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Floors and Ceilings

De�nition

The �oor bxc is the greatest integer less than or equal to x ;

The ceiling dxe is the least integer greater than or equal to x .

bπc= 3 b−πc=−4
dπe= 4 d−πe=−3
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Properties of bxc and dxe



Properties of bxc and dxe

1 bxc= x = dxe i� x ∈ Z
2 x−1< bxc6 x 6 dxe< x+1

3 b−xc=−dxe and d−xe=−bxc
4 dxe−bxc= [x /∈ Z]



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

At least one box will contain at least dn/me objects.
At least one box will contain at most bn/mc objects.



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

At least one box will contain at least dn/me objects.
At least one box will contain at most bn/mc objects.

Proof

By contradiction, assume each of the m boxes contains fewer than dn/me objects.
Then

n 6m ·
(⌈ n

m

⌉
−1
)

or equivalently ,
n

m
+16

⌈ n
m

⌉
:

which is impossible.
Similarly, if each of the m boxes contained more than bn/mc objects, we would have

n >m ·
(⌊ n

m

⌋
+1
)

or equivalently ,
n

m
−1>

⌊ n
m

⌋
:

which is also impossible.



Properties of bxc and dxe (cont.)

1 bxc= x = dxe i� x ∈ Z
2 x−1< bxc6 x 6 dxe< x+1

3 b−xc=−dxe and d−xe=−bxc
4 dxe−bxc= [x /∈ Z]

In the following properties x ∈ R and n ∈ Z:
5 bxc= n i� n 6 x < n+1

6 bxc= n i� x−1< n 6 x

7 dxe= n i� n−1< x 6 n

8 dxe= n i� x 6 n < x+1

9 bx+nc= bxc+n, but bnxc 6= nbxc



Properties of bxc and dxe (cont.)

1 bxc= x = dxe i� x ∈ Z
2 x−1< bxc6 x 6 dxe< x+1

3 b−xc=−dxe and d−xe=−bxc
4 dxe−bxc= [x /∈ Z]

In the following properties x ∈ R and n ∈ Z:
5 bxc= n i� n 6 x < n+1

6 bxc= n i� x−1< n 6 x

7 dxe= n i� n−1< x 6 n

8 dxe= n i� x 6 n < x+1

9 bx+nc= bxc+n, but bnxc 6= nbxc
More properties:

10 x < n i� bxc< n

11 n < x i� n < dxe

12 x 6 n i� dxe6 n

13 n 6 x i� n 6 bxc



Generalization of the property #9

Theorem

bx+yc=

{
bxc+ byc , if 06 {x}+{y}< 1

bxc+ byc+1, if 16 {x}+{y}< 2

where {x}= x−bxc is the fractional part of x .

Proof. Let x = bxc+{x} and y = byc+{y}

bx+yc= bbxc+ byc+{x}+{y}c
= bxc+ byc+ b{x}+{y}c

and

b{x}+{y}c=

{
0, if 06 {x}+{y}< 1

1, if 16 {x}+{y}< 2

Q.E.D.



Warmup: When is bnxc= nbxc?

The problem

Give a necessary and su�cient condition on n and x so that

bnxc= nbxc

where n is a positive integer.



Warmup: When is bnxc= nbxc?

The problem

Give a necessary and su�cient condition on n and x so that

bnxc= nbxc

where n is a positive integer.

The solution

Write x = bxc+{x}. Then

bnxc= bnbxc+n{x}c= nbxc+ bn{x}c

As {x} is nonnegative, so is bn{x}c. Then

bnxc= nbxc ifandonly if {x}< 1/n
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Floor/Ceiling Applications

Theorem

The binary representation of a natural number n > 0 has m= blog2 nc+1 bits.

Proof.

n= am−12
m−1+am−22

m−2+ · · ·+a12+a0︸ ︷︷ ︸
m bits

, where am−1 = 1

Thus, 2m−1 6 n < 2m, that gives m−16 log2 n <m. The last
formula is valid if and only if blog2 nc=m−1. Q.E.D.

Example: n= 35= 1000112

m= blog2 35c+1= blog2 32c+1= 5+1= 6
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Floor/Ceiling Applications (2)

Theorem

Let f : A⊆ R→ R be a continuous, strictly increasing function with the property that
f (x) ∈ Z implies that x ∈ Z. Then

bf (x)c= bf (bxc)c and df (x)e= df (dxe)e

whenever f (x), f (bxc), and f (dxe) are all de�ned.

Proof. (for the ceiling function)

The case x = dxe is trivial.
Otherwise x < dxe, and f (x)< f (dxe) since f is increasing. Hence,
df (x)e6 df (dxe)e since d:e is non-decreasing.
If df (x)e< df (dxe)e, as f is continuous, by the intermediate value theorem there
exists a number y such that y ∈ [x ,dxe) and f (y) = df (x)e: such y is an integer,
because of f 's special property, so actually x < y < dxe.
But there cannot be an integer strictly between x and dxe. This contradiction
implies that we must have df (x)e= df (dxe)e.

