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Solving recurrences

Given a sequence 〈gn〉 that satis�es a given recurrence, we seek a closed form
for gn in terms of n.

"Algorithm"

1 Write down a single equation that expresses gn in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g−1 = g−2 = · · ·= 0.

2 Multiply both sides of the equation by zn and sum over all n. This gives, on the
left, the sum ∑n gnz

n, which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(z).

3 Solve the resulting equation, getting a closed form for G(z).

4 Expand G(z) into a power series and read o� the coe�cient of zn; this is a
closed form for gn.
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Example: Fibonacci numbers revisited

Step 1 The recurrence

gn =

 0, if n 6 0;
1, if n = 1;

gn−1 +gn−2 if n > 1;

can be represented by the single equation

gn = gn−1 +gn−2 + [n = 1],

where n ∈ (−∞,+∞).
This is because the �simple� Fibonacci recurrence gn = gn−1 +gn−2
holds for every n > 2 by construction, and for every n 6 0 as by
hypothesis gn = 0 if n < 0; but for n = 1 the left-hand side is 1 and
the right-hand side is 0, so we need the correction summand [n = 1].



Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by zn ...

· · · · · · · · ·

g−2z
−2 = g−3z

−2 +g−4z
−2 + [−2 = 1]z−2

g−1z
−1 = g−2z

−1 +g−3z
−1 + [−1 = 1]z−1

g0 = g−1 +g−2 + [0 = 1]

g1z = g0z +g−1z + [1 = 1]z

g2z
2 = g1z

2 +g0z
2 + [2 = 1]z2

g3z
3 = g2z

3 +g1z
3 + [3 = 1]z3

· · · · · · · · ·

... and sum over all n.

∑
n

gnz
n = ∑

n

gn−1z
n +∑

n

gn−2z
n +∑

n

[n = 1]zn



Example: Fibonacci numbers revisited (3)

Step 3 Write down G(z) = ∑n gnz
n and transform

G(z) = ∑
n

gnz
n = ∑

n

gn−1z
n +∑

n

gn−2z
n +∑

n

[n = 1]zn =

= ∑
n

gnz
n+1 +∑

n

gnz
n+2 + z =

= zG(z) + z2G(z) + z

Solving the equation yields

G(z) =
z

1−z−z2

Step 4 Expansion the equation into power series G(z) = ∑gnz
n gives us the

solution (see next slides):

gn =
Φn− Φ̂n

√
5
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Motivation

A generating function is often in the form of a rational function

R(z) =
P(z)

Q(z)
,

where P and Q are polynomials.
Our goal is to �nd "partial fraction expansion" of R(z), i.e. represent R(z) in
the form

R(z) = S(z) +T (z),

where S(z) has known expansion into the power series, and T (z) is a
polynomial.
A good candidate for S(z) is a �nite sum of functions like

S(z) =
a1

(1−ρ1z)m1+1
+

a2
(1−ρ2z)m2+1

+ · · ·+ a`
(1−ρ`z)m`+1

We have proven the relation

a

(1−ρz)m+1
= ∑

n>0

(
m+n

m

)
aρ

nzn

Hence, the coe�cient of zn in expansion of S(z) is

sn = a1

(
m1 +n

m1

)
ρ
n
1 +a2

(
m2 +n

m2

)
ρ
n
2 + · · ·a`

(
m` +n

m`

)
ρ
n
` .
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Step 1: Finding ρ1,ρ2, . . . ,ρm

Suppose Q(z) has the form

Q(z) = 1+q1z +q2z
2 + · · ·+qmz

m, where qm 6= 0.

