Integer Fuctions

ITT9131 Konkreetne Matemaatika

Chapter Three
Floors and Ceilings
Floor/Ceiling Applications
Floor/Ceiling Recurrences
'mod': The Binary Operation
Floor/Ceiling Sums

Contents

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

Floors and Ceilings

Definition

- The floor $\lfloor x\rfloor$ is the greatest integer less than or equal to x;
- The ceiling $\lceil x\rceil$ is the least integer greater than or equal to x.

Floors and Ceilings

Definition

- The floor $\lfloor x\rfloor$ is the greatest integer less than or equal to x;
- The ceiling $\lceil x\rceil$ is the least integer greater than or equal to x.

$$
\begin{array}{ll}
\lfloor\pi\rfloor=3 & \lfloor-\pi\rfloor=-4 \\
\lceil\pi\rceil=4 & \lceil-\pi\rceil=-3
\end{array}
$$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$

(1) $\lfloor x\rfloor=x=\lceil x\rceil$ iff $x \in \mathbb{Z}$
(2) $x-1<\lfloor x\rfloor \leqslant x \leqslant\lceil x\rceil<x+1$
(3) $\lfloor-x\rfloor=-\lceil x\rceil$ and $\lceil-x\rceil=-\lfloor x\rfloor$
(4) $\lceil x\rceil-\lfloor x\rfloor=[x \notin \mathbb{Z}]$

Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- At least one box will contain at least $\lceil n / m\rceil$ objects.
- At least one box will contain at most $\lfloor n / m\rfloor$ objects.

Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- At least one box will contain at least $\lceil n / m\rceil$ objects.
- At least one box will contain at most $\lfloor n / m\rfloor$ objects.

Proof

By contradiction, assume each of the m boxes contains fewer than $\lceil n / m\rceil$ objects. Then

$$
n \leqslant m \cdot\left(\left\lceil\frac{n}{m}\right\rceil-1\right) \text { or equivalently, } \frac{n}{m}+1 \leqslant\left\lceil\frac{n}{m}\right\rceil:
$$

which is impossible.
Similarly, if each of the m boxes contained more than $\lfloor n / m\rfloor$ objects, we would have

$$
n \geqslant m \cdot\left(\left\lfloor\frac{n}{m}\right\rfloor+1\right) \text { or equivalently, } \frac{n}{m}-1 \geqslant\left\lfloor\frac{n}{m}\right\rfloor \text { : }
$$

which is also impossible.

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$ (cont.)

(1) $\lfloor x\rfloor=x=\lceil x\rceil$ iff $x \in \mathbb{Z}$
(2) $x-1<\lfloor x\rfloor \leqslant x \leqslant\lceil x\rceil<x+1$
(3) $\lfloor-x\rfloor=-\lceil x\rceil$ and $\lceil-x\rceil=-\lfloor x\rfloor$
(4) $\lceil x\rceil-\lfloor x\rfloor=[x \notin \mathbb{Z}]$

In the following properties $x \in \mathbb{R}$ and $n \in \mathbb{Z}$:
(5) $\lfloor x\rfloor=n$ iff

$$
n \leqslant x<n+1
$$

(6) $\lfloor x\rfloor=n \quad$ iff $\quad x-1<n \leqslant x$
(7) $\lceil x\rceil=n \quad$ iff $\quad n-1<x \leqslant n$
(8) $\lceil x\rceil=n \quad$ iff $\quad x \leqslant n<x+1$
(9) $\lfloor x+n\rfloor=\lfloor x\rfloor+n, \quad$ but $\lfloor n x\rfloor \neq n\lfloor x\rfloor$

Properties of $\lfloor x\rfloor$ and $\lceil x\rceil$ (cont.)

