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Solving recurrences

Given a sequence (gn) that satisfies a given recurrence, we seek a closed form
for g, in terms of n.

"Algorithm"

Write down a single equation that expresses g, in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g-1=g2=--=0.

Multiply both sides of the equation by z" and sum over all n. This gives, on the
left, the sum Y, g,z", which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(2).

Solve the resulting equation, getting a closed form for G(z).

[~ Q!

Expand G(z) into a power series and read off the coefficient of z”; this is a
closed form for gj,.



Next subsection

Solving recurrences
m Example: Fibonacci numbers revisited



Example: Fibonacci numbers revisited

Step 1 The recurrence
0, if n<0;
&gn = 1, if n=1;
gn-1+8&n2 ifn>1;

can be represented by the single equation

8n = 8n-1 +gn—2+[n:1]7 J

where n € (—oo,+-c0).

This is because the “simple” Fibonacci recurrence g, = gn—1 + gn—2
holds for every n > 2 by construction, and for every n <0 as by
hypothesis g, =0 if n < 0; but for n =1 the left-hand side is 1 and
the right-hand side is 0, so we need the correction summand [n=1].



Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by z” ...

g2z 2=g3z%4+g 4z 24+[-2=1]z2
g1z l=gozl4gaz 4[-1=1]z1
go=g-1+tg2+[0=1]
g1z=goz+g-1z+[1=1]z
0 =gz’ +gz +2=1]7

g2 =@ +a2* +3=1]7°

. and sum over all n.

ZgnZ" = Zgn—lzn +Zgn722" +Z[n = 1]Zn
n n n n




Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) =Y, 8,z" and transform
G(z)= Zg,,z" = Zg,,,lz" +Zg,,,zz” +Z[n =1]z"=
n n n n
=) enz"" +) 2" 2=
n n

=2G(2)+2%G(2)+z

Solving the equation yields

G(z)=-—2

1—z—2z2




Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) =Y, 8,z" and transform
G(z)= Zg,,z" = Zg,,,lz" +Zg,,,zz” +Z[n =1]z"=
n n n n
=) enz"" +) 2" 2=
n n

=2G(2)+2%G(2)+z

Solving the equation yields

G(z)=-—2

1—z—2z2

Step 4 Expansion the equation into power series G(z) =Y gnz" gives us the
solution (see next slides):

" — "
&n = 5
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Motivation

m A generating function is often in the form of a rational function

R(z) = PE))

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),
where S(z) has known expansion into the power series, and T(z) is a
polynomial.
m A good candidate for S(z) is a finite sum of functions like

al az ay
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m We have proven the relation

a m-+n non
(T—pz)mit ~ Z( m )"”’ i

n=0

S(2) =



Motivation

m A generating function is often in the form of a rational function

R(z) = PE))

where P and Q are polynomials.
m Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in
the form
R(z) = 5(2)+ T(2),

where S(z) has known expansion into the power series, and T(z) is a

polynomial.
m A good candidate for S(z) is a finite sum of functions like
S(Z) al az ay

A—pr)m T A—pazyml T A= pr)miit
m We have proven the relation

2 _ m+n\ 5 n
(1—pz)™+1 ‘Z( m )"”’ ‘

m Hence, the coefficient of z" in expansion of S(z) is

my+n\ , ma+n\ , my+n\ ,
R R L -



Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q) =1+qmz+a@z+ - +qmz", where g, 7 0.



Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:

RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm
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Step 1: Finding p1,p2,---,Pm

m Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:
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m If p1,p2,...,pm are roots of @R, then (z—p;)|QR(2):

Qf(2)=(z—p1)(z—p2)- (2 Pm)



Step 1: Finding p1,p2,---,Pm

Suppose Q(z) has the form

Q(2)=14+qiz+qz?+ -+ qmz™, where g, # 0.
m The “reflected” polynomial QR has a relation to Q:
RR2)=2"+ g1z + gz 2+t 12+ G

. 11 1 1
=z 1+Q1;+Q227+"'+Qm—1szl+CImzfm

:zmo(é)

