0.

» aF(z)+BG(z) =) (af,+Pgn)z"

n
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Generating function manipulations

Let F(z) and G(z) be the generating functions for the sequences (f,) and (g,).
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Generating function manipulations

Let F(z) and G(z) be the generating functions for the sequences (f,) and (g,).
We put f, = g, =0 for every n <0, and undefined-0 = 0.

» aF(z)+BG(z) =) (af,+Pgn)z"

n

(] z’"G(z):Zgr,,m [n>m]z", integer m >0
n

n %E"lg"zk = Zg"+m [n>0]z", integer m>0
n
m G(cz)= Zc"g,,z"
n
" G() =X (n+1)gnia2”
n
m zG'(z) =Y ngyz"
n

1

(] F(z)G(z)_Z<kagn k)Z", in particular, 1_ZG(z)_Z<Z gk>z"
n k n
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Generating function manipulations

Let F(z) and G(z) be the generating functions for the sequences (f,) and (g,).

We put f, = g, =0 for every n <0, and undefined-0 = 0.
» aF(z)+BG(2) =Y (afy+PBgn)z"

n

(] z’"G(z):Zgr,,m [n>m]z", integer m >0
n

z

Cym-1, _k
n w = Zg”’" [n>0]z", integer m>0
n
m G(cz)= Zc"g,,z"
n
n G(2)= ¥ (n+ Dgnaz"
n

m zG'(z) =Y ngyz"
n

m F(z)G(2) :Z <Z x&n k)z", in particular G(z Z <Z gk>z
n \k<n
(] / G(w)dw = Z &n- 12" where /OZ G(w)dw:z/o1 G(zt)dt

@



Basic sequences and their generating functions

For m > 0 integer
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Basic sequences and their generating functions

For m > 0 integer

e (1,0,0,0,0,0,...) “ Y [h=0]z"=
n=0
e (0,...,0,1,0,0,...) “ Z[n:m]z":zm
n=0
1
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Basic sequences and their generating functions

e (1,0,0,0,0,0,...)

> <07"'707170707"'>

e (1,1,1,1,1,1,..))

o (1,-1,1,-1,1,-1,...)

e (1,0,1,0,1,0,...)

e (1,0,...,0,1,0,...,0,1,0,...)

And

ind

For m > 0 integer

Z[n:O]z":l
n=0
Z[n:m]z”:z’"
n=0
2= !
o 1-z
Y ()=
10 14z
1
2[n] 2" =
n;[lnlz 12
1

Y minz" =

n=0
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For m > 0 integer
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Basic sequences and their generating functions

For m > 0 integer

e (1,0,0,0,0,0,...) VRS Y [n=0]z"=1
n=0
e (0,...,0,1,0,0,...) “ Y [n=m]z"=2z"
n=0
" 1
o (1,1,1,1,1,1,...) RS Y 2=
= 1-z
1
o (1,-1,1,-1,1,—1,... o —1)"z" =
< ) LU=
1
e (1,0,1,0,1,0,...) “ nz>:ol2|n]z": —
1
1,0,...,0,1,0,...,0,1,0,... n_
L4 < b b b b b b b b b b > (_> ,;)[mln]z 1_zm
1
e (1,2,3,4/56,...) “ n+1)z" =
n;( ) e
1
1,2,4,8,16,32,... 2"z =
L4 < b 9 b b b b > <—> ,;) z 1—22



Basic sequences and their generating functions (2)
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Basic sequences and their generating functions (2)

For m > 0 integer and for ce C

o (1,4,6,4,1,0,0,...) o

C (o} n __ c
. <1,c,(2),(3),...> > ,;; n)? =(1+2)
c+1 c+2 c+n—1 B 1
(e(B)0)) o BT )
1
2 3 n_n _
° <1,c,c ,C ,> — n;c z'= —o



Basic sequences and their generating functions (2)

For m > 0 integer and for c € C

o (14,6,4,1,0,0,...) o (4)2":(1+z)4
n>0 \1
(o} (o} (o}
@) o BOre
c+1 €=r2 c+n-1\ , 1
L 17C7 ) g g zZ" =
2 3 n>0 W (1-2)c
1
1,¢,c%,c3,... N —
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@O0 v BUR) = wa