(1) $\lfloor x\rfloor=x=\lceil x\rceil$ iff $x \in \mathbb{Z}$
(2) $x-1<\lfloor x\rfloor \leqslant x \leqslant\lceil x\rceil<x+1$
(3) $\lfloor-x\rfloor=-\lceil x\rceil$ and $\lceil-x\rceil=-\lfloor x\rfloor$
(4) $\lceil x\rceil-\lfloor x\rfloor=[x \notin \mathbb{Z}]$

In the following properties $x \in \mathbb{R}$ and $n \in \mathbb{Z}$:
(5) $\lfloor x\rfloor=n \quad$ iff $\quad n \leqslant x<n+1$
(6) $\lfloor x\rfloor=n \quad$ iff $\quad x-1<n \leqslant x$
(7) $\lceil x\rceil=n \quad$ iff $\quad n-1<x \leqslant n$
(8) $\lceil x\rceil=n \quad$ iff $\quad x \leqslant n<x+1$
(9) $\lfloor x+n\rfloor=\lfloor x\rfloor+n, \quad$ but $\lfloor n x\rfloor \neq n\lfloor x\rfloor$

More properties:
(10) $x<n$ iff $\lfloor x\rfloor<n$
(11) $n<x$ iff $n<\lceil x\rceil$
(12) $x \leqslant n \quad$ iff $\lceil x\rceil \leqslant n$
(13) $n \leqslant x$ iff $n \leqslant\lfloor x\rfloor$

Generalization of the property \#9

Theorem

$$
\lfloor x+y\rfloor= \begin{cases}\lfloor x\rfloor+\lfloor y\rfloor, & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\ \lfloor x\rfloor+\lfloor y\rfloor+1, & \text { if } 1 \leqslant\{x\}+\{y\}<2\end{cases}
$$

where $\{x\}=x-\lfloor x\rfloor$ is the fractional part of x.
Proof. Let $x=\lfloor x\rfloor+\{x\}$ and $y=\lfloor y\rfloor+\{y\}$

$$
\begin{aligned}
\lfloor x+y\rfloor & =\lfloor\lfloor x\rfloor+\lfloor y\rfloor+\{x\}+\{y\}\rfloor \\
& =\lfloor x\rfloor+\lfloor y\rfloor+\lfloor\{x\}+\{y\}\rfloor
\end{aligned}
$$

and

$$
\lfloor\{x\}+\{y\}\rfloor= \begin{cases}0, & \text { if } 0 \leqslant\{x\}+\{y\}<1 \\ 1, & \text { if } 1 \leqslant\{x\}+\{y\}<2\end{cases}
$$

Warmup: When is $\lfloor n x\rfloor=n\lfloor x\rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$
\lfloor n x\rfloor=n\lfloor x\rfloor
$$

where n is a positive integer.

Warmup: When is $\lfloor n x\rfloor=n\lfloor x\rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$
\lfloor n x\rfloor=n\lfloor x\rfloor
$$

where n is a positive integer.

The solution

Write $x=\lfloor x\rfloor+\{x\}$. Then

$$
\lfloor n x\rfloor=\lfloor n\lfloor x\rfloor+n\{x\}\rfloor=n\lfloor x\rfloor+\lfloor n\{x\}\rfloor
$$

As $\{x\}$ is nonnegative, so is $\lfloor n\{x\}\rfloor$. Then

$$
\lfloor n x\rfloor=n\lfloor x\rfloor \text { if and only if }\{x\}<1 / n
$$

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

Floor/Ceiling Applications

Theorem

The binary representation of a natural number $n>0$ has $m=\left\lfloor\log _{2} n\right\rfloor+1$ bits.
Proof.

$$
n=\underbrace{a_{m-1} 2^{m-1}+a_{m-2} 2^{m-2}+\cdots+a_{1} 2+a_{0}}_{m \text { bits }}, \text { where } a_{m-1}=1
$$

Thus, $2^{m-1} \leqslant n<2^{m}$, that gives $m-1 \leqslant \log _{2} n<m$. The last formula is valid if and only if $\left\lfloor\log _{2} n\right\rfloor=m-1$.
Q.E.D.

Example: $n=35=100011_{2}$

$$
m=\left\lfloor\log _{2} 35\right\rfloor+1=\left\lfloor\log _{2} 32\right\rfloor+1=5+1=6
$$

Floor/Ceiling Applications

Theorem

The binary representation of a natural number $n>0$ has $m=\left\lfloor\log _{2} n\right\rfloor+1$ bits.
Proof.

$$
n=\underbrace{a_{m-1} 2^{m-1}+a_{m-2} 2^{m-2}+\cdots+a_{1} 2+a_{0}}_{m \text { bits }}, \text { where } a_{m-1}=1
$$

Thus, $2^{m-1} \leqslant n<2^{m}$, that gives $m-1 \leqslant \log _{2} n<m$. The last formula is valid if and only if $\left\lfloor\log _{2} n\right\rfloor=m-1$.
Q.E.D.

