Generating Functions

ITT9131 Konkreetne Matemaatika

Chapter Seven
Domino Theory and Change
Basic Maneuvers
Solving Recurrences
Special Generating Functions
Convolutions
Exponential Generating Functions
Dirichlet Generating Functions

Contents

1 Solving recurrences
■ Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

3 Solving recurrences
■ Example: A more-or-less random recurrence.

Next section

1 Solving recurrences

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

3 Solving recurrences

- Example: A more-or-less random recurrence.

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

Solving recurrences
■ Example: A more-or-less random recurrence.

Example: Fibonacci numbers revisited

Step 1 The recurrence

$$
g_{n}=\left\{\begin{array}{cl}
0, & \text { if } n \leqslant 0 \\
1, & \text { if } n=1 \\
g_{n-1}+g_{n-2} & \text { if } n>1
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=g_{n-1}+g_{n-2}+[n=1],
$$

where $n \in(-\infty,+\infty)$.
This is because the "simple" Fibonacci recurrence $g_{n}=g_{n-1}+g_{n-2}$ holds for every $n \geqslant 2$ by construction, and for every $n \leqslant 0$ as by hypothesis $g_{n}=0$ if $n<0$; but for $n=1$ the left-hand side is 1 and the right-hand side is 0 , so we need the correction summand [$n=1$].

Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by $z^{n} \ldots$

$$
\begin{aligned}
g_{-2} z^{-2} & =g_{-3} z^{-2}+g_{-4} z^{-2}+[-2=1] z^{-2} \\
g_{-1} z^{-1} & =g_{-2} z^{-1}+g_{-3} z^{-1}+[-1=1] z^{-1} \\
g_{0} & =g_{-1}+g_{-2}+[0=1] \\
g_{1} z & =g_{0} z+g_{-1} z+[1=1] z \\
g_{2} z^{2} & =g_{1} z^{2}+g_{0} z^{2}+[2=1] z^{2} \\
g_{3} z^{3} & =g_{2} z^{3}+g_{1} z^{3}+[3=1] z^{3}
\end{aligned}
$$

and sum over all n.

$$
\sum_{n} g_{n} z^{n}=\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}
$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z= \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Solving the equation yields

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z= \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Solving the equation yields

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Step 4 Expansion the equation into power series $G(z)=\sum g_{n} z^{n}$ gives us the solution (see next slides):

$$
g_{n}=\frac{\Phi^{n}-\widehat{\Phi}^{n}}{\sqrt{5}}
$$

Next section

1 Solving recurrences

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

3 Solving recurrences

- Example: A more-or-less random recurrence.

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions like

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}
$$

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)},
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions like

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}
$$

- We have proven the relation

$$
\frac{a}{(1-\rho z)^{m+1}}=\sum_{n \geqslant 0}\binom{m+n}{m} a \rho^{n} z^{n}
$$

Motivation

- A generating function is often in the form of a rational function

$$
R(z)=\frac{P(z)}{Q(z)}
$$

where P and Q are polynomials.

- Our goal is to find "partial fraction expansion" of $R(z)$, i.e. represent $R(z)$ in the form

$$
R(z)=S(z)+T(z),
$$

where $S(z)$ has known expansion into the power series, and $T(z)$ is a polynomial.

- A good candidate for $S(z)$ is a finite sum of functions like

$$
S(z)=\frac{a_{1}}{\left(1-\rho_{1} z\right)^{m_{1}+1}}+\frac{a_{2}}{\left(1-\rho_{2} z\right)^{m_{2}+1}}+\cdots+\frac{a_{\ell}}{\left(1-\rho_{\ell} z\right)^{m_{\ell}+1}}
$$

- We have proven the relation

$$
\frac{a}{(1-\rho z)^{m+1}}=\sum_{n \geqslant 0}\binom{m+n}{m} a \rho^{n} z^{n}
$$

- Hence, the coefficient of z^{n} in expansion of $S(z)$ is

$$
s_{n}=a_{1}\binom{m_{1}+n}{m_{1}} \rho_{1}^{n}+a_{2}\binom{m_{2}+n}{m_{2}} \rho_{2}^{n}+\cdots a_{\ell}\binom{m_{\ell}+n}{m_{\ell}} \rho_{\ell}^{n} .
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

- If $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$ are roots of Q^{R}, then $\left(z-\rho_{i}\right) \mid Q^{R}(z)$:

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right)
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}$

- Suppose $Q(z)$ has the form

$$
Q(z)=1+q_{1} z+q_{2} z^{2}+\cdots+q_{m} z^{m}, \quad \text { where } q_{m} \neq 0
$$

- The "reflected" polynomial Q^{R} has a relation to Q :

$$
\begin{aligned}
Q^{R}(z) & =z^{m}+q_{1} z^{m-1}+q_{2} z^{m-2}+\cdots+q_{m-1} z+q_{m} \\
& =z^{m}\left(1+q_{1} \frac{1}{z}+q_{2} \frac{1}{z^{2}}+\cdots+q_{m-1} \frac{1}{z^{m-1}}+q_{m} \frac{1}{z^{m}}\right) \\
& =z^{m} Q\left(\frac{1}{z}\right)
\end{aligned}
$$

- If $\rho_{\mathbf{1}}, \rho_{2}, \ldots, \rho_{m}$ are roots of Q^{R}, then $\left(z-\rho_{i}\right) \mid Q^{R}(z)$:

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right)
$$

- Then $\left(1-\rho_{i} z\right) \mid Q(z)$:

$$
Q(z)=z^{m}\left(\frac{1}{z}-\rho_{1}\right)\left(\frac{1}{z}-\rho_{2}\right) \cdots\left(\frac{1}{z}-\rho_{m}\right)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}(2)$

In all, we have proven

Lemma

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right) \text { iff } Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Example: $Q(z)=1-z-z^{2}$

This $Q^{R}(z)$ has roots

Φ
and

Therefore $Q^{R}(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\phi} z)$

Step 1: Finding $\rho_{1}, \rho_{2}, \ldots, \rho_{m}(2)$

In all, we have proven

Lemma

$$
Q^{R}(z)=\left(z-\rho_{1}\right)\left(z-\rho_{2}\right) \cdots\left(z-\rho_{m}\right) \text { iff } Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{m} z\right)
$$

Example: $Q(z)=1-z-z^{2}$

$$
Q^{R}(z)=z^{2}-z-1
$$

This $Q^{R}(z)$ has roots

$$
z_{1}=\frac{1+\sqrt{5}}{2}=\Phi \quad \text { and } \quad z_{2}=\frac{1-\sqrt{5}}{2}=\widehat{\phi}
$$

Therefore $Q^{R}(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\phi} z)$.

Next subsection

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

Solving recurrences

- Example: A more-or-less random recurrence.

Step 2: Decomposition into Partial Fractions

If the following conditions are valid for the fraction $\frac{P(z)}{Q(z)}$:

- all roots of $Q^{R}(z)$ are distinct (we denote these roots as $\rho_{1}, \rho_{2}, \ldots$),
- $\operatorname{deg} P(z)<\operatorname{deg} Q(z)=\ell$,
then the denominator is factorizable as $Q(z)=a_{0}\left(1-z \rho_{1}\right) \cdots\left(1-z \rho_{\ell}\right)$ and the fraction can be expanded as

$$
\begin{equation*}
\frac{P(z)}{Q(z)}=\frac{A_{1}}{1-\rho_{1} z}+\frac{A_{2}}{1-\rho_{1} z}+\cdots+\frac{A_{\ell}}{1-\rho_{\ell} z} . \tag{1}
\end{equation*}
$$

where $A_{1}, A_{2}, \ldots, A_{\ell}$ are constants.

The constants $A_{1}, A_{2}, \ldots, A_{\ell}$ can be found as a solution of the system of linear equations defined by the equality (1).

Example: Decomposition of $\frac{z^{2}-3 z+28}{6 z^{3}-5 z^{2}-2 z+1}$

- We have here $P(z)=z^{2}-3 z+28$ and $Q(z)=6 z^{3}-5 z^{2}-2 z+1$;
- Reflected polynomial $Q^{R}(z)=z^{3}-2 z^{3}-5 z+6=(z-1)(z+2)(z-3)$ and $Q(z)=(1-z)(1+2 z)(1-3 z)$.