Q.E.D.



Floor/Ceiling Applications (2a)

Example⌊
x+m
n

⌋
=
⌊
bxc+m

n

⌋
⌈
x+m
n

⌉
=
⌈
dxe+m

n

⌉
dddx/10e/10e/10e= dx/1000e⌊√
bxc
⌋
=
⌊√

x

⌋
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Floor/Ceiling Applications (2a)

Example⌊
x+m
n

⌋
=
⌊
bxc+m

n

⌋
⌈
x+m
n

⌉
=
⌈
dxe+m

n

⌉
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bxc
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⌊√

x

⌋
In contrast: ⌈√

bxc
⌉
6=
⌈√

x

⌉



Floor/Ceiling Applications (3) : Intervals

For Real numbers α 6= β

Interval Integers contained Restrictions

[α..β ] bβc−dαe+1 α 6 β

[α..β ) dβe−dαe α 6 β

(α..β ] bβc−bαc α 6 β

(α..β ) dβe−bαc−1 α < β



Floor/Ceiling Applications (3) : Spectra

De�nition

The spectrum of a real number α is an in�nite multiset of integers

Spec(α) = {bαc ,b2αc ,b3αc , . . .}= {bnαc | n ≥ 1}

Theorem

If α 6= β then Spec(α) 6= Spec(β).

Proof. For, assuming without loss of generality that α < β , there's a
positive integer m such that m(β −α)> 1. Hence mβ −mα > 1, and
bmβc> bmαc. Thus Spec(β) has fewer than m elements which are
6 bmαc, while Spec(α) has at least m such elements. Q.E.D.

Example.

Spec(
√
2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24, . . .}

Spec(2+
√
2) = {3,6,10,13,17,20,23,27,30,34,37,40,44,47,51, . . .}



Floor/Ceiling Applications (3a) : Spectra

The number of elements in Spec(α) that are 6 n:

N(α,n) = ∑
k>0

[bkαc6 n]

= ∑
k>0

[bkαc< n+1]

= ∑
k>0

[kα < n+1]

= ∑
k

[0< k < (n+1)/α]

= d(n+1)/αe−1



Floor/Ceiling Applications (3b) : Spectra

Let's compute (for any n > 0):

N(
√
2,n)+N(2+

√
2,n) =

⌈
n+1√

2

⌉
−1+

⌈
n+1

2+
√
2

⌉
−1

=

⌊
n+1√

2

⌋
+

⌊
n+1

2+
√
2

⌋
=

n+1√
2
−
{
n+1√

2

}
+

n+1

2+
√
2
−
{

n+1

2+
√
2

}
= (n+1)

(
1√
2
+

1

2+
√
2

)
︸ ︷︷ ︸

=1

−
({

n+1√
2

}
+

{
n+1

2+
√
2

})
︸ ︷︷ ︸

=1

= n+1−1= n

Corollary

The spectra Spec(
√
2) and Spec(2+

√
2) form a partition of the positive integers.
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Floor/Ceiling Recurrences: Examples

The Knuth numbers:

K0 = 1;

Kn+1 = 1+min(2Kbn/2c,3Kbn/3c) for n > 0.

The sequence begins as

K = 〈1,3,3,4,7,7,7,9,9,10,13, . . .〉



Floor/Ceiling Recurrences: Examples

The Knuth numbers:

K0 = 1;

Kn+1 = 1+min(2Kbn/2c,3Kbn/3c) for n > 0.

The sequence begins as

K = 〈1,3,3,4,7,7,7,9,9,10,13, . . .〉

Merge sort n= dn/2e+ bn/2c records, number of comparisons:

f1 = 0;

fn+1 = f (bn/2c)+ f (dn/2e)+n−1 for n > 1.

The sequence begins as

f = 〈0,1,3,5,8,11,14,17,21,25,29,33 . . .〉



Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

J(1) = 1;

J(n) = 2J(bn/2c)− (−1)n for n > 1.

The sequence begins as
J = 〈1,1,3,1,3,5,7,1,3,5, . . .〉



Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly
eliminated. The element with number Jq(n) will survive.

Theorem

Jq(n) = qn+1−Dk

where k is as small as possible such that Dk > (q−1)n and Dk is computed using the

following recurrent relation:

D0 = 1;

Dn =

⌈
q

q−1
Dn−1

⌉
for n > 0.

