
Generating Functions
ITT9131 Konkreetne Matemaatika

Chapter Seven

Domino Theory and Change

Basic Maneuvers

Solving Recurrences

Special Generating Functions

Convolutions

Exponential Generating Functions

Dirichlet Generating Functions

Contents

1 Convolutions

Fibonacci convolution

m-fold convolution

Catalan numbers

2 Exponential generating functions

Next section

1 Convolutions

Fibonacci convolution

m-fold convolution

Catalan numbers

2 Exponential generating functions

Convolutions

Given two sequences:

〈f0, f1, f2, . . .〉= 〈fn〉 and 〈g0,g1,g2, . . .〉= 〈gn〉

The convolution of 〈fn〉 and 〈gn〉 is the sequence

〈f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . .〉=

〈
∑
k

fkgn−k

〉
=

〈
∑

k+`=n

fkg`

〉
.

If F (z) and G(z) are generating functions on the sequences 〈fn〉 and 〈gn〉, then
their convolution has the generating function F (z) ·G(z).

Three or more sequences can be convolved analogously, for example:

〈fn〉〈gn〉〈hn〉=

〈
∑

j+k+`=n

fjgkh`

〉

and the generating function of this three-fold convolution is the product
F (z) ·G(z) ·H(z).

Convolutions

Given two sequences:

〈f0, f1, f2, . . .〉= 〈fn〉 and 〈g0,g1,g2, . . .〉= 〈gn〉

The convolution of 〈fn〉 and 〈gn〉 is the sequence

〈f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . .〉=

〈
∑
k

fkgn−k

〉
=

〈
∑

k+`=n

fkg`

〉
.

If F (z) and G(z) are generating functions on the sequences 〈fn〉 and 〈gn〉, then
their convolution has the generating function F (z) ·G(z).

Three or more sequences can be convolved analogously, for example:

〈fn〉〈gn〉〈hn〉=

〈
∑

j+k+`=n

fjgkh`

〉

and the generating function of this three-fold convolution is the product
F (z) ·G(z) ·H(z).

Convolutions

Given two sequences:

〈f0, f1, f2, . . .〉= 〈fn〉 and 〈g0,g1,g2, . . .〉= 〈gn〉

The convolution of 〈fn〉 and 〈gn〉 is the sequence

〈f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . .〉=

〈
∑
k

fkgn−k

〉
=

〈
∑

k+`=n

fkg`

〉
.

If F (z) and G(z) are generating functions on the sequences 〈fn〉 and 〈gn〉, then
their convolution has the generating function F (z) ·G(z).

Three or more sequences can be convolved analogously, for example:

〈fn〉〈gn〉〈hn〉=

〈
∑

j+k+`=n

fjgkh`

〉

and the generating function of this three-fold convolution is the product
F (z) ·G(z) ·H(z).

Next subsection

1 Convolutions

Fibonacci convolution

m-fold convolution

Catalan numbers

2 Exponential generating functions

Fibonacci convolution

To compute ∑k fk fn−k use Fibonacci generating function (in the form given by
Theorem 1 and considering that ∑(n+1)zn = 1

(1−z)2
):

F 2(z) =

(
1√
5

(
1

1−Φz
− 1

1− Φ̂z

))2
=

1

5

(
1

(1−Φz)2
− 2

(1−Φz)(1− Φ̂z)
+

1

(1− Φ̂z)2

)

=
1

5 ∑
n>0

(n+1)Φnzn− 2

5 ∑
n>0

fn+1z
n +

1

5 ∑
n>0

(n+1)Φ̂nzn

=
1

5 ∑
n>0

(n+1)(Φn + Φ̂n)zn− 2

5 ∑
n>0

fn+1z
n

=
1

5 ∑
n>0

(n+1)(2fn+1− fn)zn− 2

5 ∑
n>0

fn+1z
n

=
1

5 ∑
n>0

(2nfn+1− (n+1)fn)zn

Hence

∑
k

fk fn−k =
2nfn+1− (n+1)fn

5

Fibonacci convolution (2)