Basic sequences and their generating functions (2)

For m > 0 integer and for c € C

e (1,4,6,4,1,0,0,...) “ ()z":(1+z)4
n=0 n
c\ [c c
1 "= (1 €
- (e (3)- () o ()t
o (1c c+1 c+2 5 c+n-—1 o 1
o\ 2 )3 ) =\ n (1—2)
1
o (1,c,c%2.c3,... “ c"z" =
< > ,;, 1l—cz
) ) (") ==
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Basic sequences and their generating functions (2)

For m > 0 integer and for c € C

o (1,4,6,4,1,0,0,...) “ (4)2":(1+z)“
n>0 \1
c c c
(e () 9)-) o glr-oe
c+1 c+2 c+n—-1\ , 1
e (1,c, s yeen & z' =
2 3 b n (1-2)c
1
1 2 3 n_n _
o (L,c,c%,c%,...) “ ,;)CZ T

@O0 v BUR) = wa

111 1 1
0,0l = =5 =000 “ =2 =]
+ (015 55) e
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Basic sequences and their generating functions (2)

For m > 0 integer and for c € C

o (1,4,6,4,1,0,0,..)) o

°
=
0
TN
N 0
~__
N
w 0
N2
~_—
+ s

::\g,l"l

1
1 ngn _
. <1’<m+1>7(m+2),(m+3)"“> oy (m-}—n)zn:%
(a] (it a n>0\ M (L—z)mt
111 1, 1
. <0’1’§’§’Z""> VAN ,;;z _|n1_z
111 (e,
° <0’1’_§’§’_Z""> “ L Pa— =In(l+z)
111 1 1
L1220, == Lo
'<”2’6’24’10’ > < n;,,uz e



Warmup: A simple generating function

Determine the generating function G(z) of the sequence

g,=2"4+3",n>0



Warmup: A simple generating function

Determine the generating function G(z) of the sequence

g =2"43",n>0

1
1-az-

m For a € C, the generationg function of ("), is Gu(2) =
m By linearity, we get

1 1
G(z) = Ga(2)+ G3(2) = i —



Extracting the even- or odd-numbered terms of a sequence

Let (go,&1,82,...) < G(2).
Then

G(z)+G(-z) = Zg,,(l—&-( 1)")z" —2Zg,,[n is even] z”

Therefore
G(z)+ G( z)

Zan

(£0,0,82,0,84,...) <



Extracting the even- or odd-numbered terms of a sequence

Let (go,&1,82,...) < G(2).

Then
G(z)+G(-z) = Zg,,(l—&-( 1)")z" —2Zg,,[n is even] z”
Therefore 6(2) G(
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Extracting the even- or odd-numbered terms of a sequence

Let (go,&1,82,...) < G(2).

Then
G(z)+G(-z) = Zg,,(l—‘r —1)")z"=2Y gn[n is even] 2"
n
Therefore 6(2) G(
z)+ z
<g0707g2707g47“ > - A5 Zan
Similarly

G G
(0,£1,0,3,0,85,...) < M Zgz 22

(80,82,84,...) < Y 820 2"
n

(g1,83,85,--.) < ) g2n11 2"
n




Extracting the even- or odd-numbered terms of a sequence

(2)

Example: (1,0,1,0,1,0,...) <> F(2) = =5

We have 1
(L1,1,1,1,..) & 6(z) = 7.
Then the generating function for (1,0,1,0,1,0,...) is
1 1 1 1 1 14+z+1-2z 1
E(G(ZHG(_Z))_E(l—z 1+z)_§'(1—z)(1+z)_1—z2



Extracting the even- or odd-numbered terms of a sequence

(3)

Example: (0,1,3,8,21,...) = (fo,f2,fa,fe,fg,...)
We know that

1,1,2 13,21... =—Z< _
<07 b 7375787 37 >HF(Z) 1_2_22

Then the generating function for (fp,0,f,0,1,0,...) is

1 z =%
f 2n:7
;2'72 2(lfzfz2+1+zfz2>

. 1 z422—-23 74272473

T2 (1—-22)2-22
T 1322474
This gives
z
0,1,3,8,21,... fonz'= ————
<7797 ) >H;2nz 1—32-‘1—22



Next subsection

Basic Maneuvers
m Intermezzo: Power series and infinite sums



Reviewing the convergence radius

The convergence radius of the power series ¥~ an(z —20)" is the value R defined by:

1
= =limsup /|an],
R n=0

with the conventions 1/0 =, 1/00 =0.