The �re�ected� polynomial QR has a relation to Q:

QR(z) = zm +q1z
m−1 +q2z

m−2 + · · ·+qm−1z +qm

= zm
(
1+q1

1

z
+q2

1

z2
+ · · ·+qm−1

1

zm−1
+qm

1

zm

)
= zmQ

(
1

z

)
If ρ1,ρ2, . . . ,ρm are roots of QR , then (z−ρi )|QR(z):

QR(z) = (z−ρ1)(z−ρ2) · · ·(z−ρm)

Then (1−ρiz)|Q(z):

Q(z) = zm(
1

z
−ρ1)(

1

z
−ρ2) · · ·(1

z
−ρm) = (1−ρ1z)(1−ρ2z) · · ·(1−ρmz)
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Step 1: Finding ρ1,ρ2, . . . ,ρm (2)

In all, we have proven

Lemma

QR(z) = (z−ρ1)(z−ρ2) · · ·(z−ρm) i� Q(z) = (1−ρ1z)(1−ρ2z) · · ·(1−ρmz)

Example: Q(z) = 1−z−z2

QR(z) = z2−z−1

This QR(z) has roots

z1 =
1+
√
5

2
= Φ and z2 =

1−
√
5

2
= Φ̂

Therefore QR(z) = (z−Φ)(z− Φ̂) and Q(z) = (1−Φz)(1− Φ̂z).
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Step 2: Decomposition into Partial Fractions

If the following conditions are valid for the fraction P(z)
Q(z) :

all roots of QR(z) are distinct (we denote these roots as ρ1,ρ2, . . .),

degP(z) < degQ(z) = `,

then the denominator is factorizable as Q(z) = a0(1−zρ1) · · ·(1−zρ`) and the
fraction can be expanded as

P(z)

Q(z)
=

A1

1−ρ1z
+

A2

1−ρ1z
+ · · ·+ A`

1−ρ`z
. (1)

where A1,A2, . . . ,A` are constants.

The constants A1,A2, . . . ,A` can be found as a solution of the system of linear
equations de�ned by the equality (1).



Example: Decomposition of z2−3z+28
6z3−5z2−2z+1

We have here P(z) = z2−3z +28 and Q(z) = 6z3−5z2−2z +1;

Re�ected polynomial QR(z) = z3−2z3−5z +6 = (z−1)(z +2)(z−3) and
Q(z) = (1−z)(1+2z)(1−3z).

Hence,

P1(z)

Q(z)
=

A

1−z
+

B

1+2z
+

C

1−3z
=

=
A(1+2z)(1−3z) +B(1−z)(1−3z) +C(1−z)(1+2z)

Q(z)
=

=
(−6A+3B−2C)z2 + (−A−4B +C)z + (A+B +C)

Q(z)

Comparing the numerator of this fraction with the polynomial P1(z) leads to the
system of equations: −6A+3B−2C = 1

−A−4B +C =−3
A+B +C = 28



Example z2−3z+28
6z3−5z2−2z+1

(continuation)

The solution of the system is

A =−13

3
B =

119

15
C =

122

5
.

So, we have

S(z) =
−13

3(1−z)
+

119

15(1+2z)
+

122

5(1−3z)
.

and the power series S(z) = ∑n>0 snz
n, where the coe�cient

sn =−13

3
+

119

15
(−2)n +

122

5
3n.
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Step 2 (alternative): Partial Rational Expansion

Theorem 1 (for Distinct Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence 〈rn〉,
where Q(z) = (1−ρ1z)(1−ρ2z) · · ·(1−ρ`z),
and the numbers (ρ1, . . . ,ρ`) are distinct,

and if P(z) is a polynomial of degree less than `, then

rn = a1ρ
n
1 +a2ρ

n
2 + · · ·+a`ρ

n
` , where ak =

−ρkP(1/ρk )

Q ′(1/ρk )

Sketch of proof.

We show that R(z) = S(z) for S(z) = a1
1−ρ1z

+ · · ·+ a`
1−ρ`z

and any

z 6= αk = 1/ρk (only the points where R(z) might be equal to in�nity).

L'Hôpital's Rule is used

continues ...



Recalling l'Hôpital's Rule

If either limx→a f (x) = limx→a g(x) = 0 or limx→a |f (x)|= limx→a |g(x)|= ∞

and if limx→a
f ′(x)
g ′(x) exists, then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)



Step 2: Partial Rational Expansion (2)

Continuation of the proof.

T (z) = R(z)−S(z) is a rational function of z and it su�ces to show that
limz→αk

(z−αk )T (z) = 0.

Thus we need to prove the following equality

lim
z→αk

(z−αk )R(z) = lim
z→αk

(z−αk )S(z).