Example: $n=35=100011_{2}$

$$
m=\left\lfloor\log _{2} 35\right\rfloor+1=\left\lfloor\log _{2} 32\right\rfloor+1=5+1=6
$$

Floor/Ceiling Applications (2)

Theorem

Let $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a continuous, strictly increasing function with the property that $f(x) \in \mathbb{Z}$ implies that $x \in \mathbb{Z}$. Then

$$
\lfloor f(x)\rfloor=\lfloor f(\lfloor x\rfloor)\rfloor \quad \text { and } \quad\lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil
$$

whenever $f(x), f(\lfloor x\rfloor)$, and $f(\lceil x\rceil)$ are all defined.

Proof. (for the ceiling function)

- The case $x=\lceil x\rceil$ is trivial.
- Otherwise $x<\lceil x\rceil$, and $f(x)<f(\lceil x\rceil)$ since f is increasing. Hence, $\lceil f(x)\rceil \leqslant\lceil f(\lceil x\rceil)\rceil$ since $\lceil:\rceil$ is non-decreasing.
- If $\lceil f(x)\rceil<\lceil f(\lceil x\rceil)\rceil$, as f is continuous, by the intermediate value theorem there exists a number y such that $y \in[x,\lceil x\rceil$) and $f(y)=\lceil f(x)\rceil$: such y is an integer, because of f 's special property, so actually $x<y<\lceil x\rceil$.
- But there cannot be an integer strictly between x and $\lceil x\rceil$. This contradiction implies that we must have $\lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil$.
Q.E.D.

Floor/Ceiling Applications (2a)

Example

$\square\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor$
$\left\lceil\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil\right.$

Floor/Ceiling Applications (2a)

Example

■ $\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor$
$\square\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil$

Floor/Ceiling Applications (2a)

Example

$\square\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor$
■ $\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil$
■ $\lceil\lceil\lceil x / 10\rceil / 10\rceil / 10\rceil=\lceil x / 1000\rceil$

Floor/Ceiling Applications (2a)

Example

■ $\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor$
$\square\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil$
■ $\lceil\lceil\lceil x / 10\rceil / 10\rceil / 10\rceil=\lceil x / 1000\rceil$

- $\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor$

Floor/Ceiling Applications (2a)

Example

$$
\begin{aligned}
& \square\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor \\
& \square\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil \\
& ■\lceil\lceil\lceil x / 10\rceil / 10\rceil / 10\rceil=\lceil x / 1000\rceil \\
& \square\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor
\end{aligned}
$$

In contrast:

$$
\lceil\sqrt{\lfloor x\rfloor}\rceil \neq\lceil\sqrt{x}\rceil
$$

Floor/Ceiling Applications (3) : Intervals

For Real numbers $\alpha \neq \beta$

Interval	Integers contained	Restrictions
$[\alpha . . \beta]$	$\lfloor\beta\rfloor-\lceil\alpha\rceil+1$	$\alpha \leqslant \beta$
$[\alpha . . \beta)$	$\lceil\beta\rceil-\lceil\alpha\rceil$	$\alpha \leqslant \beta$
$(\alpha . . \beta]$	$\lfloor\beta\rfloor-\lfloor\alpha\rfloor$	$\alpha \leqslant \beta$
$(\alpha . . \beta)$	$\lceil\beta\rceil-\lfloor\alpha\rfloor-1$	$\alpha<\beta$

Floor/Ceiling Applications (3) : Spectra

Definition

The spectrum of a real number α is an infinite multiset of integers

$$
\operatorname{Spec}(\alpha)=\{\lfloor\alpha\rfloor,\lfloor 2 \alpha\rfloor,\lfloor 3 \alpha\rfloor, \ldots\}=\{\lfloor n \alpha\rfloor \mid n \geq 1\}
$$

Theorem

If $\alpha \neq \beta$ then $\operatorname{Spec}(\alpha) \neq \operatorname{Spec}(\beta)$.
Proof. For, assuming without loss of generality that $\alpha<\beta$, there's a positive integer m such that $m(\beta-\alpha) \geqslant 1$. Hence $m \beta-m \alpha \geqslant 1$, and $\lfloor m \beta\rfloor>\lfloor m \alpha\rfloor$. Thus $\operatorname{Spec}(\beta)$ has fewer than m elements which are $\leqslant\lfloor m \alpha\rfloor$, while $\operatorname{Spec}(\alpha)$ has at least m such elements.
Q.E.D.