For example, if q = 5 and n= 12

D = 〈1,2,3,4,5,7,9,12,15,19,24,30,38,48,60,75 . . .〉

Then (q−1)n= 4 ·12= 48, the proper Dk is D14 = 60, and

J5(12) = 5 ·12+1−D14 = 60+1−60= 1
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Proof of the Theorem

Whenever a person is passed over, we can assign a new number, as in the
example below fo n= 12,q = 5
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41
42 43 44 45
46 47 48
49 50 51
52 53
54 55
56
57
58
59
60

Denoting by N and N ′ succeeding elements in a column, we get

N =

⌊
N ′−n−1

q−1

⌋
+N ′−n



Proof of the Theorem (2)

Denoting by D = qn+1−N and D ′ = qn+1−N ′, we obtain for the formula

N =

⌊
N ′−n−1

q−1

⌋
+N ′−n

another form:

qn+1−D =

⌊
qn+1−D ′−n−1

q−1

⌋
+qn+1−D ′−n

Let us transform this:

D = qn+1−
⌊
qn+1−D ′−n−1

q−1

⌋
−qn−1+D ′+n

=D ′+n−
⌊
n(q−1)−D ′

q−1

⌋
=D ′+n−

⌊
n− D ′

q−1

⌋
=D ′−

⌊
−D ′

q−1

⌋
=D ′+

⌈
D ′

q−1

⌉
=

⌈
q

q−1
D ′
⌉

Q.E.D.
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`mod': The Binary Operation

If n and m are positive integers

Write n= q ·m+ r with q, r ∈ N and 06 r <m. Then:

q = bn/mc and r = n−m · bn/mc= n mod m

If x and y are real numbers

We follow the same idea and set:

x mod y = x−y · bx/yc ∀x ,y ∈ R , y 6= 0

Note that, with this de�nition:

5 mod 3 = 5−3 · b5/3c = 5−3 ·1 = 2
5 mod −3 = 5− (−3) · b5/(−3)c = 5+3 · (−2) = −1
−5 mod 3 = −5−3 · b−5/3c = −5−3 · (−2) = 1
−5 mod −3 = −5− (−3) · b−5/(−3)c = −5+3 ·1 = −2

For y = 0 we want to respect the general rule that x− (x mod y) ∈ yZ= {yk | k ∈ Z}.
This is done by:

x mod 0= x
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Properties of the mod operation

x = bxc+x mod 1

For y = 1 it is x mod 1= x−1 · bx/1c= x−bxc.

The distributive law: c(x mod y) = cx mod cy

If c = 0 both sides vanish; if y = 0 both sides equal cx . Otherwise:

c(x mod y) = c(x−y bx/yc) = cx−cy bcx/cyc= cx mod cy



Warmup: Solve the following recurrence

Xn = n for 06 n <m ,
Xn = Xn−m+1 for n >m .



Warmup: Solve the following recurrence

Xn = n for 06 n <m ,
Xn = Xn−m+1 for n >m .

Solution

We plot the �rst values when m= 4:

n 0 1 2 3 4 5 6 7 8 9
Xn 0 1 2 3 1 2 3 4 2 3

We conjecture that:

if n= qm+ r with q, r ∈ N and 06 r <m then Xn = q+ r :

which clearly yields Xn = bn/mc+n mod m.

Induction base: True for n= 0,1, . . . ,m−1.
Inductive step: Let n ≥m. If Xn′ = q′+ r ′ for every n′ = q′m+ r ′ < n= qm+ r ,
then:

Xn = Xn−m+1= X(q−1)m+r +1= q−1+ r +1= q+ r
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Floor/Ceiling Sums

Example: Find the sum ∑06k<nb
√
kc in its closed form:

∑
06k<n

b
√
kc= ∑

k,m>0

m[k < n][m= b
√
kc]

= ∑
k,m>0

m[k < n][m 6
√
k <m+1]

= ∑
k,m>0

m[k < n][m2 6 k < (m+1)2]

= ∑
k,m>0

m[m2 6 k < (m+1)2 6 n]︸ ︷︷ ︸
=S1

+

+ ∑
k,m>0

m[m2 6 k < n < (m+1)2]︸ ︷︷ ︸
=S2



Floor/Ceiling Sums (2)

Example continues ...

Case n= a2, for a value a ∈ N

S2 = 0

S1 = ∑
k,m>0

m[m2 6 k < (m+1)2 6 a2]

= ∑
m>0

m((m+1)2−m2)[m+16 a]

= ∑
m>0

m(2m+1)[m < a]

= ∑
m>0

(2m(m−1)+3m)[m < a]

= ∑
m>0

(2m2+3m1)[m < a] =
a

∑
0

(2m2+3m1)δm

= (
2

3
m3+

3

2
m2)

∣∣∣a
0
=

2

3
a(a−1)(a−2)+ 3

2
a(a−1)

=
2

3
a3− 1

2
a2− 1

6
a



Floor/Ceiling Sums (3)

Example continues ...

Case n 6= b2, for any integer b; let a= b
√
nc

For 06 k < a2 we get S1 =
2

3
a3− 1

2
a2− 1

6
a and S2 = 0, as before;

For a2 6 k < n, it is valid that S1 = 0 and

S2 = ∑
k,m>0

m[m2 6 k < n < (m+1)2]

= ∑
k

a[a2 6 k < n]

= a∑
k

[a2 6 k < n]

= a(n−a2) = an−a3

To summarize:

∑
06k<n

b
√
kc= 2

3
a3− 1

2
a2− 1

6
a+an−a3

= an− 1

3
a3− 1

2
a2− 1

6
a, where a= b

√
nc
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