Due to

ak (z−αk )

1−ρjz
=

ak (z− 1

ρk
)

1−ρjz
=
−ak (1−ρkz)

ρk (1−ρjz)
→ 0, if k 6= j and z → αk

the right-hand side is

lim
z→αk

(z−αk )S(z) = lim
z→αk

(z−αk )
ak (z−αk )

1−ρkz
=
−ak
ρk

=
P(1/ρk )

Q ′(1/ρk )

continues ...



Step 2: Partial Rational Expansion (3)

Continuation of the proof.

The left-hand side limit is

lim
z→αk

(z−αk )R(z) = lim
z→αk

(z−αk )
P(z)

Q(z)
=P(αk ) lim

z→αk

z−αk

Q(z)
=

P(αk )

Q ′(αk )
=

P(1/ρk )

Q ′(1/ρk )

by l'Hôpital's rule

Q.E.D.



General Expansion Theorem for Rational Generating
Functions.

Theorem 2 (for possibly Multiple Roots)

If R(z) = P(z)/Q(z) is the generating function for the sequence 〈rn〉, where
Q(z) = (1−ρ1z)d1 · · ·(1−ρ`z)d` and the numbers ρ1, . . . ,ρ` are distinct,
and if P(z) is a polynomial of degree less than d = d1 + . . .+d`, then

rn = f1(n)ρ
n
1 + · · ·+ f`(n)ρ

n
` , for all n > 0,

where each fk (n) is a polynomial of degree dk −1 with leading coe�cient

ak =
(−ρk )dkP(1/ρk )dk

Q(dk )(1/ρk )
=

P(1/ρk )

(dk −1)!∏j 6=k (1−ρj/ρk )dj

Proof: (omitted) by induction on d = d1 + . . .+d`.



Warmup: What if degP > degQ?

The problem

The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

What if it is not so?



Warmup: What if degP > degQ?

The problem

The hypotheses of the Rational Expansion Theorem include that the degree of
the numerator be smaller than that of the denominator.

What if it is not so?

Answer: It is a false problem!

If degP > degQ, then we can do polynomial division and uniquely determine two
polynomials S(z), R(z) such that:

degR < degQ;

P(z) = Q(z) ·S(z) +R(z).

Then
P(z)

Q(z)
= S(z) +

R(z)

Q(z)
:

the �rst summand only in�uences �nitely many coe�cients, and on the second one
the Rational Expansion Theorem can be applied.



Example: Fibonacci numbers revisited once more(2)

Step 3 Solving the equation

G(z) =
z

1−z−z2

Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for P(z) = z and
Q(z) = 1−z−z2:

From the example above we know that
Q(z) = (1−Φz)(1− Φ̂z)
As Q ′(z) =−1−2z, we have

−ΦP(1/Φ)

Q ′(1/Φ)
=

−1
−1−2/Φ

=
Φ

Φ +2
=

1√
5

and
−Φ̂P(1/Φ̂)

Q ′(1/Φ̂)
=

Φ̂

Φ̂ +2
=− 1√

5

Theorem 1 gives us

gn =
Φn− Φ̂n

√
5
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Example: A more-or-less random recurrence.

Step 1 Given recurrence

gn =

 0, if n < 0;
1, if 06 n < 2;

gn−1 +2gn−2 + (−1)n if 26 n;

can be represented by the single equation

gn = gn−1 +2gn−2 + (−1)n[n > 0] + [n = 1].

Some values:
n 0 1 2 3 4 5 6 7
gn 1 1 4 5 14 23 52 97



Example: A more-or-less random recurrence (2)

Step 2 Write down G(z) = ∑n gnz
n and transform

G(z) = ∑
n

gnz
n = ∑

n

gn−1z
n +2∑

n

gn−2z
n + ∑

n>0
(−1)nzn +∑

n

[n = 1]zn =

= ∑
n

gnz
n+1 +2∑

n

gnz
n+2 +

1

1+ z
+ z =

= zG(z) +2z2G(z) +
1+ z + z2

1+ z

Step 3 Solving the equation

G(z) =
1+ z + z2

(1−z−2z2)(1+ z)
=

1+ z + z2

(1−2z)(1+ z)2
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Example: A more-or-less random recurrence (3)