Example.

$$
\begin{aligned}
\operatorname{Spec}(\sqrt{2}) & =\{1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24, \ldots\} \\
\operatorname{Spec}(2+\sqrt{2}) & =\{3,6,10,13,17,20,23,27,30,34,37,40,44,47,51, \ldots\}
\end{aligned}
$$

Floor/Ceiling Applications (3a) : Spectra

The number of elements in $\operatorname{Spec}(\alpha)$ that are $\leqslant n$:

$$
\begin{aligned}
N(\alpha, n) & =\sum_{k>0}[\lfloor k \alpha\rfloor \leqslant n] \\
& =\sum_{k>0}[\lfloor k \alpha\rfloor<n+1] \\
& =\sum_{k>0}[k \alpha<n+1] \\
& =\sum_{k}[0<k<(n+1) / \alpha] \\
& =\lceil(n+1) / \alpha\rceil-1
\end{aligned}
$$

Floor/Ceiling Applications (3b) : Spectra

Let's compute (for any $n>0$):

$$
\begin{aligned}
N(\sqrt{2}, n)+N(2+\sqrt{2}, n) & =\left\lceil\frac{n+1}{\sqrt{2}}\right\rceil-1+\left\lceil\left.\frac{n+1}{2+\sqrt{2}} \right\rvert\,-1\right. \\
& =\left|\frac{n+1}{\sqrt{2}}\right|+\left\lfloor\frac{n+1}{2+\sqrt{2}}\right\rfloor \\
& =\frac{n+1}{\sqrt{2}}-\left\{\frac{n+1}{\sqrt{2}}\right\}+\frac{n+1}{2+\sqrt{2}}-\left\{\frac{n+1}{2+\sqrt{2}}\right\} \\
& =(n+1) \underbrace{\left(\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}\right)}_{=1}-\underbrace{\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right)}_{=1} \\
& =n+1-1=n
\end{aligned}
$$

Corollary

Floor/Ceiling Applications (3b) : Spectra

Let's compute (for any $n>0$):

$$
\begin{aligned}
N(\sqrt{2}, n)+N(2+\sqrt{2}, n) & =\left[\frac{n+1}{\sqrt{2}}\right\rceil-1+\left\lceil\left.\frac{n+1}{2+\sqrt{2}} \right\rvert\,-1\right. \\
& =\left|\frac{n+1}{\sqrt{2}}\right|+\left\lfloor\frac{n+1}{2+\sqrt{2}}\right\rfloor \\
& =\frac{n+1}{\sqrt{2}}-\left\{\frac{n+1}{\sqrt{2}}\right\}+\frac{n+1}{2+\sqrt{2}}-\left\{\frac{n+1}{2+\sqrt{2}}\right\} \\
& =(n+1) \underbrace{\left(\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}\right)}_{=1}-\underbrace{\left(\left\{\frac{n+1}{\sqrt{2}}\right\}+\left\{\frac{n+1}{2+\sqrt{2}}\right\}\right)}_{=1} \\
& =n+1-1=n
\end{aligned}
$$

Corollary

The spectra $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the positive integers.

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

Floor/Ceiling Recurrences: Examples

The Knuth numbers:

$$
\begin{aligned}
K_{0} & =1 ; \\
K_{n+1} & =1+\min \left(2 K_{\lfloor n / 2\rfloor}, 3 K_{\lfloor n / 3\rfloor}\right) \quad \text { for } n \geqslant 0 .
\end{aligned}
$$

The sequence begins as

$$
K=\langle 1,3,3,4,7,7,7,9,9,10,13, \ldots\rangle
$$

Floor/Ceiling Recurrences: Examples

The Knuth numbers:

$$
\begin{aligned}
K_{0} & =1 \\
K_{n+1} & =1+\min \left(2 K_{\lfloor n / 2\rfloor}, 3 K_{\lfloor n / 3\rfloor}\right) \quad \text { for } n \geqslant 0 .
\end{aligned}
$$

