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Concrete Mathematics is ...

m the controlled manipulation of mathematical formulas

m using a collection of techniques for solving problems

Goals of the book:

m to introduce the mathematics that supports advanced
computer programming and the analysis of algorithms

m to provide a solid and relevant base of mathematical skills -
the skills needed

m to solve complex problems
m to evaluate horrendous sums
m to discover subtle patterns in data



Our additional goals

m to get acquainted with well-known and popular literature in CS
and Math

m to develop mathematical skills, formulating complex problems
mathematically

m to practice presentation of results (solutions of mathematical
problems)



Contents of the Book

Chapters:
Recurrent Problems
Sums
Integer Functions
Number Theory
Binomial Coefficients
[@ Special Numbers
Generating Functions
B Discrete Probability
El Asymptotics
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Recurrent Problems



1. Recurrent Problems

The Tower of Hanoi
Lines in the Plane
The Josephus Problem
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Sums



Notation

Sums and Recurrences

Manipulation of Sums
Multiple Sums

General Methods

@A Finite and Infinite Calculus
Infinite Sums
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Integer Functions



3. Integer Functions

Floors and Ceilings
Floor/Ceiling Applications
Floor/Ceiling Recurrences
'mod’: The Binary Operation
Floor/Ceiling Sums
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Number Theory



4. Number Theory

Divisibility

Factorial Factors

Relative Primality

'mod’: The Congruence Relation
Independent Residues

[@ Additional Applications

Phi and Mu
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Binomial Coefficients



5. Binomial Coefficients

Basic Identities

Basic Practice

Tricks of the Trade

Generating Functions
Hypergeometric Functions

[@ Hypergeometric Transformations
Partial Hypergeometric Sums

E Mechanical Summation
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6. Special Numbers

Stirling Numbers
Eulerian Numbers
Harmonic Numbers
Harmonic Summation
Bernoulli Numbers
@A Fibonacci Numbers
Continuants
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Generating Functions



7. Generating Functions

Domino Theory and Change
Basic Maneuvers

Solving Recurrences

@ Special Generating Functions
Convolutions

[@ Exponential Generating Functions

Dirichlet Generating Functions
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B Discrete Probability



8. Discrete Probability

Definitions

Mean and Variance

Probability Generating Functions
Flipping Coins

Hashing
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El Asymptotics



9. Asymptotics

A Hierarchy

O Notation

O Manipulation

Two Asymptotic Tricks
Euler’'s Summation Formula

@A Final Summations



Pedagogical dilemma: what to teach?

Chapters:
Recurrent Problems
Sums
Integer Functions
Number Theory
Binomial Coefficients
B Special Numbers
Generating Functions
B Discrete Probability
Bl Asymptotics



About the choice: sums + recurrences + generating

functions




Recurrent problems

Recurrent equation

A number sequence (a,) = (ao, a1, ay,...) is called recurrent, if its
general term together with k preceding terms satisfies a recurrent
equation

an=g(an-1,--,an—«k),

for every n > k, where the function g : N¥ — N (or g : R — R).
The constant k is called order of the recurrent equation (or
difference equation).

recurrent (<Latin recurrere — to run back) tagasipédrduv, taastuv / to run back.



Regions of the plane defined by lines

Q=1 Q=2

In general: Q,=2"7

Q=4
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Regions of the plane defined by lines

Actually ...

QB=Q+3=7

Generally @, = Q,_1+n.

n|o]1]2]3]4]5
Q|1]2]4]7|11]16]22




Regions of the plane defined by lines

To=1 =12
é T3 =7
T,=?

T, =7



Regions of the plane defined by lines

T, = Q-22=11-4=7
T3 = @Q—2-3=22—-6=16
T4 = 03—24:37—8:29
_______ Ts = (ip—2-5=56—-10=146
i T, = Q2n_2n



Regions of the plane defined by lines

T, = Q-22=11-4=7
T3 = @Q—2-3=22—-6=16
T4 = 03—24:37—8:29
_______ Ts = (ip—2-5=56—-10=146
i T, = Q2n_2n

T, |1]2|7]|16|29 |46 |67 92| 121 | 156




Motivation: why to solve recursions?

m Computing by closed form is effective
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m Closed form allows to analyse a function using “classical” techniques.



Motivation: why to solve recursions?

m Computing by closed form is effective

P 1 1 139
s n(2) |1+ 125+ e + 518a0m T2 ()

m Closed form allows to analyse a function using “classical”

techniques. For example: behaviour of logistic map depends on r:
1.4

Recurrent equation:
0.8

Xn+1 = tXn (1 —xn) 0
X

Solution for r =4: 04

Xp4+1 = sin2 (2”677:) 02

Whereez%sin’l(,/xo) 0.0 T T T T T T T T T T T T T T
1.4 28 28 3.0 32 34 36 38 4.0

’ @



ad hoc techniques: Guess and Confirm

Equation f(n) = (n?> —1+f(n—1))/2, initial condition: f(0) =2

m Let's compute some values:

Guess: f(n)=(n—1)2+1.



ad hoc techniques: Guess and Confirm

Equation f(n) = (n?> —1+f(n—1))/2, initial condition: f(0) =2

m Let's compute some values:

Guess: f(n)=(n—1)2+1.
m Assuming that the guess holds for n = k, we prove that it holds in general by
induction:

f(k+1) = ((k+1)2—-1+f(k))/2=

(K +2k+(k—1)2+1)/2=
(K2 42k + k2 —2k+1+1)/2=
= (2k*+2)/2=kK2+1

QED.



Solving recurrences

Given a sequence (g,) that satisfies a given recurrence, we seek a
closed form for g, in terms of n.

"Algorithm"
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Solving recurrences

Given a sequence (g,) that satisfies a given recurrence, we seek a
closed form for g, in terms of n.

"Algorithm"

[~ -}

Write down a single equation that expresses g, in terms of other elements of the
sequence. This equation should be valid for all integers n, assuming that
g1=g8g2=--=0.

Multiply both sides of the equation by z” and sum over all n. This gives, on the
left, the sum ¥, g,z", which is the generating function G(z). The right-hand
side should be manipulated so that it becomes some other expression involving
G(z).

Solve the resulting equation, getting a closed form for G(z).

Expand G(z) into a power series and read off the coefficient of z”; this is a
closed form for g,.



Example: Fibonacci numbers: equation

8n=8n—-1+8&n—2+[n=1]

G(z) :Zgnzn = Zgnf12"+2gnfzz"+2[n: 1]z"
n n n n
— Zgnzn+1+zgnzn+2 +Z
n n
= ngnz"—t—zng,,z”—i—z
n n

= 2G(z)+2°G(z)+z
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Possible schedule

Chapters:
Recurrent Problems — weeks 1-3
Sums — weeks 4-6

Integer Functions — week 7

o]

Number Theory

[~

Binomial Coefficients

&

Special Numbers — weeks 8—9

o]

Generating Functions — weeks 10-13
Discrete Probability

Asymptotics



Possible schedule

Chapters:
Recurrent Problems — weeks 1-3
Sums — weeks 4-6
Integer Functions — week 7

Number Theory

Binomial Coefficients

@ Special Numbers — weeks 8—9
Generating Functions — weeks 10-13
B Discrete Probability

Bl Asymptotics

Reserve — weeks 14 -16



Contact

Instructors: Silvio Capobianco Jaan Penjam

Addresses: silvio@cs.ioc.ee jaan@cs.ioc.ee

Lectures and exercises: On Tuesdays at 14:00 — 17:30 in B126

Web page:

http://cs.ioc.ee/cm/
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