On the previous slide the following was used:

Property

For any n > 0: Φn + Φ̂n = 2fn+1− fn

Proof

The equalities ∑n Φnzn = 1

1−Φz , ∑n Φ̂nzn = 1

1−Φ̂z
, and Φ + Φ̂ = 1 are used in the

following derivation:

∑
n

(Φn + Φ̂n)zn =
1

1−Φz
+

1

1− Φ̂z
=

1− Φ̂z +1−Φz

(1−Φz)(1− Φ̂z)
=

=
2−z

1−z−z2
=

2

z
· z

1−z−z2
− z

1−z−z2
=

=
2

z ∑
n

fnz
n−∑

n

fnz
n = 2∑

n

fnz
n−1−∑

n

fnz
n =

= 2∑
n

fn+1z
n−∑

n

fnz
n =

= ∑
n

(2fn+1− fn)zn

Q.E.D.

Fibonacci convolution (2)

On the previous slide the following was used:

Property

For any n > 0: Φn + Φ̂n = 2fn+1− fn

Proof (alternative)

We know from Exercise 6.28 that

Φn + Φ̂n = Ln = fn+1 + fn−1 ,

with the convention f−1 = 1, is the nth Lucas number, which is the solution to the
recurrence:

L0 = 2 ; L1 = 1 ;
Ln = Ln−1 +Ln−2 ∀n > 2 .

By writing the recurrence relation for Fibonacci numbers in the form fn−1 = fn+1− fn
(which, incidentally, yields f−1 = 1), we get precisely Ln = 2fn+1− fn.

Q.E.D.

Next subsection

1 Convolutions

Fibonacci convolution

m-fold convolution

Catalan numbers

2 Exponential generating functions

Spanning trees for fan

Example: the fan of order 5:

Spanning trees:

Spanning trees for fan

Example: the fan of order 5:

Spanning trees:

Spanning trees for fan (2)

How many spanning trees can we make?

We need to connect 0 to each of the four blocks:

two ways to join 0 with {9,10},
one way to join 0 with {8},
four ways to join 0 with {4,5,6,7,},
three ways to join 0 with {1,2,3},

There is altogether 2 ·1 ·4 ·3 = 24 ways for that.

In general:
sn = ∑

m>0
∑

k1 +k2 + · · ·+km = n
k1,k2, . . . ,km > 0

k1k2 · · ·km

Spanning trees for fan (2)

How many spanning trees can we make?

We need to connect 0 to each of the four blocks:

two ways to join 0 with {9,10},
one way to join 0 with {8},
four ways to join 0 with {4,5,6,7,},
three ways to join 0 with {1,2,3},

There is altogether 2 ·1 ·4 ·3 = 24 ways for that.

In general:
sn = ∑

m>0
∑

k1 +k2 + · · ·+km = n
k1,k2, . . . ,km > 0

k1k2 · · ·km

For example

f4 = 4+3 ·1+2 ·2+1 ·3︸ ︷︷ ︸+2 ·1 ·1+1 ·2 ·1+1 ·1 ·2︸ ︷︷ ︸+1 ·1 ·1 ·1 = 21

Spanning trees for fan (2)

How many spanning trees can we make?

We need to connect 0 to each of the four blocks:

two ways to join 0 with {9,10},
one way to join 0 with {8},
four ways to join 0 with {4,5,6,7,},
three ways to join 0 with {1,2,3},

There is altogether 2 ·1 ·4 ·3 = 24 ways for that.

In general:
sn = ∑

m>0
∑

k1 +k2 + · · ·+km = n
k1,k2, . . . ,km > 0

k1k2 · · ·km

This is the sum of m-fold convolutions of the sequence 〈0,1,2,3, . . .〉.

