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Floors and Ceilings

Definition

m The floor |x] is the greatest integer less than or equal to x ;

m The ceiling [x] is the least integer greater than or equal to x .
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Floors and Ceilings

Definition

m The floor |x] is the greatest integer less than or equal to x ;

m The ceiling [x] is the least integer greater than or equal to x .
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Properties of | x| and [x]
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Properties of | x| and [x]

x| =x=[x] iff xeZ
x—1<|x] <x<[x]<x+1

[=x] = =TIx] and [—x] = —[x]
[x] = x] =[x ¢7]

AN



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:
m At least one box will contain at least [n/m]| objects.

m At least one box will contain at most [n/m| objects.



Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:
m At least one box will contain at least [n/m]| objects.
m At least one box will contain at most |n/m| objects.

Proof

By contradiction, assume each of the m boxes contains fewer than [n/m] objects.
Then

n<m- ([%-‘ —1) or equivalently, % +1< (%-‘ :

which is impossible.
Similarly, if each of the m boxes contained more than |n/m| objects, we would have

n>m- QEJ +1) or equivalently , a —-1> LEJ :
m m m

which is also impossible.



Properties of |x| and [x] (cont.)

)

_7f @ |x|=x=[x] iffxeZ
—= @ x-1< LJ<x<H<x+1
. ® |-x]=—[x] and [-x] = —|x]
@ [x1-1x] = ¢7]
In the following properties x R and n€ Z
72-‘77 4 ® |x|=n iff n<x<n+l

® |x]=n iff x—1<n<x
@ [x]=n iff n—-1<x<n
[x]=n iff x<n<x+1
9 |x+n]=|x]+n, but [nx]| # n|x|



Properties of |x| and [x] (cont.)

iff n<x<n+1

\
&)
X
Il
3

® |x]=n iff x—1<n<x
@ [x]=n iff n—-1<x<n
[x]=n iff x<n<x+1
Q |x+n|=|x|+n, but lnx| # n|x|

More properties:
x<n iff x| <n
@ nex i n<[x]
2 yen 00 [d<x

@ n< x iff n< x| @



Generalization of the property #9

eyl lFbl ifoSixp+{y} <1
: +yJ_{ x|+ly]+1, if1<{x}+{y}<2

where {x} = x — | x| is the fractional part of x.
Proof. Let x=|x|+{x} and y = |y] +{y}

x+y] = [lx]+Ly] +{x}+{y}]
= |x]+ ly] + [{x}+{v}]

and
0, ifo<s{x}+{y}<1

L{x}-i-{)/}J:{ 1, ifl<{x}+{y}<2

Q.E.D.



Warmup: When is |nx| = n|x]?

The problem

Give a necessary and sufficient condition on n and x so that

nx) = n|x]

where n is a positive integer.



Warmup: When is |nx| = n|x]?

The problem

Give a necessary and sufficient condition on n and x so that

nx) = n|x]

where n is a positive integer.

The solution
Write x = [x] 4+ {x}. Then

Lnx] = LnLx] + n{x}] = n[x] + |n{x}]
As {x} is nonnegative, so is [n{x}|. Then

lnx] = n|x]| ifandonlyif {x} <1/n
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Floor/Ceiling Applications



Floor/Ceiling Applications

The binary representation of a natural number n >0 has m = |log, n| +1 bits.
Proof.

N=am12™ Y+ am 22™ 24 ..+ 23,2+2a9 , where a1 =1

m bits

Thus, 2™~ < n < 2™, that gives m—1 < logyn < m. The last
formula is valid if and only if |[logy n| =m—1. Q.E.D.



Floor/Ceiling Applications

The binary representation of a natural number n >0 has m = |log, n| +1 bits.
Proof.

N=am12™ Y+ am 22™ 24 ..+ 23,2+2a9 , where a1 =1

m bits

Thus, 2™~ < n < 2™, that gives m—1 < logyn < m. The last
formula is valid if and only if |[logy n| =m—1. Q.E.D.

Example: n=35=100011,

m=|logz35|+1=|log;32|+1=5+1=6



Floor/Ceiling Applications (2)

Let f: ACR — R be a continuous, strictly increasing function with the property that
f(x) € Z implies that x € Z. Then

LF()] = LF(1x])] and [ =T (IxD]
whenever f(x), f(|x]). and f([x]) are all defined.