The sequence begins as

$$
K=\langle 1,3,3,4,7,7,7,9,9,10,13, \ldots\rangle
$$

Merge sort $n=\lceil n / 2\rceil+\lfloor n / 2\rfloor$ records, number of comparisons:

$$
\begin{aligned}
f_{1} & =0 ; \\
f_{n+1} & =f(\lfloor n / 2\rfloor)+f(\lceil n / 2\rceil)+n-1 \quad \text { for } n>1 .
\end{aligned}
$$

The sequence begins as

$$
f=\langle 0,1,3,5,8,11,14,17,21,25,29,33 \ldots\rangle
$$

Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

$$
\begin{aligned}
& J(1)=1 ; \\
& J(n)=2 J(\lfloor n / 2\rfloor)-(-1)^{n} \quad \text { for } n>1 .
\end{aligned}
$$

The sequence begins as

$$
J=\langle 1,1,3,1,3,5,7,1,3,5, \ldots\rangle
$$

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_{q}(n)$ will survive.

Theorem

$$
J_{q}(n)=q n+1-D_{k}
$$

where k is as small as possible such that $D_{k}>(q-1) n$ and D_{k} is computed using the following recurrent relation:

$$
\begin{aligned}
& D_{0}=1 \\
& D_{n}=\left\lceil\frac{q}{q-1} D_{n-1}\right\rceil \quad \text { for } n>0 .
\end{aligned}
$$

For example, if $q=5$ and $n=12$
\square

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_{q}(n)$ will survive.

Theorem

$$
J_{q}(n)=q n+1-D_{k}
$$

where k is as small as possible such that $D_{k}>(q-1) n$ and D_{k} is computed using the following recurrent relation:

$$
\begin{aligned}
& D_{0}=1 \\
& D_{n}=\left\lceil\frac{q}{q-1} D_{n-1}\right\rceil \quad \text { for } n>0
\end{aligned}
$$

For example, if $q=5$ and $n=12$

$$
D=\langle 1,2,3,4,5,7,9,12,15,19,24,30,38,48,60,75 \ldots\rangle
$$

Then $(q-1) n=4 \cdot 12=48$, the proper D_{k} is $D_{14}=60$, and

$$
J_{5}(12)=5 \cdot 12+1-D_{14}=60+1-60=1
$$

Proof of the Theorem

Whenever a person is passed over, we can assign a new number, as in the example below fo $n=12, q=5$

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16		17	18	19	20		21	22
23	24		25		26	27	28			29	30
31	32				33	34	35			36	
37	38				39	40			41		
42	43				44				45		

$46 \quad 47$

48
$49 \quad 50 \quad 51$
$52 \quad 53$
54 55
56
57
58
59
60
Denoting by N and N^{\prime} succeeding elements in a column, we get

$$
N=\left\lfloor\frac{N^{\prime}-n-1}{q-1}\right\rfloor+N^{\prime}-n
$$

Proof of the Theorem (2)

Denoting by $D=q n+1-N$ and $D^{\prime}=q n+1-N^{\prime}$, we obtain for the formula

$$
N=\left\lfloor\frac{N^{\prime}-n-1}{q-1}\right\rfloor+N^{\prime}-n
$$

another form:

$$
q n+1-D=\left\lfloor\frac{q n+1-D^{\prime}-n-1}{q-1}\right\rfloor+q n+1-D^{\prime}-n
$$

Let us transform this:

$$
\begin{aligned}
D & =q n+1-\left\lfloor\frac{q n+1-D^{\prime}-n-1}{q-1}\right\rfloor-q n-1+D^{\prime}+n \\
& =D^{\prime}+n-\left\lfloor\frac{n(q-1)-D^{\prime}}{q-1}\right\rfloor \\
& =D^{\prime}+n-\left\lfloor n-\frac{D^{\prime}}{q-1}\right\rfloor \\
& =D^{\prime}-\left\lfloor\frac{-D^{\prime}}{q-1}\right\rfloor \\
& =D^{\prime}+\left\lceil\left.\frac{D^{\prime}}{q-1} \right\rvert\,\right. \\
& =\left[\frac{q}{q-1} D^{\prime}\right]
\end{aligned}
$$