Hence,

$$
\begin{aligned}
\frac{P_{1}(z)}{Q(z)} & =\frac{A}{1-z}+\frac{B}{1+2 z}+\frac{C}{1-3 z}= \\
& =\frac{A(1+2 z)(1-3 z)+B(1-z)(1-3 z)+C(1-z)(1+2 z)}{Q(z)}= \\
& =\frac{(-6 A+3 B-2 C) z^{2}+(-A-4 B+C) z+(A+B+C)}{Q(z)}
\end{aligned}
$$

Comparing the numerator of this fraction with the polynomial $P_{1}(z)$ leads to the system of equations:

$$
\left\{\begin{array}{cc}
-6 A+3 B-2 C & =1 \\
-A-4 B+C & =-3 \\
A+B+C & =28
\end{array}\right.
$$

Example $\frac{z^{2}-3 z+28}{6 z^{3}-5 z^{2}-2 z+1}$ (continuation)

The solution of the system is

$$
A=-\frac{13}{3} \quad B=\frac{119}{15} \quad C=\frac{122}{5} .
$$

So, we have

$$
S(z)=\frac{-13}{3(1-z)}+\frac{119}{15(1+2 z)}+\frac{122}{5(1-3 z)} .
$$

and the power series $S(z)=\sum_{n \geqslant 0} s_{n} z^{n}$, where the coefficient

$$
s_{n}=-\frac{13}{3}+\frac{119}{15}(-2)^{n}+\frac{122}{5} 3^{n}
$$

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

3 Solving recurrences

- Example: A more-or-less random recurrence.

Step 2 (alternative): Partial Rational Expansion

Theorem 1 (for Distinct Roots)

If $R(z)=P(z) / Q(z)$ is the generating function for the sequence $\left\langle r_{n}\right\rangle$, where $Q(z)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right) \cdots\left(1-\rho_{\ell} z\right)$, and the numbers $\left(\rho_{1}, \ldots, \rho_{\ell}\right)$ are distinct, and if $P(z)$ is a polynomial of degree less than ℓ, then

$$
r_{n}=a_{1} \rho_{1}^{n}+a_{2} \rho_{2}^{n}+\cdots+a_{\ell} \rho_{\ell}^{n}, \quad \text { where } \quad a_{k}=\frac{-\rho_{k} P\left(1 / \rho_{k}\right)}{Q^{\prime}\left(1 / \rho_{k}\right)}
$$

Sketch of proof.

- We show that $R(z)=S(z)$ for $S(z)=\frac{a_{1}}{1-\rho_{1} z}+\cdots+\frac{a_{\ell}}{1-\rho_{\ell} z}$ and any $z \neq \alpha_{k}=1 / \rho_{k}$ (only the points where $R(z)$ might be equal to infinity).
- L'Hôpital's Rule is used

Recalling l'Hôpital's Rule

If either $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ or $\lim _{x \rightarrow a}|f(x)|=\lim _{x \rightarrow a}|g(x)|=\infty$ and if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Step 2: Partial Rational Expansion (2)

Continuation of the proof.

- $T(z)=R(z)-S(z)$ is a rational function of z and it suffices to show that $\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) T(z)=0$.
- Thus we need to prove the following equality

$$
\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) R(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) S(z) .
$$

- Due to

$$
\frac{a_{k}\left(z-\alpha_{k}\right)}{1-\rho_{j} z}=\frac{a_{k}\left(z-\frac{1}{\rho_{k}}\right)}{1-\rho_{j} z}=\frac{-a_{k}\left(1-\rho_{k} z\right)}{\rho_{k}\left(1-\rho_{j} z\right)} \rightarrow 0, \text { if } k \neq j \text { and } z \rightarrow \alpha_{k}
$$

the right-hand side is

$$
\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) S(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) \frac{a_{k}\left(z-\alpha_{k}\right)}{1-\rho_{k} z}=\frac{-a_{k}}{\rho_{k}}=\frac{P\left(1 / \rho_{k}\right)}{Q^{\prime}\left(1 / \rho_{k}\right)}
$$

Step 2: Partial Rational Expansion (3)

Continuation of the proof.

- The left-hand side limit is
$\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) R(z)=\lim _{z \rightarrow \alpha_{k}}\left(z-\alpha_{k}\right) \frac{P(z)}{Q(z)}=P\left(\alpha_{k}\right) \lim _{z \rightarrow \alpha_{k}} \frac{z-\alpha_{k}}{Q(z)}=\frac{P\left(\alpha_{k}\right)}{Q^{\prime}\left(\alpha_{k}\right)}=\frac{P\left(1 / \rho_{k}\right)}{Q^{\prime}\left(1 / \rho_{k}\right)}$
by l'Hôpital's rule
Q.E.D.