Proof. (for the ceiling function)

m The case x = [x] is trivial.

m Otherwise x < [x], and f(x) < f([x]) since f is increasing. Hence,
[f(x)] < [f([x])] since [:] is non-decreasing.

m If [f(x)] <[f([x])]. as f is continuous, by the intermediate value theorem there
exists a number y such that y € [x,[x]) and f(y) = [f(x)]: such y is an integer,
because of f's special property, so actually x <y < [x].

m But there cannot be an integer strictly between x and [x]. This contradiction

implies that we must have [f(x)] = [f([x])].
Q.E.D. @



Floor/Ceiling Applications (2a)




Floor/Ceiling Applications (2a)




Floor/Ceiling Applications (2a)

o [xm) = | b

n

m [Em] = {MW

n n

m [[[x/10] /10] /10] = [x/1000]



Floor/Ceiling Applications (2a)

|xtm] = | Lk |

[xtm] = [Ldbm]

m [[[x/10] /101 /101 [x/1000]
[VE] =1

m X+m




Floor/Ceiling Applications (2a)

|2t | = LLxJerJ
[x£m] — FXHm"
m [[[x/10] /101 /107 = [x/1000]
|VIxI| = Lv&]

- xX+m

| VIxT] # [vx]




Floor/Ceiling Applications (3) : Intervals

For Real numbers a #

Interval | Integers contained | Restrictions
@Bl | [Bl—[al+1 | oa<B
[ec..B) [B]—[a] a<p
(o..B] 1B] -] a<p
(o..B) | [B]—la]-1 a<p




Floor/Ceiling Applications (3) : Spectra

The spectrum of a real number « is an infinite multiset of integers

Spec(a) = {la,[2a], [3a],...} = {[na] [ n>1}

If o # B then Spec(o) # Spec(B).

Proof. For, assuming without loss of generality that @ < 3, there's a
positive integer m such that m( —a) > 1. Hence mf —ma > 1, and
[mB] > [moa]. Thus Spec(B) has fewer than m elements which are
< [ma], while Spec(a) has at least m such elements. Q.E.D.

Spec(v2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24 ..}
Spec(2 +Vv/2) = {3,6,10,13,17,20,23,27,30,34,37,40,44,47,51,...} @



Floor/Ceiling Applications (3a) : Spectra

The number of elements in Spec(a) that are < n:

N(a,n) = Z [lka| < n]

k>0

=Y [lka] <n+1]

k>0

=Y [ka<n+1]
k>0

=Y [0<k<(n+1)/a]
k

=[(n+1)/a] -1



Floor/Ceiling Applications (3b) : Spectra

Let's compute (for any n > 0):

wiamones o [ e ]

=[]l




Floor/Ceiling Applications (3b) : Spectra

Let's compute (for any n > 0):

N(V2,n)+ N2+ 2,n) = [”\Ew 1+ M’:\H .
:V\g J{z’f\H
B H\E N H\E}Jr 2n++\2 _{;:\2}
-0+ ) - (155 )+ aev))
=n+1l-1=n - -

Corollary

The spectra Spec(+/2) and Spec(2+ +/2) form a partition of the positive integers.

Je
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Floor/Ceiling Recurrences: Examples

The Knuth numbers:

Ko =1,
K,,+1:1+min(2KLn/2J73KL,,/3J) for n}O

The sequence begins as

K=(1,3,3,4,7,7,7,9,9,10,13,...)



Floor/Ceiling Recurrences: Examples

The Knuth numbers:

Ko =1;
Knt1 = 1+min(2KL"/2J’3KL"/3J) for n> 0.

The sequence begins as

K=(1,3,3,4,7,7,7,9,9,10,13,...)

Merge sort n= [n/2]+ |n/2] records, number of comparisons:

fi=0;
far1=f(ln/2])+f([n/2])+n—1 for n>1.

The sequence begins as

f=1(0,1,3,5,8,11,14,17,21,25,29,33...)



Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

J1)=1;
J(n)=2J(|n/2])—(-1)" for n>1.

The sequence begins as
J=(1,1,3,1,3,5,7,1,3,5,...)



Generalization of Josephus problem

Josephus problem in general: from n elements, every g-th is circularly
eliminated. The element with number Jg(n) will survive.

Jg(n)=qn+1— Dy

where k is as small as possible such that Dy > (q—1)n and Dy is computed using the
following recurrent relation:

D, = "LD,,,;‘ for n > 0.



Generalization of Josephus problem

Josephus problem in general: from n elements, every g-th is circularly
eliminated. The element with number Jg(n) will survive.

Jg(n)=qn+1— Dy

where k is as small as possible such that Dy > (q—1)n and Dy is computed using the
following recurrent relation:

Do =1;

D, = "Ll D,,,l-‘ for n > 0.

|

For example, if g=5 and n=12
D=(1,2,3,4,5,7,9,12,15,19,24,30,38,48,60,75...)
Then (g—1)n=4-12 = 48, the proper Dy is D14 = 60, and

J5(12) =5-12+1— D15 =60+1—-60=1



Proof of the Theorem

Whenever a person is passed over, we can assign a new number, as in the
example below fo n=12,q=5
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41
42 43 44 45
46 47 48
49 50 51
52 53
54 55
56
57
58
59
60

Denoting by N and N’ succeeding elements in a column, we get

N’fnflJ
N=|———|+N—n
{ q-1 @



Proof of the Theorem (2)

Denoting by D=gn-+1—N and D' = gn+1— N’, we obtain for the formula

/_ p—
N = {MJ—FNI_II

another form:

— /7 p—
gn+1-D— %Jﬂwl_yﬂ
Let us transform this:
— 17 p—
D=qgn+1— LD]-,"IJ—QH—I-‘FDI-FH
L q—
—-1)-D'
:Dl+n— 7"((] ) J
L g-1
D/
=D'+n—|n— J
L g-1

