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Inclusion-exclusion formula

How many integer numbers between 1 and 1000 are divisible by either 7 or
11, but not both?
Solution: This exercise takes a twist on the classical inclusion-exclusion for-
mula for the probabilities of two events:

P (A) + P (B) = P (A ∪B) + P (A ∩B) .

The twist is that we are considering a disjoint union, so we have to remove
P (A ∩B) twice from P (A) + P (B).1

As 1000 = 142 ∗ 7 + 6 = 90 ∗ 11 + 10 = 12 ∗ 77 + 76, there are 142
numbers between 1 and 1000 that are divisible by 7, 90 that are divisible
by 11, and 12 that are divisible by 77. By the observation above, there are
142+90−12 ·2 = 208 integer numbers between 1 and 1000 divisible by either
7 or 11, but not both.

Children and sweets

How many ways are there to distribute n identical sweets between k children
(with 1 ≤ k ≤ n) if each child must receive at least one sweet?
Solution by experiment, intuition, and induction: We make a first attempt
with n = 5 and several values of k:

1Thanks to Ahto Truu for this remark.
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• For k = 3 there are two possibilities: either one kid is favored in that
s/he gets three sweets and the other two only get one each, or one
kid is disfavored in the sense that s/he gets only one candy, and the
other two get two each. In each case there are three ways to choose the
(dis)favored child, so overall there are 3 + 3 = 6 ways of distributing 5
sweets between 3 children, each child receiving at least one sweet.

• For k = 2 the first child will take either 1, 2, 3, or 4 sweets, and the
other one will get those that are left: so there are 4 ways of distributing
5 sweets between 2 children, each child receiving at least one sweet.

• For k = 4, one of the children will receive two sweets, and the others
will receive one each: there are thus 4 ways of distributing 5 sweets
between 4 children, each child receiving at least one sweet.

• Clearly, there is only one way to distribute five sweets between either
one child, who will have them all, or five children, who will have one
each.

We then plot the values of the number D(n, k) of the ways of distributing n
sweets between k children (with 1 ≤ k ≤ n) giving at least one sweet to each
child, for n = 5 and 1 ≤ k ≤ 5, and we observe a coincidence:

k 1 2 3 4 5
D(5, k) 1 4 6 4 1(

4
k−1

)
1 4 6 4 1

Maybe it is true in general that D(n, k) =
(
n−1
k−1

)
? Let’s try to prove it by

induction on n: that is, we construct the proposition

P (n) : D(n, k) =

(
n− 1

k − 1

)
∀k ∈ {1, . . . , n}

and we prove, as the induction base, that P (1) is true; and as the inductive
step, that for every n ≥ 1, if P (n) is true, then so is P (n + 1).

• Induction base: there is only 1 =
(
0
0

)
way of giving one sweet to one

child, so that the child has at least one sweet. Therefore, P (1) is true.

• Inductive step: Suppose P (n) is true: that is, for every k ∈ {1, . . . , n},
there exist exactly

(
n−1
k−1

)
ways of distributing n sweets between k chil-

dren, giving at least one sweet to each child. What if the sweets are
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n + 1? Again, if the children are either 1 or n + 1, there is only
1 =

(
n
0

)
=
(
n
n

)
way: all to one, or one each, respectively. So we only

need to consider the case k ∈ {2, . . . , n}.
One idea to reduce the problem to a previous case, is to first distribute n
sweets between the k children, then decide which child give the (n+1)st
sweet. This idea, however, does not take into account that the sweets
are identical, but the children are not!

The issue is resolved if we observe that either the last child receives
only one sweet, or he receives two or more. The last case corresponds
to a division of n sweets between k children: as we are working under
the hypothesis that P (n) is true, we can assert that there are

(
n−1
k−1

)
such distributions. The first case corresponds to a division of n sweets
between k− 1 children: again, as we are working under the hypothesis
that P (n) is true, we can assert that there are

(
n−1
k−2

)
such distributions.

Adding the two together, for k ∈ {2, . . . , n} there are(
n− 1

k − 1

)
+

(
n− 1

k − 2

)
=

(
n

k − 1

)
ways of distributing n+ 1 sweets between k children, so that each child
receives at least one sweet. We have thus proved that, if P (n) is true,
then so is P (n + 1): and that such implication holds for every n ≥ 1,
because n always acted only as a parameter, and no special cases needed
to be treated.

Solution by change of point of view: Since the sweets are identical, we can
distribute them by putting them in a line, and give the leftmost ones to the
current child. Distributing n sweets between k children so that each child
receives at least one sweet, is then the same of choosing at which k−1 points
we stop giving sweets to the current child, and go on to the next. There
are n − 1 points where we can switch from a child to the next one, so by
definition there must be

(
n−1
k−1

)
ways of distributing n identical sweets between

k children (with 1 ≤ k ≤ n) giving each child at least one sweet.
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Estimating sums

Consider the two sums:

A =
3∑

i=1

i2
i∑

j=1

(j2 + 1) ; B =
3∑

j=1

(j2 + 1)
3∑

i=j

i2 .

Which one is larger?
Solution: The two sums are equal. To see this without doing all the arith-
metics, we introduce the Iverson brackets as a function from the set {true, false}
to the set {0, 1} defined by [true] = 1 and [false] = 0. This allows us to move
the dependencies between the summation indices to the summands instead.
Then

A =
3∑

i=1

3∑
j=1

i2(j2 + 1)[j ≤ i] and B =
3∑

j=1

3∑
i=1

(j2 + 1)i2[i ≥ j] :

which are easily seen to be equal.
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