ITT9131 Konkreetne Matemaatika
 Concrete mathematics Конкретная математика

Jaan Penjam Silvio Capobianco

TTÜ arvutiteaduse instituut, teoreetilise informaatika õppetool Küberneetika Instituudi tarkvarateaduse laboratoorium
2016./17. õppeaasta sügissemester

CONtinuous + disCRETE MATHEMATICS

The book

http://www-cs-faculty.stanford.edu/~uno/gkp.html

Concrete Mathematics is ...

- the controlled manipulation of mathematical formulas
- using a collection of techniques for solving problems

Goals of the book:

- to introduce the mathematics that supports advanced computer programming and the analysis of algorithms
- to provide a solid and relevant base of mathematical skills the skills needed
- to solve complex problems
- to evaluate horrendous sums
- to discover subtle patterns in data

Our additional goals

- to get acquainted with well-known and popular literature in CS and Math
- to develop mathematical skills, formulating complex problems mathematically
- to practice presentation of results (solutions of mathematical problems)

Contents of the Book

Chapters:
1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

Next section

1 Recurrent Problems
2 Sums
3 Integer Functions
4 ni ibe Ticoty
5 Binomial Coefficients
6 Specianioly
7 Generating Functions
© niscreten nulabil.
9 Asymptotics

1. Recurrent Problems

1 The Tower of Hanoi
2 Lines in the Plane
3 The Josephus Problem

Next section

1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 ninonial Coefricients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

2. Sums

1 Notation
2 Sums and Recurrences
3 Manipulation of Sums
4 Multiple Sums
5 General Methods
6 Finite and Infinite Calculus
7 Infinite Sums

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 Number Theory
5 Binomial Coefficients

7 Generating Functions
© niscurta nughabilit.
9 Asymptotics

3. Integer Functions

1 Floors and Ceilings
2 Floor/Ceiling Applications
3 Floor/Ceiling Recurrences
4 'mod': The Binary Operation
5 Floor/Ceiling Sums

Next section

1 Recurrent Problems
Z Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9. Asympiotics

4. Number Theory

1 Divisibility
2 Factorial Factors
3 Relative Primality
4 'mod': The Congruence Relation
5 Independent Residues
6 Additional Applications
7 Phi and Mu

Next section

1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 niscrete nuobability
9 Asymptotics

5. Binomial Coefficients

1 Basic Identities
2 Basic Practice
3 Tricks of the Trade
4 Generating Functions
5 Hypergeometric Functions
6 Hypergeometric Transformations
7 Partial Hypergeometric Sums
8 Mechanical Summation

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 ...unter -ineory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9. Asympiotics

6. Special Numbers

1 Stirling Numbers
2 Eulerian Numbers
3 Harmonic Numbers
4 Harmonic Summation
5 Bernoulli Numbers
6 Fibonacci Numbers
7 Continuants

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 Nunber -ineory
5 Binomial Coefficients
6 Specian ant
7 Generating Functions
8 Discrete Probability
9 Asymptotics

7. Generating Functions

1 Domino Theory and Change
2 Basic Maneuvers
3 Solving Recurrences
4 Special Generating Functions
5 Convolutions
6 Exponential Generating Functions
7 Dirichlet Generating Functions

Next section

1 Recurrent Problems
24
3 Integer Functions
4 nimber aleory
5 Binomial Coefficients

7 Generating Functions
8 Discrete Probability
9 Asymptotics

8. Discrete Probability

1 Definitions
2 Mean and Variance
3 Probability Generating Functions
4 Flipping Coins
5 Hashing

Next section

1 Recurrent Problems
2 Suns
3 Integer Functions
4 number -icory
5 Binomial Coefficients
G Cuncial nlanhenes
7 Generating Functions
8 niscrete nolual....
9 Asymptotics

9. Asymptotics

1 A Hierarchy
$2 \mathscr{O}$ Notation
$3 \mathscr{O}$ Manipulation
4 Two Asymptotic Tricks
5 Euler's Summation Formula
6 Final Summations

Pedagogical dilemma: what to teach?