General Expansion Theorem for Rational Generating Functions.

Theorem 2 (for possibly Multiple Roots)

If $R(z)=P(z) / Q(z)$ is the generating function for the sequence $\left\langle r_{n}\right\rangle$, where $Q(z)=\left(1-\rho_{1} z\right)^{d_{1}} \cdots\left(1-\rho_{\ell} z\right)^{d_{\ell}}$ and the numbers $\rho_{1}, \ldots, \rho_{\ell}$ are distinct, and if $P(z)$ is a polynomial of degree less than $d=d_{1}+\ldots+d_{\ell}$, then

$$
r_{n}=f_{1}(n) \rho_{1}^{n}+\cdots+f_{\ell}(n) \rho_{\ell}^{n}, \quad \text { for all } \quad n \geqslant 0,
$$

where each $f_{k}(n)$ is a polynomial of degree $d_{k}-1$ with leading coefficient

$$
a_{k}=\frac{\left(-\rho_{k}\right)^{d_{k}} P\left(1 / \rho_{k}\right) d_{k}}{Q^{\left(d_{k}\right)}\left(1 / \rho_{k}\right)}=\frac{P\left(1 / \rho_{k}\right)}{\left(d_{k}-1\right)!\prod_{j \neq k}\left(1-\rho_{j} / \rho_{k}\right)^{d_{j}}}
$$

Proof: (omitted) by induction on $d=d_{1}+\ldots+d_{\ell}$.

Warmup: What if $\operatorname{deg} P \geqslant \operatorname{deg} Q ?$

The problem

- The hypotheses of the Rational Expansion Theorem include that the degree of the numerator be smaller than that of the denominator.
- What if it is not so?

Warmup: What if $\operatorname{deg} P \geqslant \operatorname{deg} Q$?

The problem

- The hypotheses of the Rational Expansion Theorem include that the degree of the numerator be smaller than that of the denominator.
- What if it is not so?

Answer: It is a false problem!

If $\operatorname{deg} P \geqslant \operatorname{deg} Q$, then we can do polynomial division and uniquely determine two polynomials $S(z), R(z)$ such that:

- $\operatorname{deg} R<\operatorname{deg} Q ;$
- $P(z)=Q(z) \cdot S(z)+R(z)$.

Then

$$
\frac{P(z)}{Q(z)}=S(z)+\frac{R(z)}{Q(z)}
$$

the first summand only influences finitely many coefficients, and on the second one the Rational Expansion Theorem can be applied.

Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

$$
G(z)=\frac{z}{1-z-z^{2}}
$$

Step 4 Expand the (rational) equation $G(z)=P(z) / Q(z)$ for $P(z)=z$ and $Q(z)=1-z-z^{2}$:

- From the example above we know that $Q(z)=(1-\Phi z)\left(1-\widehat{\phi}_{z}\right)$
- As $Q^{\prime}(z)=-1-2 z$, we have

$$
\frac{-\Phi P(1 / \Phi)}{Q^{\prime}(1 / \Phi)}=\frac{-1}{-1-2 / \Phi}=\frac{\Phi}{\Phi+2}=\frac{1}{\sqrt{5}}
$$

and

$$
\frac{-\widehat{\Phi} P(1 / \widehat{\Phi})}{Q^{\prime}(1 / \widehat{\Phi})}=\frac{\widehat{\Phi}}{\widehat{\Phi}+2}=-\frac{1}{\sqrt{5}}
$$

- Theorem 1 gives us

$$
g_{n}=\frac{\Phi^{n}-\widehat{\phi}^{n}}{\sqrt{5}}
$$

Next section

1 Solving recurrences

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

3 Solving recurrences

- Example: A more-or-less random recurrence.

Next subsection

1 Solving recurrences

- Example: Fibonacci numbers revisited

2 Partial fraction expansion

- Decomposition into Partial Fractions
- Partial Rational Expansion

3 Solving recurrences
■ Example: A more-or-less random recurrence.

Example: A more-or-less random recurrence.