The Abel-Hadamard theorem

Let ¥ ,~pan(z—20)" be a power series of convergence radius R.

If R> 0, then the series converges uniformly in every closed and bounded subset
of the disk of center zy and radius R.

If R < oo, then the series does not converge at any point z such that |z—z| > R.



Power series and infinite sums

The problem

m Consider an infinite sum of the form ¥~ anB".

m Suppose that we are given a closed form for the generating function G(z) of the
sequence (ag, a1, az,...).

m Can we deduce that ¥,>02,8" = G(B)?



Power series and infinite sums

The problem

m Consider an infinite sum of the form ¥,-0a,8".

m Suppose that we are given a closed form for the generating function G(z) of the
sequence (ag,a1,az,...).

m Can we deduce that ¥,>02,8" = G(B)?

Answer: It depends!

Let R be the convergence radius of the power series ¥~ a,2".

m If [B]| <R: YES
by the Abel-Hadamard theorem and uniqueness of analytic continuation.

m If [B] > R: NO by the Abel-Hadamard theorem.

m If || = R: Sometimes yes, sometimes not!



Warmup: A sum with powers and harmonic numbers

The problem

Compute Y~ H,/10"



Warmup: A sum with powers and harmonic numbers

The problem

Compute Y,>9 H,/10"

This looks like the sum of the power series Y,~q H,z" at z=1/10 — if it exists . ..
m For n>1itis 1< H, < n: therefore, the convergence radius is 1.
m We know that the generating function of g, = H,, is G(z) = i In i

m As we are within the convergence radius of the series, we can replace the sum of
the series with the value of the function.

In conclusion,

= — I|n = n .
S0 1-%5 T 1-& 99

H 1 1 10, 10
L 15 =



Abel's summation formula

Statement

m Let S(z) =Y,>0anz" be a power series with center 0 and convergence radius 1.

m If
5223,,:5(1)

n=0

exists, then S(z) converges uniformly in [0,1].

m In particular,
L= lim S(x), x€[0,1]
x—1—

also exists, and coincides with S.



Abel's summation formula

Statement

m Let S(z) =Y ,>0anz" be a power series with center 0 and convergence radius 1.

m If
S:Zan:S(l)

n=0

exists, then S(z) converges uniformly in [0,1].

m In particular,
L= lim S(x),x€e[0,1]
x—1"

also exists, and coincides with S.

The converse does not hold!

For |z] <1 we have:

(1=

S0 1+z

—

Then L=

> but S does not exist. @



Tauber’s theorem

Statement

m Let S(z) =Y,>0anz" be a power series with center 0 and convergence radius 1.

m If
L= lim S(x), x€[0,1]
x—1=

exists and in addition

lim na, =0
n—soo

then S = S(1) also exists, and coincides with L.
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Solving recurrences



Solving recurrences

Given a sequence (gn) that satisfies a given recurrence, we seek a closed form
for g, in terms of n.

"Algorithm"

Write down a single equation that expresses g, in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g-1=g2=--=0.

Multiply both sides of the equation by z" and sum over all n. This gives, on the
left, the sum Y, g,z", which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(2).

Solve the resulting equation, getting a closed form for G(z).

[~ Q!

Expand G(z) into a power series and read off the coefficient of z”; this is a
closed form for gj,.
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Solving recurrences
m Example: Fibonacci numbers revisited



Example: Fibonacci numbers revisited

Step 1 The recurrence
0, if n<0;
&gn = 1, if n=1;
gn-1+8&n2 ifn>1;

can be represented by the single equation

8n = 8n-1 +gn—2+[n:1]7 J

where n € (—oo,+-c0).

