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Convolutions

Given two sequences:

〈f0, f1, f2, . . .〉= 〈fn〉 and 〈g0,g1,g2, . . .〉= 〈gn〉

The convolution of 〈fn〉 and 〈gn〉 is the sequence

〈f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . .〉=

〈
∑
k

fkgn−k

〉
=

〈
∑

k+`=n

fkg`

〉
.

If F (z) and G(z) are generating functions on the sequences 〈fn〉 and 〈gn〉, then
their convolution has the generating function F (z) ·G(z).

Three or more sequences can be convolved analogously, for example:

〈fn〉〈gn〉〈hn〉=

〈
∑

j+k+`=n

fjgkh`

〉

and the generating function of this three-fold convolution is the product
F (z) ·G(z) ·H(z).
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Fibonacci convolution

To compute ∑k fk fn−k use Fibonacci generating function (in the form given by
Theorem 1 and considering that ∑(n+1)zn = 1

(1−z)2
):

F 2(z) =

(
1√
5

(
1

1−Φz
− 1

1− Φ̂z

))2
=

1

5

(
1

(1−Φz)2
− 2

(1−Φz)(1− Φ̂z)
+

1

(1− Φ̂z)2

)

=
1

5 ∑
n>0

(n+1)Φnzn− 2

5 ∑
n>0

fn+1z
n +

1

5 ∑
n>0

(n+1)Φ̂nzn

=
1

5 ∑
n>0

(n+1)(Φn + Φ̂n)zn− 2

5 ∑
n>0

fn+1z
n

=
1

5 ∑
n>0

(n+1)(2fn+1− fn)zn− 2

5 ∑
n>0

fn+1z
n

=
1

5 ∑
n>0

(2nfn+1− (n+1)fn)zn

Hence

∑
k

fk fn−k =
2nfn+1− (n+1)fn

5



Fibonacci convolution (2)

On the previous slide the following was used:

Property

For any n > 0: Φn + Φ̂n = 2fn+1− fn

Proof

The equalities ∑n Φnzn = 1

1−Φz , ∑n Φ̂nzn = 1

1−Φ̂z
, and Φ + Φ̂ = 1 are used in the

following derivation:

∑
n

(Φn + Φ̂n)zn =
1

1−Φz
+

1

1− Φ̂z
=

1− Φ̂z +1−Φz

(1−Φz)(1− Φ̂z)
=

=
2−z

1−z−z2
=

2

z
· z

1−z−z2
− z

1−z−z2
=

=
2

z ∑
n

fnz
n−∑

n

fnz
n = 2∑

n

fnz
n−1−∑

n

fnz
n =

= 2∑
n

fn+1z
n−∑

n

fnz
n =

= ∑
n

(2fn+1− fn)zn

Q.E.D.



Fibonacci convolution (2)

On the previous slide the following was used:

Property

For any n > 0: Φn + Φ̂n = 2fn+1− fn

Proof (alternative)

We know from Exercise 6.28 that

Φn + Φ̂n = Ln = fn+1 + fn−1 ,

with the convention f−1 = 1, is the nth Lucas number, which is the solution to the
recurrence:

L0 = 2 ; L1 = 1 ;
Ln = Ln−1 +Ln−2 ∀n > 2 .

By writing the recurrence relation for Fibonacci numbers in the form fn−1 = fn+1− fn
(which, incidentally, yields f−1 = 1), we get precisely Ln = 2fn+1− fn.

Q.E.D.
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Spanning trees for fan

Example: the fan of order 5:

Spanning trees:
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Spanning trees for fan (2)

How many spanning trees can we make?

We need to connect 0 to each of the four blocks:

two ways to join 0 with {9,10},
one way to join 0 with {8},
four ways to join 0 with {4,5,6,7,},
three ways to join 0 with {1,2,3},

There is altogether 2 ·1 ·4 ·3 = 24 ways for that.

In general:
sn = ∑

m>0
∑

k1 +k2 + · · ·+km = n
k1,k2, . . . ,km > 0

k1k2 · · ·km
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m>0
∑

k1 +k2 + · · ·+km = n
k1,k2, . . . ,km > 0

k1k2 · · ·km

For example

f4 = 4+3 ·1+2 ·2+1 ·3︸ ︷︷ ︸+2 ·1 ·1+1 ·2 ·1+1 ·1 ·2︸ ︷︷ ︸+1 ·1 ·1 ·1 = 21



Spanning trees for fan (2)

How many spanning trees can we make?

We need to connect 0 to each of the four blocks:

two ways to join 0 with {9,10},
one way to join 0 with {8},
four ways to join 0 with {4,5,6,7,},
three ways to join 0 with {1,2,3},

There is altogether 2 ·1 ·4 ·3 = 24 ways for that.

In general:
sn = ∑

m>0
∑

k1 +k2 + · · ·+km = n
k1,k2, . . . ,km > 0

k1k2 · · ·km

This is the sum of m-fold convolutions of the sequence 〈0,1,2,3, . . .〉.



Spanning trees for fan (3)

Generating function for the number of spanning trees:

The sequence 〈0,1,2,3, . . .〉 has the generating function

G(z) =
z

(1−z)2
.