Step 1 Given recurrence

$$
g_{n}=\left\{\begin{array}{cc}
0, & \text { if } n<0 ; \\
1, & \text { if } 0 \leqslant n<2 ; \\
g_{n-1}+2 g_{n-2}+(-1)^{n} & \text { if } 2 \leqslant n ;
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n}[n \geqslant 0]+[n=1] .
$$

Some values:

n	0	1	2	3	4	5	6	7
g_{n}	1	1	4	5	14	23	52	97

Example: A more-or-less random recurrence (2)

Step 2 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+2 \sum_{n} g_{n-2} z^{n}+\sum_{n \geqslant 0}(-1)^{n} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+2 \sum_{n} g_{n} z^{n+2}+\frac{1}{1+z}+z= \\
& =z G(z)+2 z^{2} G(z)+\frac{1+z+z^{2}}{1+z}
\end{aligned}
$$

Example: A more-or-less random recurrence (2)

Step 2 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and transform

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+2 \sum_{n} g_{n-2} z^{n}+\sum_{n \geqslant 0}(-1)^{n} z^{n}+\sum_{n}[n=1] z^{n}= \\
& =\sum_{n} g_{n} z^{n+1}+2 \sum_{n} g_{n} z^{n+2}+\frac{1}{1+z}+z= \\
& =z G(z)+2 z^{2} G(z)+\frac{1+z+z^{2}}{1+z}
\end{aligned}
$$

Step 3 Solving the equation

$$
G(z)=\frac{1+z+z^{2}}{\left(1-z-2 z^{2}\right)(1+z)}=\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}
$$

Example: A more-or-less random recurrence (3)

Step 4 Expand the (rational) equation $G(z)=P(z) / Q(z)$ for $P(z)=1+z+z^{2}$ and $Q(z)=(1-2 z)(1+z)^{2}$:

- Theorem 2 gives us for some constant c :

$$
g_{n}=a_{1} 2^{n}+\left(a_{2} n+c\right)(-1)^{n},
$$

where

$$
a_{1}=\frac{P(1 / 2)}{0!(1+1 / 2)^{2}}=\frac{4(1+1 / 2+1 / 4)}{9}=\frac{7}{9}
$$

and

$$
a_{2}=\frac{P(-1)}{1!(1+2)}=\frac{1+1-1}{3}=\frac{1}{3}
$$

- Special case $n=0$ implies $1=g_{0}=\frac{7}{9}+c$ that gives $c=1-\frac{7}{9}=\frac{2}{9}$.
- The answer is

$$
g_{n}=\frac{7}{9} 2^{n}+\left(\frac{1}{3} n+\frac{2}{9}\right)(-1)^{n} .
$$

Decomposition into Partial Fractions

The same function: $G(z)=\frac{P(z)}{Q(z)}=\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}$

- Decompose it as

$$
G(z)=\frac{A}{1-2 z}+\frac{B}{1+z}+\frac{C}{(1+z)^{2}}
$$

- Expand

$$
\begin{aligned}
G(z) & =\frac{A}{1-2 z}+\frac{B}{1+z}+\frac{C}{(1+z)^{2}}= \\
& =\frac{A(1+z)^{2}+B(1-2 z)(1+z)+C(1-2 z)}{(1-2 z)(1+z)^{2}}= \\
& =\frac{(A-2 B) z^{2}+(2 A-B-2 C) z+A+B+C}{(1-2 z)(1+z)^{2}}
\end{aligned}
$$

Decomposition into Partial Fractions (2)

The function: $G(z)=\frac{P(z)}{Q(z)}=\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}$

- System of equations:

$$
\left\{\begin{array}{cl}
A-2 B & =1 \\
2 A-B-2 C & =1 \\
A+B+C & =1
\end{array}\right.
$$

- The solution: $A=\frac{7}{9}, B=-\frac{1}{9}, C=\frac{1}{3}$
- The result of decomposition $G(z)=\frac{7}{9(1-2 z)}-\frac{1}{9(1+z)}+\frac{1}{3(1+z)^{2}}$
- using the basic identity

$$
\frac{a}{(1-\rho z)^{k}}=\sum_{n \geqslant 0}\binom{n+k-1}{k-1} a \rho^{n} z^{n},
$$

we get the power series

$$
G(z)=\sum_{n \geqslant 0}\left[\frac{7}{9} 2^{n}-\frac{1}{9}(-1)^{n}+\frac{n+1}{3}(-1)^{n}\right] z^{n}=\sum_{n \geqslant 0} g_{n} z^{n},
$$

where

$$
g_{n}=\frac{7}{9} 2^{n}+\left(\frac{1}{3} n+\frac{2}{9}\right)(-1)^{n} .
$$

Example 3: Usage of derivatives

Step 1 Given recurrence

$$
g_{n}=\left\{\begin{array}{cl}
0, & \text { if } n<0 \\
1, & \text { if } n=0 \\
\frac{2}{n} g_{n-2}, & \text { if } n>0
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=\frac{2}{n} g_{n-2}+[n=0] .
$$