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

'mod': The Binary Operation

If n and m are positive integers
Write $n=q \cdot m+r$ with $q, r \in \mathbb{N}$ and $0 \leqslant r<m$. Then:

$$
q=\lfloor n / m\rfloor \text { and } r=n-m \cdot\lfloor n / m\rfloor=n \bmod m
$$

If x and y are real numbers

Note that, with this definition

'mod': The Binary Operation

If n and m are positive integers

Write $n=q \cdot m+r$ with $q, r \in \mathbb{N}$ and $0 \leqslant r<m$. Then:

$$
q=\lfloor n / m\rfloor \text { and } r=n-m \cdot\lfloor n / m\rfloor=n \bmod m
$$

If x and y are real numbers

We follow the same idea and set:

$$
x \bmod y=x-y \cdot\lfloor x / y\rfloor \forall x, y \in \mathbb{R}, y \neq 0
$$

Note that, with this definition:

$$
\begin{array}{llll}
5 \bmod 3 & =5-3 \cdot\lfloor 5 / 3\rfloor & & 5-3 \cdot 1 \\
5 \bmod -3 & =5-(-3) \cdot\lfloor 5 /(-3)\rfloor & =5+3 \cdot(-2) & =2 \\
-5 \bmod 3 & =-5-3 \cdot\lfloor-5 / 3\rfloor & & =-5-3 \cdot(-2) \\
-5 \bmod -3 & =-5-(-3) \cdot\lfloor-5 /(-3)\rfloor & =-5+3 \cdot 1 & =-2
\end{array}
$$

'mod': The Binary Operation

If n and m are positive integers

Write $n=q \cdot m+r$ with $q, r \in \mathbb{N}$ and $0 \leqslant r<m$. Then:

$$
q=\lfloor n / m\rfloor \text { and } r=n-m \cdot\lfloor n / m\rfloor=n \bmod m
$$

If x and y are real numbers

We follow the same idea and set:

$$
x \bmod y=x-y \cdot\lfloor x / y\rfloor \forall x, y \in \mathbb{R}, y \neq 0
$$

Note that, with this definition:

$$
\begin{array}{llll}
5 \bmod 3 & =5-3 \cdot\lfloor 5 / 3\rfloor & & 5-3 \cdot 1 \\
5 \bmod -3 & =5-(-3) \cdot\lfloor 5 /(-3)\rfloor & =5+3 \cdot(-2) & =-1 \\
-5 \bmod 3 & =-5-3 \cdot\lfloor-5 / 3\rfloor & & =-5-3 \cdot(-2) \\
-5 \bmod -3 & =-5-(-3) \cdot\lfloor-5 /(-3)\rfloor & =-5+3 \cdot 1 & =-2
\end{array}
$$

For $y=0$ we want to respect the general rule that $x-(x \bmod y) \in y \mathbb{Z}=\{y k \mid k \in \mathbb{Z}\}$. This is done by:

$$
x \bmod 0=x
$$

Properties of the mod operation

$x=\lfloor x\rfloor+x \bmod 1$

For $y=1$ it is $x \bmod 1=x-1 \cdot\lfloor x / 1\rfloor=x-\lfloor x\rfloor$.

The distributive law: $c(x \bmod y)=c x \bmod c y$
If $c=0$ both sides vanish; if $y=0$ both sides equal $c x$. Otherwise:

$$
c(x \bmod y)=c(x-y\lfloor x / y\rfloor)=c x-c y\lfloor c x / c y\rfloor=c x \bmod c y
$$

Warmup: Solve the following recurrence

$$
\begin{array}{ll}
X_{n}=n & \text { for } 0 \leqslant n<m, \\
X_{n}=X_{n-m}+1 & \text { for } n \geqslant m .
\end{array}
$$

Warmup: Solve the following recurrence

$$
\begin{array}{ll}
X_{n}=n & \text { for } 0 \leqslant n<m \\
X_{n}=X_{n-m}+1 & \text { for } n \geqslant m
\end{array}
$$

Solution

We plot the first values when $m=4$:

n	0	1	2	3	4	5	6	7	8	9
X_{n}	0	1	2	3	1	2	3	4	2	3

We conjecture that:

$$
\text { if } n=q m+r \text { with } q, r \in \mathbb{N} \text { and } 0 \leqslant r<m \text { then } X_{n}=q+r:
$$

which clearly yields $X_{n}=\lfloor n / m\rfloor+n \bmod m$.