Spanning trees for fan (3)

Generating function for the number of spanning trees:

The sequence 〈0,1,2,3, . . .〉 has the generating function

G(z) =
z

(1−z)2
.

Hence the generating function for〈fn〉 is

S(z) = G(z) +G2(z) +G3(z) + · · ·= G(z)

1−G(z)

=
z

(1−z)2(1− z
(1−z)2

)

=
z

(1−z)2−z

=
z

1−3z + z2
.

Spanning trees for fan (3)

Generating function for the number of spanning trees:

The sequence 〈0,1,2,3, . . .〉 has the generating function

G(z) =
z

(1−z)2
.

Hence the generating function for〈fn〉 is

S(z) = G(z) +G2(z) +G3(z) + · · ·= G(z)

1−G(z)

=
z

(1−z)2(1− z
(1−z)2

)

=
z

(1−z)2−z

=
z

1−3z + z2
.

Consequently sn = f2n

Next subsection

1 Convolutions

Fibonacci convolution

m-fold convolution

Catalan numbers

2 Exponential generating functions

Dyck language

De�nition

The Dyck language is the language consisting of balanced strings of parentheses '['
and ']'.

Another de�nition

If X = {x ,x} is the alphabet, then the Dyck language is the subset D of words u of X ∗

which satisfy

1 u|x = |u|x , where |u|x is the number of letters x in the word u, and

2 if u is factored as vw , where v and w are words of X ∗, then |v |x > |v |x .

Dyck language (2)

Let Cn be the number of words in the Dyck language D having exactly n pairs
of parentheses.

If u = vw for u ∈D , then the pre�x v ∈D i� the su�x w ∈D

Then every word u ∈D of length > 2 has a unique writing u = [v]w such that
v ,w ∈D (possibly empty) but [p 6∈D for every pre�x p of u (including u itself).

Hence, for any n > 0

Cn = C0Cn−1 +C1Cn−2 + · · ·+Cn−1C0

The number series 〈Cn〉 is called Catalan numbers, from the Belgian
mathematician Eugène Catalan.
Let us derive the closed formula for Cn in the following slides.

Catalan numbers

Step 1 The recurrent equation of Catalan numbers for all integers

Cn = ∑
k

CkCn−1−k + [n = 0].

Step 2 Write down C(z) = ∑nCnz
n :

C(z) = ∑
n

Cnz
n = ∑

k,n

CkCn−1−kz
n +∑

n

[n = 0]zn

= ∑
k

Ckz
kz∑

n

Cn−1−kz
n−1−k +1

= ∑
k

Ckz
kz∑

n

Cnz
n +1

= zC2(z) +1

Catalan numbers

Step 1 The recurrent equation of Catalan numbers for all integers

Cn = ∑
k

CkCn−1−k + [n = 0].

Step 2 Write down C(z) = ∑nCnz
n :

C(z) = ∑
n

Cnz
n = ∑

k,n

CkCn−1−kz
n +∑

n

[n = 0]zn

= ∑
k

Ckz
kz∑

n

Cn−1−kz
n−1−k +1

= ∑
k

Ckz
kz∑

n

Cnz
n +1

= zC2(z) +1

Catalan numbers (2)

Step 3 Solving the quadratic equation zC2(z)−C(z) +1 = 0 for C(z) yields
directly:

C(z) =
1±
√
1−4z
2z

.

(Solution with "+" isn't proper as it leads to C0 = C(0) = ∞.)

Step 4 From the binomial theorem we get:

√
1−4z = ∑

k>0

(
1/2

k

)
(−4z)k = 1+ ∑

k>1

1

2k

(
−1/2
k−1

)
(−4z)k

Using the equality for binomials
(−1/2

n

)
= (−1/4)n

(
2n
n

)
we

�nally get

C(z) =
1−
√
1−4z
2z

= ∑
k>1

1

k

(
−1/2
k−1

)
(−4z)k−1

= ∑
n>0

(
−1/2
n

)
(−4z)n

n+1

= ∑
n>0

(
2n

n

)
zn

n+1

Catalan numbers (2)

Step 3 Solving the quadratic equation zC2(z)−C(z) +1 = 0 for C(z) yields
directly:

C(z) =
1±
√
1−4z
2z

.