This is because the “simple” Fibonacci recurrence g, = gn—1 + gn—2
holds for every n > 2 by construction, and for every n <0 as by
hypothesis g, =0 if n < 0; but for n =1 the left-hand side is 1 and
the right-hand side is 0, so we need the correction summand [n=1].



Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by z” ...

g2z 2=g3z%4+g 4z 24+[-2=1]z2
g1z l=gozl4gaz 4[-1=1]z1
go=g-1+tg2+[0=1]
g1z=goz+g-1z+[1=1]z
0 =gz’ +gz +2=1]7

g2 =@ +a2* +3=1]7°

. and sum over all n.

ZgnZ" = Zgn—lzn +Zgn722" +Z[n = 1]Zn
n n n n




Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) =Y, 8,z" and transform
G(z)= Zg,,z" = Zg,,,lz" +Zg,,,zz” +Z[n =1]z"=
n n n n
=) enz"" +) 2" 2=
n n

=2G(2)+2%G(2)+z

Solving the equation yields

G(z)=-—2

1—z—2z2




Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) =Y, 8,z" and transform
G(z)= Zg,,z" = Zg,,,lz" +Zg,,,zz” +Z[n =1]z"=
n n n n
=) enz"" +) 2" 2=
n n

=2G(2)+2%G(2)+z

Solving the equation yields

G(z)=-—2

1—z—2z2

Step 4 Expansion the equation into power series G(z) =Y gnz" gives us the
solution (see next slides):

" — "
&n = 5
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Partial fraction expansion



Motivation

m A generating function is often in the form of a rational function

R(z) = PE))

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),
where S(z) has known expansion into the power series, and T(z) is a
polynomial.
m A good candidate for S(z) is a finite sum of functions like

al az ay

R e L (v L (e e
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m A generating function is often in the form of a rational function

R(z) = PE))

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in

the form

R(z) = 5(2)+ T(2),

where S(z) has known expansion into the power series, and T(z) is a

polynomial.
m A good candidate for S(z) is a finite sum of functions like

a a a
: 1 . Tttt : 1

A—p1z)m 7t (1—paz)mat A—piz)m

m We have proven the relation

a m-+n non
(T—pz)mit ~ Z( m )"”’ i

n=0
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Motivation

m A generating function is often in the form of a rational function

R(z) = PE))

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),

where S(z) has known expansion into the power series, and T(z) is a

polynomial.
m A good candidate for S(z) is a finite sum of functions like
S(Z) al az ay

A—pr)m T A—pazyml T A= pr)miit
m We have proven the relation

2 _ m+n\ 5 n
(1—pz)™+1 ‘Z( m )"”’ ‘

m Hence, the coefficient of z" in expansion of S(z) is

my+n\ , ma+n\ , my+n\ ,
R R L -



Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q) =1+qmz+a@z+ - +qmz", where g, 7 0.



Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:

RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zma(é)



Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:

RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zma(é)

m If p1,p2,...,pm are roots of @R, then (z—p;)|QR(2):

Qf(2)=(z—p1)(z—p2)- (2 Pm)



Step 1: Finding p1,p2,---,Pm

Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:
RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zmo(é)

If p1,P2,...,Pm are roots of @R, then (z—p;)|QR(2):

Qf(2)=(z—p1)(z—p2)- (2 Pm)

Then (1-p;z)|Q(2):

Q(2) =z"’(§ fp1)(§ *Pz)---(é —pm)=1—-p12)(1 —p22)---(1—pmz)



Step 1: Finding p1,p2,..-,pm (2)

In all, we have proven

QR(2)=(z=p1)(z—p2) -+ (z—pm) iff Q(2) = (1= p12)(1—p22)-+ (1~ pm2) J




Step 1: Finding p1,p2,..-,pm (2)

In all, we have proven

QR(2)=(z=p1)(z—p2) -+ (z—pm) iff Q(2) = (1= p12)(1—p22)-+ (1~ pm2) J

Example: Q(z)=1—z—z?

QR(2)=22-z-1

This QR(z) has roots

:1+\/§: 1-+/5

5 O] and Z = > —®

21

Therefore QR(z) = (z—®)(z— ) and Q(z) = (1 — dz)(1 — dz).
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