- Induction base: True for $n=0,1, \ldots, m-1$.
- Inductive step: Let $n \geq m$. If $X_{n^{\prime}}=q^{\prime}+r^{\prime}$ for every $n^{\prime}=q^{\prime} m+r^{\prime}<n=q m+r$, then:

$$
X_{n}=X_{n-m}+1=X_{(q-1) m+r}+1=q-1+r+1=q+r
$$

Next section

1 Floors and Ceilings

2 Floor/Ceiling Applications

3 Floor/Ceiling Recurrences

4 'mod': The Binary Operation

5 Floor/Ceiling Sums

Floor/Ceiling Sums

Example: Find the sum $\sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor$ in its closed form:

$$
\begin{aligned}
\sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor & =\sum_{k, m \geqslant 0} m[k<n][m=\lfloor\sqrt{k}]] \\
& =\sum_{k, m \geqslant 0} m[k<n][m \leqslant \sqrt{k}<m+1] \\
& =\underbrace{\sum_{k, m} m[k<n]\left[m^{2} \leqslant k<(m+1)^{2}\right]}_{k, m \geqslant 0} \\
= & \underbrace{\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2} \leqslant n\right]}_{=S_{1}}+ \\
& \underbrace{\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<n<(m+1)^{2}\right]}_{=S_{2}}
\end{aligned}
$$

Floor/Ceiling Sums (2)

Example continues ...

Case $n=a^{2}$, for a value $a \in \mathbb{N}$

- $S_{2}=0$

$$
\begin{aligned}
S_{1} & =\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<(m+1)^{2} \leqslant a^{2}\right] \\
& =\sum_{m \geqslant 0} m\left((m+1)^{2}-m^{2}\right)[m+1 \leqslant a] \\
& =\sum_{m \geqslant 0} m(2 m+1)[m<a] \\
& =\sum_{m \geqslant 0}(2 m(m-1)+3 m)[m<a] \\
& =\sum_{m \geqslant 0}\left(2 m^{2}+3 m^{\frac{1}{1}}\right)[m<a]=\sum_{0}^{a}\left(2 m^{2}+3 m^{-1}\right) \delta m \\
& =\left.\left(\frac{2}{3} m^{3}+\frac{3}{2} m^{2}\right)\right|_{0} ^{a}=\frac{2}{3} a(a-1)(a-2)+\frac{3}{2} a(a-1) \\
& =\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a
\end{aligned}
$$

Floor/Ceiling Sums (3)

Example continues

Case $n \neq b^{2}$, for any integer b; let $a=\lfloor\sqrt{n}\rfloor$

- For $0 \leqslant k<a^{2}$ we get $S_{1}=\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a$ and $S_{2}=0$, as before;
- For $a^{2} \leqslant k<n$, it is valid that $S_{1}=0$ and

$$
\begin{aligned}
S_{2} & =\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<n<(m+1)^{2}\right] \\
& =\sum_{k} a\left[a^{2} \leqslant k<n\right] \\
& =a \sum_{k}\left[a^{2} \leqslant k<n\right] \\
& =a\left(n-a^{2}\right)=a n-a^{3}
\end{aligned}
$$

To summarize:

Floor/Ceiling Sums (3)

Example continues

Case $n \neq b^{2}$, for any integer b; let $a=\lfloor\sqrt{n}\rfloor$

- For $0 \leqslant k<a^{2}$ we get $S_{1}=\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a$ and $S_{2}=0$, as before;
- For $a^{2} \leqslant k<n$, it is valid that $S_{1}=0$ and

$$
\begin{aligned}
S_{2} & =\sum_{k, m \geqslant 0} m\left[m^{2} \leqslant k<n<(m+1)^{2}\right] \\
& =\sum_{k} a\left[a^{2} \leqslant k<n\right] \\
& =a \sum_{k}\left[a^{2} \leqslant k<n\right] \\
& =a\left(n-a^{2}\right)=a n-a^{3}
\end{aligned}
$$

To summarize:

$$
\begin{aligned}
\sum_{0 \leqslant k<n}\lfloor\sqrt{k}\rfloor & =\frac{2}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a+a n-a^{3} \\
& =a n-\frac{1}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a, \quad \text { where } a=\lfloor\sqrt{n}\rfloor
\end{aligned}
$$

