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Concrete Mathematics is ...

the controlled manipulation of mathematical formulas

using a collection of techniques for solving problems

Goals of the book:

to introduce the mathematics that supports advanced
computer programming and the analysis of algorithms

to provide a solid and relevant base of mathematical skills -
the skills needed

to solve complex problems

to evaluate horrendous sums

to discover subtle patterns in data



Our additional goals

to get acquainted with well-known and popular literature in CS
and Math

to develop mathematical skills, formulating complex problems
mathematically

to practice presentation of results (solutions of mathematical
problems)
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About the choice: sums + recurrences + generating

functions



Recurrent problems

Recurrent equation

A number sequence 〈an〉= 〈a0,a1,a2, . . .〉 is called recurrent, if its
general term together with k preceding terms satis�es a recurrent
equation

an = g(an−1, . . . ,an−k) ,

for every n > k , where the function g : Nk −→ N (or g : Rk −→ R).
The constant k is called order of the recurrent equation (or
di�erence equation).

recurrent (<Latin recurrere � to run back) tagasipöörduv, taastuv / to run back.



Regions of the plane de�ned by lines

Q0 = 1

Q2 = 4

Q1 = 2

In general: Qn = 2n?
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Regions of the plane de�ned by lines

T0 = 1

T2 = 7

T1 = 2

T3 =?

Tn =?
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Motivation: why to solve recursions?

Computing by closed form is e�ective

Pn =
√
2πn

(n
e

)n[
1+

1

12n
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1

228n2
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139

51840n3
+O

( 1

n4
)]

Closed form allows to analyse a function using �classical� techniques.
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Motivation: why to solve recursions?

Computing by closed form is e�ective
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√
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1
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Closed form allows to analyse a function using �classical�

techniques. For example: behaviour of logistic map depends on r :

Recurrent equation:

xn+1 = rxn (1−xn)

Solution for r = 4:

xn+1 = sin2 (2nθπ)

where θ = 1

π
sin−1(

√
x0)



ad hoc techniques: Guess and Con�rm

Equation f (n) = (n2−1+ f (n−1))/2, initial condition: f (0) = 2

Let's compute some values:

n 0 1 2 3 4 5 6
f (n) 2 1 2 5 10 17 26

Guess: f (n) = (n−1)2+1.

Assuming that the guess holds for n= k, we prove that it holds in general by
induction:

f (k+1) = ((k+1)2−1+ f (k))/2=

= (k2+2k+(k−1)2+1)/2=

= (k2+2k+k2−2k+1+1)/2=

= (2k2+2)/2= k2+1

QED.
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Solving recurrences

Given a sequence 〈gn〉 that satis�es a given recurrence, we seek a
closed form for gn in terms of n.

"Algorithm"

1 Write down a single equation that expresses gn in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g−1 = g−2 = · · ·= 0.

2 Multiply both sides of the equation by zn and sum over all n. This gives, on the
left, the sum ∑n gnz

n, which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(z).

3 Solve the resulting equation, getting a closed form for G(z).

4 Expand G(z) into a power series and read o� the coe�cient of zn; this is a
closed form for gn.
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Example: Fibonacci numbers: equation

gn = gn−1+gn−2+[n = 1]

G (z) = ∑
n

gnz
n = ∑
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gn−1z
n+∑

n

gn−2z
n+∑

n

[n = 1]zn
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n
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n+2+ z

= z∑
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gnz
n+ z2∑

n

gnz
n+ z

= zG (z)+ z2G (z)+ z

G (z) =
z

1− z− z2
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3 Integer Functions � week 7

4 Number Theory

5 Binomial Coe�cients

6 Special Numbers � weeks 8�9

7 Generating Functions � weeks 10�13

8 Discrete Probability

9 Asymptotics

Reserve � weeks 14 �16
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Instructors: Silvio Capobianco Jaan Penjam

Addresses: silvio@cs.ioc.ee jaan@cs.ioc.ee

Lectures and exercises: On Tuesdays at 14:00 � 17:30 in B126

Web page:

http://cs.ioc.ee/cm/
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