If p1,P2,...,Pm are roots of @R, then (z—p;)|QR(2):

Qf(2)=(z—p1)(z—p2)- (2 Pm)

Then (1-p;z)|Q(2):

Q(2) =z"’(§ fp1)(§ *Pz)---(é —pm)=1—-p12)(1 —p22)---(1—pmz)



Step 1: Finding p1,p2,..-,pm (2)

In all, we have proven

QR(2)=(z=p1)(z—p2) -+ (z—pm) iff Q(2) = (1= p12)(1—p22)-+ (1~ pm2) J




Step 1: Finding p1,p2,..-,pm (2)

In all, we have proven

QR(2)=(z=p1)(z—p2) -+ (z—pm) iff Q(2) = (1= p12)(1—p22)-+ (1~ pm2) J

Example: Q(z)=1—z—z?

QR(2)=22-z-1

This QR(z) has roots

:1+\/§: 1-+/5

5 O] and Z = > —®

21

Therefore QR(z) = (z—®)(z— ) and Q(z) = (1 — dz)(1 — dz).
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Step 2: Decomposition into Partial Fractions

If the following conditions are valid for the fraction gg;

m all roots of QR(z) are distinct (we denote these roots as p1,p2,...),

m deg P(z) <degQ(z) =¢,
then the denominator is factorizable as Q(z) = ap(1 —zp1)---(1 — zpy) and the
fraction can be expanded as

P(Z) A1 Az Ay
_ . 1
Q(2) 1—plz+1—plz+ +1—p[z (1)

where Aj,As,..., A/ are constants.

The constants Aj,A,..., Ay can be found as a solution of the system of linear
equations defined by the equality (1).




" oy
Example: Decomposition of —Z—=37+28

6z3—5z2—27+1

m We have here P(z) =22 —3z+28 and Q(z) =623 -522 —2z+1;

m Reflected polynomial Qf(z) =23 —223 —52z46 = (z—1)(z+2)(z—3) and
Q(z)=(1—-2z)(1+22)(1-3z).

Hence,

Pi(z) A N B N C
Qz) 1-z 1+2z 1-3z

_ A(1+22)(1-32)+B(1—z)(1-32)+ C(1—z)(1+22) _
B Q(z) B

_ (-6A+3B—2C)z2+(-A—4B+C)z+(A+B+C)
B Q(2)

Comparing the numerator of this fraction with the polynomial P;(z) leads to the
system of equations:

—A—4B+C =-3

—6A+3B-2C =1
A+B+C =28



7237428
62z3—52z2—27+1

(continuation)

EIE

The solution of the system is

13 119 122
A=_"" B=-"" ===,
3 15 S 5
So, we have
S(2) —-13 " 119 i 122
zZ)= o
3(1-—z) 15(1+2z) 5(1-3z)

and the power series S(z) = Y.,>0 Sn2"”, where the coefficient

13 119 122
=224 2 (—2)"+ —3".
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Step 2 (alternative): Partial Rational Expansion

Theorem 1 (for Distinct Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence (r,),
where Q(z) =(1—p1z)(1 —p2z)---(1—prz),
and the numbers (p1,...,p¢) are distinct,
and if P(z) is a polynomial of degree less than ¢, then

_ —PxP(1/pi)
Q'(1/pk)

rp=aipy +axpy +---+ap;, where  a

Sketch of proof.

= We show that R(z) = S(z) for S(z) = {2+ + =5 and any

z# ay =1/py (only the points where R(z) might be equal to infinity).

continues ... @

m L’Hopital’s Rule is used



Recalling I'Hépital’s Rule

If either limy_,f(x) = limy_2g(x) =0 or limy_,|f(x)| = limy_a|g(x)| =

and if lim,_,, ;((3 exists, then

) ()
Mgt AN g ()




Step 2: Partial Rational Expansion (2)

Continuation of the proof.

m T(z)=R(z)—S(z) is a rational function of z and it suffices to show that
lim; g, (z— ) T(z) =0.
m Thus we need to prove the following equality

z&n&k(zf o )R(z) = Z&n&k(zf 0y )S(2).