(Solution with "+" isn't proper as it leads to C0 = C(0) = ∞.)

Step 4 From the binomial theorem we get:

√
1−4z = ∑

k>0

(
1/2

k

)
(−4z)k = 1+ ∑

k>1

1

2k

(
−1/2
k−1

)
(−4z)k

Using the equality for binomials
(−1/2

n

)
= (−1/4)n

(
2n
n

)
we

�nally get

C(z) =
1−
√
1−4z
2z

= ∑
k>1

1

k

(
−1/2
k−1

)
(−4z)k−1

= ∑
n>0

(
−1/2
n

)
(−4z)n

n+1

= ∑
n>0

(
2n

n

)
zn

n+1

Proof that
(−1/2

n

)
= (−1/4)n

(
2n
n

)

We prove a bit more: for every r ∈ R and k > 0,

rk ·
(
r − 1

2

)k

=
(2r)2k

22k

Proof that
(−1/2

n

)
= (−1/4)n

(
2n
n

)

We prove a bit more: for every r ∈ R and k > 0,

rk ·
(
r − 1

2

)k

=
(2r)2k

22k

Indeed,

rk ·
(
r − 1

2

)k

= r ·
(
r − 1

2

)
· (r −1) ·

(
r − 3

2

)
· · ·(r −k−1) ·

(
r − 1

2
−k +1

)
=

2r

2
· 2r −1

2
· 2r −2

2
· 2r −3

2
· · · 2r −2k−2

2
· 2r −2k +1

2

=
(2r)2k

22k

Proof that
(−1/2

n

)
= (−1/4)n

(
2n
n

)
We prove a bit more: for every r ∈ R and k > 0,

rk ·
(
r − 1

2

)k

=
(2r)2k

22k

Indeed,

rk ·
(
r − 1

2

)k

= r ·
(
r − 1

2

)
· (r −1) ·

(
r − 3

2

)
· · ·(r −k−1) ·

(
r − 1

2
−k +1

)
=

2r

2
· 2r −1

2
· 2r −2

2
· 2r −3

2
· · · 2r −2k−2

2
· 2r −2k +1

2

=
(2r)2k

22k

Then for r = k = n, dividing by (n!)2 and using nn = n!,(
n−1/2

n

)
=

(
1

4

)n(2n
n

)
:

and as rk = (−1)k(−r)k = (−1)k(−r +k−1)k ,(
−1/2
n

)
=

(
n− (n−1/2)−1

n

)
=

(−1)n

4n

(
2n

n

)
Q.E.D.

Resume Catalan numbers

Formulae for computation

Cn+1 = 2(2n+1)
n+2

Cn, with C0 = 1

Cn = 1

n+1

(
2n
n

)
Cn =

(
2n
n

)
−
(
2n
n−1
)

=
(
2n−1
n

)
−
(
2n−1
n+1

)
Generating function: C(z) = 1−

√
1−4z
2z

lim
n→∞

Cn

Cn−1
= 4

Eugéne Charles Catalan
(1814�1894)

n 0 1 2 3 4 5 6 7 8 9 10
Cn 1 1 2 5 14 42 132 429 1 430 4 862 16 796

Applications of Catalan numbers

Number of complete binary trees with n+1 leaves is Cn

The Dyck language consists of exactly n characters A and n characters B, and every
pre�x does not contain more B-s than A-s. For example, there are �ve words with 6
letters in the Dyck language:

AAABBB AABABB AABBAB ABAABB ABABAB

Corollary

Cn is the number of words of length 2n in the Dyck language.