Chapters:
1 Recurrent Problems
2 Sums
3 Integer Functions
4 Number Theory
5 Binomial Coefficients
6 Special Numbers
7 Generating Functions
8 Discrete Probability
9 Asymptotics

About the choice: sums + recurrences + generating functions

Recurrent problems

Recurrent equation

A number sequence $\left\langle a_{n}\right\rangle=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$ is called recurrent, if its general term together with k preceding terms satisfies a recurrent equation

$$
a_{n}=g\left(a_{n-1}, \ldots, a_{n-k}\right),
$$

for every $n>k$, where the function $g: \mathbb{N}^{k} \longrightarrow \mathbb{N}\left(\right.$ or $\left.g: \mathbb{R}^{k} \longrightarrow \mathbb{R}\right)$. The constant k is called order of the recurrent equation (or difference equation).
recurrent (<Latin recurrere - to run back) tagasipöörduv, taastuv / to run back.

Regions of the plane defined by lines

$Q_{0}=1$

$$
Q_{2}=4
$$

Regions of the plane defined by lines

Actually ...

Regions of the plane defined by lines

Actually ...

Regions of the plane defined by lines

Actually ...

Generally $Q_{n}=Q_{n-1}+n$.

n	0	1	2	3	4	5	6	7	8	9	\cdots
Q_{n}	1	2	4	7	11	16	22	29	37	46	\cdots

Regions of the plane defined by lines

$T_{0}=1$

$$
T_{2}=7
$$

$$
T_{1}=2
$$

$$
T_{3}=?
$$

$$
T_{n}=?
$$

Regions of the plane defined by lines

$$
\begin{aligned}
& T_{2}=Q_{4}-2 \cdot 2=11-4=7 \\
& T_{3}=Q_{6}-2 \cdot 3=22-6=16 \\
& T_{4}=Q_{8}-2 \cdot 4=37-8=29 \\
& T_{5}=Q_{10}-2 \cdot 5=56-10=46 \\
& T_{n}=Q_{2 n}-2 n
\end{aligned}
$$

Regions of the plane defined by lines

$$
\begin{aligned}
& T_{2}=Q_{4}-2 \cdot 2=11-4=7 \\
& T_{3}=Q_{6}-2 \cdot 3=22-6=16 \\
& T_{4}=Q_{8}-2 \cdot 4=37-8=29 \\
& T_{5}=Q_{10}-2 \cdot 5=56-10=46 \\
& T_{n}=Q_{2 n}-2 n
\end{aligned}
$$

n	0	1	2	3	4	5	6	7	8	9	\cdots
Q_{n}	1	2	4	7	11	16	22	29	37	46	\cdots
T_{n}	1	2	7	16	29	46	67	92	121	156	\cdots

Motivation: why to solve recursions?

- Computing by closed form is effective

$$
P_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left[1+\frac{1}{12 n}+\frac{1}{228 n^{2}}+\frac{139}{51840 n^{3}}+\mathscr{O}\left(\frac{1}{n^{4}}\right)\right]
$$

Motivation: why to solve recursions?

- Computing by closed form is effective

$$
P_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left[1+\frac{1}{12 n}+\frac{1}{228 n^{2}}+\frac{139}{51840 n^{3}}+\mathscr{O}\left(\frac{1}{n^{4}}\right)\right]
$$

- Closed form allows to analyse a function using "classical" techniques.

Motivation: why to solve recursions?

- Computing by closed form is effective

$$
P_{n}=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left[1+\frac{1}{12 n}+\frac{1}{228 n^{2}}+\frac{139}{51840 n^{3}}+\mathscr{O}\left(\frac{1}{n^{4}}\right)\right]
$$

- Closed form allows to analyse a function using "classical" techniques. For example: behaviour of logistic map depends on r :

Recurrent equation:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

Solution for $r=4$:

$$
x_{n+1}=\sin ^{2}\left(2^{n} \theta \pi\right)
$$

where $\theta=\frac{1}{\pi} \sin ^{-1}\left(\sqrt{x_{0}}\right)$

ad hoc techniques: Guess and Confirm

Equation $f(n)=\left(n^{2}-1+f(n-1)\right) / 2$, initial condition: $f(0)=2$

■ Let's compute some values:

n	0	1	2	3	4	5	6
$f(n)$	2	1	2	5	10	17	26

Guess: $f(n)=(n-1)^{2}+1$.