Hence the generating function for〈fn〉 is

S(z) = G(z) +G2(z) +G3(z) + · · ·= G(z)

1−G(z)

=
z

(1−z)2(1− z
(1−z)2

)

=
z

(1−z)2−z

=
z

1−3z + z2
.



Spanning trees for fan (3)

Generating function for the number of spanning trees:

The sequence 〈0,1,2,3, . . .〉 has the generating function

G(z) =
z

(1−z)2
.

Hence the generating function for〈fn〉 is

S(z) = G(z) +G2(z) +G3(z) + · · ·= G(z)

1−G(z)

=
z

(1−z)2(1− z
(1−z)2

)

=
z

(1−z)2−z

=
z

1−3z + z2
.

Consequently sn = f2n
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Dyck language

De�nition

The Dyck language is the language consisting of balanced strings of parentheses '['
and ']'.

Another de�nition

If X = {x ,x} is the alphabet, then the Dyck language is the subset D of words u of X ∗

which satisfy

1 u|x = |u|x , where |u|x is the number of letters x in the word u, and

2 if u is factored as vw , where v and w are words of X ∗, then |v |x > |v |x .



Dyck language (2)

Let Cn be the number of words in the Dyck language D having exactly n pairs
of parentheses.

If u = vw for u ∈D , then the pre�x v ∈D i� the su�x w ∈D

Then every word u ∈D of length > 2 has a unique writing u = [v ]w such that
v ,w ∈D (possibly empty) but [p 6∈D for every pre�x p of u (including u itself).

Hence, for any n > 0

Cn = C0Cn−1 +C1Cn−2 + · · ·+Cn−1C0

The number series 〈Cn〉 is called Catalan numbers, from the Belgian
mathematician Eugène Catalan.
Let us derive the closed formula for Cn in the following slides.



Catalan numbers

Step 1 The recurrent equation of Catalan numbers for all integers

Cn = ∑
k

CkCn−1−k + [n = 0].

Step 2 Write down C(z) = ∑nCnz
n :

C(z) = ∑
n

Cnz
n = ∑

k,n

CkCn−1−kz
n +∑

n

[n = 0]zn

= ∑
k

Ckz
kz∑

n

Cn−1−kz
n−1−k +1

= ∑
k

Ckz
kz∑

n

Cnz
n +1

= zC2(z) +1
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Catalan numbers (2)

Step 3 Solving the quadratic equation zC2(z)−C(z) +1 = 0 for C(z) yields
directly:

C(z) =
1±
√
1−4z
2z

.

(Solution with "+" isn't proper as it leads to C0 = C(0) = ∞.)

Step 4 From the binomial theorem we get:

√
1−4z = ∑

k>0

(
1/2

k

)
(−4z)k = 1+ ∑

k>1

1

2k

(
−1/2
k−1

)
(−4z)k

Using the equality for binomials
(−1/2

n

)
= (−1/4)n

(
2n
n

)
we

�nally get

C(z) =
1−
√
1−4z
2z

= ∑
k>1

1

k

(
−1/2
k−1

)
(−4z)k−1

= ∑
n>0

(
−1/2
n

)
(−4z)n

n+1

= ∑
n>0

(
2n

n

)
zn

n+1
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Proof that
(−1/2

n

)
= (−1/4)n

(
2n
n

)

We prove a bit more: for every r ∈ R and k > 0,

rk ·
(
r − 1

2

)k

=
(2r)2k

22k
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n

)
= (−1/4)n

(
2n
n

)

We prove a bit more: for every r ∈ R and k > 0,

rk ·
(
r − 1

2

)k

=
(2r)2k

22k

Indeed,

rk ·
(
r − 1

2

)k

= r ·
(
r − 1

2

)
· (r −1) ·

(
r − 3

2

)
· · ·(r −k−1) ·

(
r − 1

2
−k +1

)
=

2r

2
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2
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2
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2
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Proof that
(−1/2

n

)
= (−1/4)n

(
2n
n

)
We prove a bit more: for every r ∈ R and k > 0,

rk ·
(
r − 1

2

)k

=
(2r)2k

22k

Indeed,

rk ·
(
r − 1

2

)k

= r ·
(
r − 1

2

)
· (r −1) ·

(
r − 3

2

)
· · ·(r −k−1) ·

(
r − 1

2
−k +1

)
=

2r

2
· 2r −1

2
· 2r −2

2
· 2r −3

2
· · · 2r −2k−2

2
· 2r −2k +1

2

=
(2r)2k

22k

Then for r = k = n, dividing by (n!)2 and using nn = n!,(
n−1/2

n

)
=

(
1

4

)n(2n
n

)
:

and as rk = (−1)k(−r)k = (−1)k(−r +k−1)k ,(
−1/2
n

)
=

(
n− (n−1/2)−1

n

)
=

(−1)n

4n

(
2n

n

)
Q.E.D.