Applications of Catalan numbers

Number of complete binary trees with n+1 leaves is Cn

The Dyck language consists of exactly n characters A and n characters B, and every
pre�x does not contain more B-s than A-s. For example, there are �ve words with 6
letters in the Dyck language:

AAABBB AABABB AABBAB ABAABB ABABAB

Corollary

Cn is the number of words of length 2n in the Dyck language.

Applications of Catalan numbers (2)

Monotonic paths

Cn is the number of monotonic paths along the edges of a grid with n×n
square cells, which do not pass above the diagonal. A monotonic path is one

which starts in the lower left corner, �nishes in the upper right corner,
and consists entirely of edges pointing rightwards or upwards.

Applications of Catalan numbers (3)

Polygon triangulation

Cn is the number of di�erent ways a convex polygon with n+2 sides
can be cut into triangles by connecting vertices with straight lines.

See more applications, for example, on
http://www.absoluteastronomy.com/topics/Catalan_number

http://www.absoluteastronomy.com/topics/Catalan_number

Next section

1 Convolutions

Fibonacci convolution

m-fold convolution

Catalan numbers

2 Exponential generating functions

Exponential generating function

De�nition

The exponential generating function (brie�y, egf) of the sequence 〈gn〉 is the function

Ĝ(z) = ∑
n>0

gn
n!

zn ,

that is, the generating function of the sequence 〈gn/n!〉.

For example, ez = ∑n>0
zn

n! is the egf of the constant sequence 1.

Exponential generating function

De�nition

The exponential generating function (brie�y, egf) of the sequence 〈gn〉 is the function

Ĝ(z) = ∑
n>0

gn
n!

zn ,

that is, the generating function of the sequence 〈gn/n!〉.

For example, ez = ∑n>0
zn

n! is the egf of the constant sequence 1.

Why exponential generating functions?

Because 〈gn/n!〉 might have a �simpler� generating function than 〈gn〉 has.

Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn

Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn

Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn

Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn

Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn

Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn

Binomial convolution

De�nition

The binomial convolution of the sequences 〈fn〉 and 〈gn〉 is the sequence 〈hn〉 de�ned
by:

hn = ∑
k

(
n

k

)
fkgn−k

Binomial convolution

De�nition

The binomial convolution of the sequences 〈fn〉 and 〈gn〉 is the sequence 〈hn〉 de�ned
by:

hn = ∑
k

(
n

k

)
fkgn−k

Examples

〈(a+b)n〉 is the binomial convolution of 〈an〉 and 〈bn〉.

If F̂ (z) is the egf of 〈fn〉 and Ĝ(z) is the egf of 〈gn〉, then Ĥ(z) = F̂ (z) · Ĝ(z) is
the egf of 〈hn〉, because then:

hn
n!

= ∑
k

fk
k!

gn−k
(n−k)!

Bernoulli numbers and exponential generating functions

Recall that the Bernoulli numbers are de�ned by the recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0] ∀m > 0 ,

which is equivalent to:

∑
n

(
n

k

)
Bk = Bn + [n = 1] ∀n > 0 .

The left-hand side is a binomial convolution with the constant sequence 1. Then the
egf B̂(z) of the Bernoulli numbers satis�es

B̂(z) ·ez = B̂(z) + z :

which yields

B̂(z) =
z

ez −1
.

Bernoulli numbers and exponential generating functions

Recall that the Bernoulli numbers are de�ned by the recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0] ∀m > 0 ,

which is equivalent to:

∑
n

(
n

k

)
Bk = Bn + [n = 1] ∀n > 0 .

To make a comparison:

∑
n>0

Bn

n!
zn =

z

ez −1
but ∑

n>0
B+
n z

n =
1

z

d2

dz2
ln
∫

∞

0

tz−1e−tdt

where B+
n = Bn · [Bn > 0].

	Convolutions
	Fibonacci convolution
	m-fold convolution
	Catalan numbers

	Exponential generating functions