- Assuming that the guess holds for $n=k$, we prove that it holds in general by induction

ad hoc techniques: Guess and Confirm

Equation $f(n)=\left(n^{2}-1+f(n-1)\right) / 2$, initial condition: $f(0)=2$

- Let's compute some values:

n	0	1	2	3	4	5	6
$f(n)$	2	1	2	5	10	17	26

Guess: $f(n)=(n-1)^{2}+1$.

- Assuming that the guess holds for $n=k$, we prove that it holds in general by induction:

$$
\begin{aligned}
f(k+1) & =\left((k+1)^{2}-1+f(k)\right) / 2= \\
& =\left(k^{2}+2 k+(k-1)^{2}+1\right) / 2= \\
& =\left(k^{2}+2 k+k^{2}-2 k+1+1\right) / 2= \\
& =\left(2 k^{2}+2\right) / 2=k^{2}+1
\end{aligned}
$$

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that

2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$
3 Solve the resulting equation, getting a closed form for $G(z)$
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving G(z)
3 Solve the resulting equation, getting a closed form for $G(z)$
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Solving recurrences

Given a sequence $\left\langle g_{n}\right\rangle$ that satisfies a given recurrence, we seek a closed form for g_{n} in terms of n.

"Algorithm"

1 Write down a single equation that expresses g_{n} in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1}=g_{-2}=\cdots=0$.
2 Multiply both sides of the equation by z^{n} and sum over all n. This gives, on the left, the sum $\sum_{n} g_{n} z^{n}$, which is the generating function $G(z)$. The right-hand side should be manipulated so that it becomes some other expression involving $G(z)$.
3 Solve the resulting equation, getting a closed form for $G(z)$.
4 Expand $G(z)$ into a power series and read off the coefficient of z^{n}; this is a closed form for g_{n}.

Example: Fibonacci numbers: equation
$g_{n}=g_{n-1}+g_{n-2}+[n=1]$

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n} & =\sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n} \\
& =\sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z \\
& =z \sum_{n} g_{n} z^{n}+z^{2} \sum_{n} g_{n} z^{n}+z \\
& =z G(z)+z^{2} G(z)+z
\end{aligned}
$$

Example: Fibonacci numbers: equation
$g_{n}=g_{n-1}+g_{n-2}+[n=1]$

$$
\begin{aligned}
G(z)=\sum_{n} g_{n} z^{n}= & \sum_{n} g_{n-1} z^{n}+\sum_{n} g_{n-2} z^{n}+\sum_{n}[n=1] z^{n} \\
= & \sum_{n} g_{n} z^{n+1}+\sum_{n} g_{n} z^{n+2}+z \\
= & z \sum_{n} g_{n} z^{n}+z^{2} \sum_{n} g_{n} z^{n}+z \\
= & z G(z)+z^{2} G(z)+z \\
& G(z)=\frac{z}{1-z-z^{2}}
\end{aligned}
$$

Possible schedule

Chapters:

1 Recurrent Problems - weeks 1-3
2 Sums - weeks 4-6
3 Integer Functions - week 7
4 Number Theory
5 Binomial Coefficients
6 Special Numbers - weeks 8-9
7 Generating Functions - weeks 10-13
8 Discrete Probability
9 Asymptotics

Possible schedule

Chapters:

1 Recurrent Problems - weeks 1-3
2 Sums - weeks 4-6
3 Integer Functions - week 7
4 Number Theory
5 Binomial Coefficients
6 Special Numbers - weeks 8-9
7 Generating Functions - weeks 10-13
8 Discrete Probability
9 Asymptotics
Reserve - weeks 14 -16

Contact

Instructors: Silvio Capobianco
Addresses: silvio@cs.ioc.ee

Jaan Penjam
jaan@cs.ioc.ee

Lectures and exercises: On Tuesdays at 14:00-17:30 in B126

Web page:
http://cs.ioc.ee/cm/