Some values:

n	0	1	2	3	4	5	6	7	8	9	10
g_{n}	1	0	1	0	$\frac{1}{2}$	0	$\frac{1}{6}$	0	$\frac{1}{24}$	0	$\frac{1}{120}$

Example 3: Usage of derivatives

Step 1 Given recurrence

$$
g_{n}=\left\{\begin{array}{cl}
0, & \text { if } n<0 \\
1, & \text { if } n=0 \\
\frac{2}{n} g_{n-2}, & \text { if } n>0
\end{array}\right.
$$

can be represented by the single equation

$$
g_{n}=\frac{2}{n} g_{n-2}+[n=0] .
$$

Some values:											
n	0	1	2	3	4	5	6	7	8	9	10
g_{n}	1	0	1	0	$\frac{1}{2}$	0	$\frac{1}{6}$	0	$\frac{1}{24}$	0	$\frac{1}{120}$

Step 2 Write down $G(z)=\sum_{n} g_{n} z^{n}$ and its first derivative:

$$
\begin{array}{r}
G(z)=\sum_{n} g_{n} z^{n}=\sum_{n}[n=0] z^{n}+2 \sum_{n} \frac{g_{n-2}}{n} z^{n}=1+2 \sum_{n} \frac{g_{n-2}}{n} z^{n} \\
G^{\prime}(z)=2 \sum_{n} \frac{g_{n-2} \cdot n}{n} z^{n-1}=2 z \sum_{n} g_{n-2} z^{n-2}=2 z G(z)
\end{array}
$$

Example 3: Usage of derivatives (2)

Step 3 We need to solve the differential equation $G^{\prime}(z)=2 z G(z)$.

- We rewrite the equation as

$$
\frac{d G(z)}{d z}=2 z G(z)
$$

- By treating $G(z)$ as it was another variable, we further rewrite:

$$
\frac{d G(z)}{G(z)}=2 z d z
$$

(Such differential equations are called separable, because they can be solved by "separating the variables".)

- By equating the indefinite integrals, we get:

$$
\ln G(z)=z^{2}+\bar{C}
$$

- By taking exponentials, we obtain:

$$
G(z)=C \mathrm{e}^{z^{2}}, \text { where } C=\mathrm{e}^{\bar{c}}
$$

- By applying $G(0)=g_{0}=1$ we get $C=1$. In conclusion: $G(z)=\mathrm{e}^{z^{2}}$.

Example 3: Usage of derivatives (3)

Step 4 Considering that $\mathrm{e}^{z}=\sum_{n \geqslant 0} \frac{1}{n!} z^{n}$,

- and denoting $u=z^{2}$, we get

$$
\begin{aligned}
G(z)=\mathrm{e}^{z^{2}} & =\mathrm{e}^{u}=\sum \frac{1}{n!} u^{n} \\
& =\sum \frac{1}{n!}\left(z^{2}\right)^{n}=\sum \frac{1}{n!} z^{2 n} \\
& =\sum \frac{1}{\left(\frac{n}{2}\right)!}[n \text { is even }] z^{n}
\end{aligned}
$$

Example 3: Usage of derivatives (3)

Step 4 Considering that $\mathrm{e}^{z}=\sum_{n \geqslant 0} \frac{1}{n!} z^{n}$,

- and denoting $u=z^{2}$, we get

$$
\begin{aligned}
G(z)=\mathrm{e}^{z^{2}} & =\mathrm{e}^{u}=\sum \frac{1}{n!} u^{n} \\
& =\sum \frac{1}{n!}\left(z^{2}\right)^{n}=\sum \frac{1}{n!} z^{2 n} \\
& =\sum \frac{1}{\left(\frac{n}{2}\right)!}[n \text { is even }] z^{n}
\end{aligned}
$$

- To conclude:

$$
g_{n}=\left\{\begin{array}{lc}
\frac{1}{k!}, & \text { if } n=2 k, k \in \mathbb{N} ; \\
0, & \text { otherwise. }
\end{array}\right.
$$