Resume Catalan numbers

Formulae for computation

Cn+1 = 2(2n+1)
n+2

Cn, with C0 = 1

Cn = 1

n+1

(
2n
n

)
Cn =

(
2n
n

)
−
(
2n
n−1
)

=
(
2n−1
n

)
−
(
2n−1
n+1

)
Generating function: C(z) = 1−

√
1−4z
2z

lim
n→∞

Cn

Cn−1
= 4

Eugéne Charles Catalan
(1814�1894)

n 0 1 2 3 4 5 6 7 8 9 10
Cn 1 1 2 5 14 42 132 429 1 430 4 862 16 796



Applications of Catalan numbers

Number of complete binary trees with n+1 leaves is Cn

The Dyck language consists of exactly n characters A and n characters B, and every
pre�x does not contain more B-s than A-s. For example, there are �ve words with 6
letters in the Dyck language:

AAABBB AABABB AABBAB ABAABB ABABAB

Corollary

Cn is the number of words of length 2n in the Dyck language.
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pre�x does not contain more B-s than A-s. For example, there are �ve words with 6
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Corollary
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Applications of Catalan numbers (2)

Monotonic paths

Cn is the number of monotonic paths along the edges of a grid with n×n
square cells, which do not pass above the diagonal. A monotonic path is one

which starts in the lower left corner, �nishes in the upper right corner,
and consists entirely of edges pointing rightwards or upwards.



Applications of Catalan numbers (3)

Polygon triangulation

Cn is the number of di�erent ways a convex polygon with n+2 sides
can be cut into triangles by connecting vertices with straight lines.

See more applications, for example, on
http://www.absoluteastronomy.com/topics/Catalan_number

http://www.absoluteastronomy.com/topics/Catalan_number
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Exponential generating function

De�nition

The exponential generating function (brie�y, egf) of the sequence 〈gn〉 is the function

Ĝ(z) = ∑
n>0

gn
n!

zn ,

that is, the generating function of the sequence 〈gn/n!〉.

For example, ez = ∑n>0
zn

n! is the egf of the constant sequence 1.



Exponential generating function

De�nition

The exponential generating function (brie�y, egf) of the sequence 〈gn〉 is the function

Ĝ(z) = ∑
n>0

gn
n!

zn ,

that is, the generating function of the sequence 〈gn/n!〉.

For example, ez = ∑n>0
zn

n! is the egf of the constant sequence 1.

Why exponential generating functions?

Because 〈gn/n!〉 might have a �simpler� generating function than 〈gn〉 has.



Exponential generating functions: Basic maneuvers

Let F̂ (z) and Ĝ(z) be the exponential generating functions of 〈fn〉 and 〈gn〉.

As usual, we put fn = gn = 0 for every n < 0, and undefined ·0 = 0.

αF̂ (z) + β Ĝ(z) = ∑
n

(
αfn + βgn

n!

)
zn

Ĝ(cz) = ∑
n

cngn
n!

zn

zĜ(z) = ∑
n

ngn−1
n!

zn

Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
n

1

n!

(
∑
k

(
n

k

)
fkgn−k

)
zn
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n

(
αfn + βgn

n!

)
zn
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Ĝ ′(z) = ∑
n

gn+1

n!
zn∫ z

0

Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
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Ĝ(w)dw = ∑
n

gn−1
n!

zn

F̂ (z) · Ĝ(z) = ∑
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Binomial convolution

De�nition

The binomial convolution of the sequences 〈fn〉 and 〈gn〉 is the sequence 〈hn〉 de�ned
by:

hn = ∑
k

(
n

k

)
fkgn−k



Binomial convolution

De�nition

The binomial convolution of the sequences 〈fn〉 and 〈gn〉 is the sequence 〈hn〉 de�ned
by:

hn = ∑
k

(
n

k

)
fkgn−k

Examples

〈(a+b)n〉 is the binomial convolution of 〈an〉 and 〈bn〉.

If F̂ (z) is the egf of 〈fn〉 and Ĝ(z) is the egf of 〈gn〉, then Ĥ(z) = F̂ (z) · Ĝ(z) is
the egf of 〈hn〉, because then:

hn
n!

= ∑
k

fk
k!

gn−k
(n−k)!



Bernoulli numbers and exponential generating functions

Recall that the Bernoulli numbers are de�ned by the recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0] ∀m > 0 ,

which is equivalent to:

∑
n

(
n

k

)
Bk = Bn + [n = 1] ∀n > 0 .

The left-hand side is a binomial convolution with the constant sequence 1. Then the
egf B̂(z) of the Bernoulli numbers satis�es

B̂(z) ·ez = B̂(z) + z :

which yields

B̂(z) =
z

ez −1
.



Bernoulli numbers and exponential generating functions

Recall that the Bernoulli numbers are de�ned by the recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0] ∀m > 0 ,

which is equivalent to:

∑
n

(
n

k

)
Bk = Bn + [n = 1] ∀n > 0 .

To make a comparison:

∑
n>0

Bn

n!
zn =

z

ez −1
but ∑

n>0
B+
n z

n =
1

z

d2

dz2
ln
∫

∞

0

tz−1e−tdt

where B+
n = Bn · [Bn > 0].
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