Step 4 Expand the (rational) equation G(z) = P(z)/Q(z) for
P(z) = 1+ z + z2 and Q(z) = (1−2z)(1+ z)2:

Theorem 2 gives us for some constant c:

gn = a12
n + (a2n+c)(−1)n,

where

a1 =
P(1/2)

0!(1+1/2)2
=

4(1+1/2+1/4)

9
=

7

9

and

a2 =
P(−1)

1!(1+2)
=

1+1−1
3

=
1

3

Special case n = 0 implies 1 = g0 = 7

9
+c that gives

c = 1− 7

9
= 2

9
.

The answer is

gn =
7

9
2n +

(
1

3
n+

2

9

)
(−1)n.



Decomposition into Partial Fractions

The same function: G(z) = P(z)
Q(z) = 1+z+z2

(1−2z)(1+z)2

Decompose it as

G(z) =
A

1−2z
+

B

1+ z
+

C

(1+ z)2

Expand

G(z) =
A

1−2z
+

B

1+ z
+

C

(1+ z)2
=

=
A(1+ z)2 +B(1−2z)(1+ z) +C(1−2z)

(1−2z)(1+ z)2
=

=
(A−2B)z2 + (2A−B−2C)z +A+B +C

(1−2z)(1+ z)2

continues ...



Decomposition into Partial Fractions (2)

The function: G(z) = P(z)
Q(z) = 1+z+z2

(1−2z)(1+z)2

System of equations:  A−2B = 1
2A−B−2C = 1
A+B +C = 1

The solution: A = 7

9
,B =− 1

9
,C = 1

3

The result of decomposition G(z) = 7

9(1−2z) −
1

9(1+z) + 1

3(1+z)2

using the basic identity

a

(1−ρz)k
= ∑

n>0

(
n+k−1
k−1

)
aρ

nzn,

we get the power series

G(z) = ∑
n>0

[
7

9
2n− 1

9
(−1)n +

n+1

3
(−1)n

]
zn = ∑

n>0
gnz

n,

where

gn =
7

9
2n +

(
1

3
n+

2

9

)
(−1)n.



Example 3: Usage of derivatives

Step 1 Given recurrence

gn =


0, if n < 0;
1, if n = 0;

2

n gn−2, if n > 0;

can be represented by the single equation

gn =
2

n
gn−2 + [n = 0].

Some values:
n 0 1 2 3 4 5 6 7 8 9 10

gn 1 0 1 0 1

2
0 1

6
0 1

24
0 1

120

Step 2 Write down G(z) = ∑n gnz
n and its �rst derivative:

G(z) = ∑
n

gnz
n = ∑

n

[n = 0]zn +2∑
n

gn−2
n

zn = 1+2∑
n

gn−2
n

zn

G ′(z) = 2∑
n

gn−2 ·n
n

zn−1 = 2z∑
n

gn−2z
n−2 = 2zG(z)
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Example 3: Usage of derivatives (2)

Step 3 We need to solve the di�erential equation G ′(z) = 2zG(z).

We rewrite the equation as

dG(z)

dz
= 2zG(z)

By treating G(z) as it was another variable, we further rewrite:

dG(z)

G(z)
= 2zdz

(Such di�erential equations are called separable, because they
can be solved by �separating the variables�.)
By equating the inde�nite integrals, we get:

lnG(z) = z2 +C

By taking exponentials, we obtain:

G(z) = Cez
2

, where C = eC

By applying G(0) = g0 = 1 we get C = 1.

In conclusion: G(z) = ez
2

.



Example 3: Usage of derivatives (3)

Step 4 Considering that ez = ∑n>0
1

n! z
n,

and denoting u = z2, we get

G(z) = ez
2

= eu = ∑
1

n!
un

= ∑
1

n!
(z2)n = ∑

1

n!
z2n

= ∑
1

( n
2

)!
[n is even]zn

To conclude:

gn =

{
1

k! , if n = 2k,k ∈ N;
0, otherwise.

Q.E.D.
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