,D'
=D —
Ll—lJ

D’
:D’+[ —‘
g—1




Next section

‘mod’: The Binary Operation



mod’: The Binary Operation

If n and m are positive integers

Write n=q-m+r with g, r e Nand 0 <r <m. Then:

g=|n/m|] and r=n—m-|n/m| = nmod m



‘mod’: The Binary Operation

If n and m are positive integers

Write n=q-m+r with g, r e Nand 0 <r <m. Then:

g=|n/m|] and r=n—m-|n/m| = nmod m

If x and y are real numbers

We follow the same idea and set:
xmody =x—y-|x/y] Vx,y €R, y#0

Note that, with this definition:

5mod 3 = 5-3.|5/3 = 5-3.1 = 2
5mod —3 = 5-—(-3)-|5/(-3)] = 5+43.(-2) = -1
—5mod3 = -5-3.|-5/3] = —5-3.(-2) = 1
—5mod -3 = -5-(-3)-|-5/(-3)] = -5+3-1 = -2



‘mod’: The Binary Operation

If n and m are positive integers

Write n=q-m+r with g, r e Nand 0 <r <m. Then:

g=|n/m|] and r=n—m-|n/m| = nmod m

If x and y are real numbers

We follow the same idea and set:
xmody =x—y-|x/y] Vx,y €R, y#0

Note that, with this definition:

5mod 3 = 5-3.|5/3 = 5-3.1 = 2
5mod —3 = 5-—(-3)-|5/(-3)] = 5+43.(-2) = -1
—5mod3 = -5-3.|-5/3] = —5-3.(-2) = 1
—5mod -3 = -5-(-3)-|-5/(-3)] = -5+3-1 = -2

For y =0 we want to respect the general rule that x — (xmod y) € yZ = {yk | k € Z}.

This is done by: @

xmod 0 = x



Properties of the mod operation

x = |x]|+xmod 1
Fory=1itis xmodl=x—1-|x/1] =x—|x].

The distributive law: ¢(x mod y) = cx mod cy

If ¢ =0 both sides vanish; if y = 0 both sides equal cx. Otherwise:

c(xmody)=c(x—y|x/y]) =cx—cy|ecx/cy| = cx mod cy



Warmup: Solve the following recurrence

Xn=n for0O<n<m,
Xn=Xp-m+1 forn>m.




Warmup: Solve the following recurrence

Xn=n for0<n<m,
Xn=Xn-m+1 forn>m.

We plot the first values when m=4:

n | 7 8 9
Xo | 4 2 3

1 2 3 4 5
1 2

0 6
01 2 3 3

We conjecture that:

ifn=gm+rwithgq,r eNand0<r<m then X, =q+r :

which clearly yields X, = |n/m| + n mod m.
m Induction base: True for n=0,1,...,m—1.

= Inductive step: Let n>m. If X,y =q' +r forevery ' =¢m+r' <n=qgm-+r,

then: @
Xn=Xn-m+1=Xg-1)mirt1=q-1+r+1=q+r



Next section

Floor/Ceiling Sums



Floor/Ceiling Sums

Example: Find the sum Yo<x,|Vk] in its closed form:

Y Wkl= Y mlk<nlm=|Vk]

0<k<n k,m=0
= Y mk< n][m<Vk < m+1]
k,m>0
=Y mk< n][m? < k < (m+1)?]
k,m=>0
= Z m[m2 <k< (m—i—l)2 < nl+
k,m>0
=53
+ Y m[m? < k <n<(m+1)?]
k,m>0

=&



Floor/Ceiling Sums (2)

Example continues ...

Case n= a2, for a value ae N

= S=0

. 51=k;>0m[m2<k<(m+1)2<az]
= g/m((erl)z —m?)[m+1< 3]
::Z;:m(2m+ 1)[m< 4]
:éo(2m(m—1)+3m)[m<a]

=Y @m*+3m)[m<a] = i(znﬁ+ 3mY)ém
0

m=0

=Cm 1 2m)| = 2ata-1)(-2)+ Ja(a-1)



Floor/Ceiling Sums (3)

Example continues ...

Case n # b2, for any integer b; let a= [/n|

3_ 1.2

m For 0 < k < a2 we get 51:%3 —5a —éa and S, =0, as before;

m For a2 < k < n, it is valid that S; =0 and

S= Y m[m? < k <n<(m+1)?]
k,m>0

:z’a[a2 <k <nl
k
:aZ’[a2 <k <n]
k

=a(n—a?)=an—2a°



Floor/Ceiling Sums (3)

Example continues ...

Case n # b2, for any integer b; let a= [/n|

m For 0< k<a? weget Sy=2a%—2a%—1aand S; =0, as before;

m For a2 < k < n, it is valid that S; =0 and

S= Y m[m? < k <n<(m+1)?]
k,m>0

:z’a[a2 <k <nl
k
:axz"[a2 <k <n]
k

=a(n—a?)=an—2a°

To summarize:

2 1 1
Y VK= 533—532—6a+an—a3
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