m Due to

1
—_ ak\Z — + — —_
ak(z ak) _ k( Pk) — ak(l ka) 0, if k?é_j and z oy
1—p;z 1-pjz px(1—pjz)

the right-hand side is

_ = lim (z— ) 2XZ=%) _ Za _ PA/Pi)
Jim (2~ 0w)S(2) = i (- ) T QP

1 —PkZ
continues ... @



Step 2: Partial Rational Expansion (3)

Continuation of the proof.

m The left-hand side limit is

i — lim (z—a) 20D _ i 2% _ Plaw) _ P(1/pi)
A (- aIRE = fin (=) ) =PI 0 "0) = @@ ~ @W/pl)

by I'Hépital’s rule
Q.E.D.



General Expansion Theorem for Rational Generating
Functions.

Theorem 2 (for possibly Multiple Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence (r,), where
Q(2) =(1—p12)%---(1 —prz)% and the numbers py,...,p, are distinct,
and if P(z) is a polynomial of degree less than d = di +...+ dy, then

rn=fi(n)py +---+f(n)p;/,  for all n>0,

where each fi(n) is a polynomial of degree dx —1 with leading coefficient

_ (=P)%P(1/p)di _ P(1/px)
QU (1/py) (dk — 1) Liza (1 — /i)

ak

Proof: (omitted) by induction on d =di +...+dp.



Warmup: What if deg P > deg Q7

The problem

m The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

m What if it is not so?



Warmup: What if deg P > deg Q7

The problem

m The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

m What if it is not so?

Answer: It is a false problem!

If deg P > deg Q, then we can do polynomial division and uniquely determine two
polynomials S(z), R(z) such that:

B degR <degQ;
m P(z) = Q(z)-5(z) + R(2).
Then

P(z) R(z)
=S5(z)+ :
e@ 97 ew)
the first summand only influences finitely many coefficients, and on the second one
the Rational Expansion Theorem can be applied.



Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation
G(z)=-—2

1-z—22



Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation
z
G(z) = 1—-z—22
Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for P(z) =z and
Qz)=1-z—22
m From the example above we know that
Q(z)=(1—-dz)(1—%=z2)
m As Q'(z) =—1—2z, we have

—oP(1/®) -1 & 1
Q(1/d) ~ —1-2/d &+2 5

and . % .
—¢P(1/®) _ & 1
Q(1/®) d+2 VB
m Theorem 1 gives us
N — "

8= "7
3
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Example: A more-or-less random recurrence.

Step 1 Given recurrence
0, if n<0;
&n = 1, ifo<n<2;
8n-1+2gn2+(-1)" if 2< n;
can be represented by the single equation
&n = &n—-1+28n—2+ (—1)"[!1 > 0] —+ [n = 1],

Some values:
n|]0 1 2 3 4 5 6 1

&n | 1 1 4 5 14 23 52 97




Example: A more-or-less random recurrence (2)

Step 2 Write down G(z) =Y,8,2" and transform

G(Z) = Zgnzn = Zgan" +2Zgn722" A Z (—1)"2" +Z[n = 1]2" =

n=0

:Zgnzn+1+2zgnzn+2+ L=
n n

1+2z
142422

— 2
=2zG(z)+2z°G(z) + 117



Example: A more-or-less random recurrence (2)

Step 2 Write down G(z) =Y,8,2" and transform

G(Z) = Zgnzn = Zgan" +2Zgn722" A Z (—1)"2" +Z[n = 1]2" =

n=0

:Zgnzn+1+2zgnzn+2+ tz=
n n

1+2z

1+z+22
= 272 —_—

zG(z)+2z°G(z) + 117
Step 3 Solving the equation

1+2z+422 _ 1+z+422
(1-z-222)(1+z) (1-2z)(1+2)2

G(z)=



Example: A more-or-less random recurrence (3)

Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for
P(z)=1+z+2% and Q(z) = (1 —22)(1 +z)3:
m Theorem 2 gives us for some constant c:

gn=a12" + (a2n+c)(-1)",

where

1176) =P/ Q) e gning o or e e
Q) {(-meld 0} e .
s O

P(1/2) _4(1+1/2+1/4):z

AL AaE, ol 030, ap = 0I(1+1/2)? 9 9

where each f,(n) is 3 polynomial of degree dy — 1 with 3 leading coefficent

_ (PP pu)de PlLipx)
QAP (e D! wa(i—pi/p)%

and

. P(-1) _141-1 1
2T 11+2) 3 3

m Special case n=0 implies 1 = go = % + ¢ that gives

—1_7_2
c=1l-g=3-

m The answer is

gn=Lon} (1n+ )( 1",



Decomposition into Partial Fractions

P(z) _ _ 1+7422
Q(z) = (1-2z)(1+2)2

The same function: G(z) =

m Decompose it as
A B C
CE=1 izt arap
m Expand
A B c
CE =it it are -
_A(l4+2)2+B(1-2z)(1+2)+ C(1—2z)
- (1-22)(1+2)2 -
_ (A-2B)z2+(2A-B-2C)z+A+B+C
a (1-2z)(1+2z)2

continues ...

@



Decomposition into Partial Fractions (2)

The function: G(z) = %

A-2B =1
2A-B-2C =1

m System of equatlons.

A+B+C =1

m The solution: A=% B=-1C=

m The result of decomposition G(z)

|| W=

1 1
9(1322) T 9(1+2) + 3(1+z2)2

m using the basic identity

a Y (n+k_1)ap” n
4 _ 2",
(1—pz)k So\ k-1

we get the power series

6= I |52 - 51+ S| = e

n=0 n=0

where

—Ton (1,02 oy
g =32 +(3n+9>( 1)". @



Example 3: Usage of derivatives

Step 1 Given recurrence

0, if n<O0;
gn= 1, if n=0;
2g, 2, ifn>0;

can be represented by the single equation

2
&n = &2 +[n=0].

Some values:

n|0o 1 2 3 4 5 6 7 8 9 10
gn|1 0 1 0o 1 o L o % o L



Example 3: Usage of derivatives

Step 1 Given recurrence

0, if n<O0;
gn= 1, if n=0;
2gn2, ifn>0;

can be represented by the single equation

2
8n = ;gn—2 + [" = 0]~

Some values:

n|0o 1 2 3 4 5 6 7 8 9 10
gn|1 0 1 0o 1 o L o % o L

Step 2 Write down G(z) =Y, g,2" and its first derivative:

G(z2)=Y gnz" =Y [n=0]z"+2Y &2, 1 12} En=2 0
n non noon

n

G'(z)= 22 g"_ij.nz'F1 = 222"g,,,22"72 =22G(z)
n n



Example 3: Usage of derivatives (2)

Step 3 We need to solve the differential equation G'(z) =2zG(z).
m We rewrite the equation as

d6(2) _

s 2zG(z2)

m By treating G(z) as it was another variable, we further rewrite:
dG(z)

G(2)

(Such differential equations are called separable, because they

can be solved by “separating the variables.)
m By equating the indefinite integrals, we get:

=2zdz

InG(z)=2>+C
m By taking exponentials, we obtain:
G(z)= ce” . where C =€

m By applying G(0) =gp =1 we get C =1.

In conclusion: G(z) = e? @



Example 3: Usage of derivatives (3)

Step 4 Considering that e? =¥ 50 42",

2

m and denoting u = z*, we get

SPE IS o 3
G(z)=¢* =e'= i

1 1
225(22)nzzmz2n

=Y é[n is even]z”

n



Example 3: Usage of derivatives (3)

Step 4 Considering that e? =¥ 50 42",

2

m and denoting u = z*, we get

1
G(z):eZz == Y

1 1
225(22)nzzmz2n

=Y é[n is even]z”

n

m To conclude:

&= {

s if n=2k keN,
, otherwise.

(=Y

Q.E.D.
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