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Division (with remainder)

De�nition

Let a and b be integers and a> 0. Then division of b by a is �nding an integer
quotient q and a remainder r satisfying the condition

b = aq+ r , where 06 r < a.

Here

b � dividend

a � divider (=divisor) (=factor)

q = ba/bc � quotient

r = a mod b � remainder (=residue)

Example

If a= 3 and b = 17, then
17= 3 ·5+2.
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Negative dividend

If the divisor is positive, then the remainder is always non-negative.

For example

If a= 3 ja b =−17, then
−17= 3 · (−6)+1.

Integer b can be always represented as b = aq+ r with 06 r < a due to the fact
that b either coincides with a term of the sequence

. . . ,−3a,−2a,−a,0,a,2a,3a, . . .

or lies between two succeeding �gures.
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NB! Division by a negative integer yields a negative
remainder

5 mod 3= 5−3b5/3c= 2

5 mod −3= 5− (−3)b5/(−3)c=−1

−5 mod 3=−5−3b−5/3c= 1

−5 mod −3=−5− (−3)b−5/(−3)c=−2

Be careful!

Some computer languages use another de�nition.

We assume a> 0 in further slides!
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Divisibility

De�nition

Let a and b be integers. We say that a divides b , or a is a divisor of b, or b is a
multiple of a, if there exists an integer m such that b = a ·m.

Notations:

a|b a divides b

a\b a divides b

b
...a b is a multiple of a

For example

3|111 7|−91 −7|−91



Divisors

De�nitsioon

If a|b, then
an integer a is called divisor or factor or multiplier of an integer b.

Properties

Any integer b at least four divisors: 1,−1,b,−b.
a|0 for any integer a; reverse relation 0|a is valid only for a= 0. That means 0|0.
1|b for any integer b,whereas b|1 is valid i� b = 1 or b =−1.
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More properties:

1 If a|b, then ±a|±b.

2 If a|b and a|c, for every m,n integer it is valid that a|mb+nc.

3 a|b i� ac|bc for every integer c.

The �rst property allows to restrict ourselves to study divisibility on positive integers.

It follows from the second property that if an integer a is a divisor of b and c, then it
is the divisor their sum and di�erence.
Here a is called common divisor of b and c (as well as of b+c, b−c, b+2c etc.)
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Greatest Common Divisor

De�nition

The greatest common divisor (gcd) of two or more non-zero integers is
the largest positive integer that divides the numbers without a remainder.

Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12.
The greatest common divisor gcd(36,60) = 12.

The greatest common divisor exists always because of the set of
common divisors of the given integers is non-empty and �nite.



Greatest Common Divisor

De�nition

The greatest common divisor (gcd) of two or more non-zero integers is
the largest positive integer that divides the numbers without a remainder.

Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12.
The greatest common divisor gcd(36,60) = 12.

The greatest common divisor exists always because of the set of
common divisors of the given integers is non-empty and �nite.



Next subsection

1 Prime and Composite Numbers

Divisibility

2 Greatest Common Divisor

De�nition

The Euclidean algorithm

3 Primes

The Fundamental Theorem of Arithmetic

Distribution of prime numbers



The Euclidean algorithm

The algorithm to compute gcd(a,b) for positive integers a and b

Input: Positive integers a and b, assume that a> b
Output: gcd(a,b)

while b > 0
do

1 r := a mod b
2 a := b
3 b := r

od

return(a)



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Example: compute gcd(2322,654)

a b

2322 654

654 360

360 294

294 66

66 30

30 6

6 0



Important questions to answer:

Does the algorithm terminate for every input?

Is the result the greatest common divisor?

How long does it take?



Termination of the Euclidean algorithm

In any cycle, the pair of integers (a,b) is replaced by (b, r), where r
is the remainder of division of a by b.

Hence r < b.

The second number of the pair decreases, but remains non-negative,
so the process cannot last in�nitely long.



Correctness of the Euclidean algorithm

Theorem

If r is a remainder of division of a by b, then

gcd(a,b) = gcd(b, r)

Proof. It follows from the equality a= bq+ r that

1 if d |a and d |b, then d |r
2 if d |b and d |r , then d |a

In other words, the set of common divisors of a and b
equals to the set of common divisors of b and r ,
recomputing of (b, r) does not change the greatest
common divisor of the pair.

The number returned r = gcd(r ,0). Q.E.D.



Complexity of the Euclidean algorithm

Theorem

The number of steps of the Euclidean algorithm applied to two positive
integers a and b is at most

1+ log2 a+ log2 b.

Proof. Let consider the step where the pair (a,b) is replaced by
(b, r). Then we have r < b and b+ r 6 a. Hence
2r < r +b 6 a or br < ab/2. This is that the product of
the elements of the pair decreases at least 2 times.

If after k cycles the product is still positive, then
ab/2k > 1, that gives

k 6 log2(ab) = log2 a+ log2 b

Q.E.D.



The numbers produced by the Euclidean algorithm

a= bq1+ r1 r1 can be expressed in terms of b and a

b = r1q2+ r2 r2 can be expressed in terms of r1 and b

r1 = r2q3+ r3 r3 can be expressed in terms of r2 and r1

· · · · · · · · · · · · · · · · · · · · · · · ·
rk−3 = rk−2qk−1+ rk−1 rk−1 can be expressed in terms of rk−2 and rk−3

rk−2 = rk−1qk + rk rk can be expressed in terms of rk−1 and rk−2

rk−1 = rkqk+1

Now, one can extract rk = gcd(a,b) from the second last equality and
substitute there step-by-step rk−1, rk−2, . . . using previous equations.
We obtain �nally that rk equals to a linear combination of a and b with
(not necessarily positive) integer coe�cients.



GCD as a linear combination

Theorem (Bézout's identity)

Let d = gcd(a,b). Then d can be written in the form

d = as+bt

where s and t are integers. In addition,

gcd(a,b) =min{n ≥ 1 | ∃s, t ∈ Z : n = as+bt} .

For example: a= 360 and b = 294

gcd(a,b) = 294 · (−11)+360 ·9=−11a+9b



Application of EA: solving of linear Diophantine Equations

Corollary

Let a, b and c be positive integers. The equation

ax+by = c

has integer solutions if and only if c is a multiple of gcd(a,b).

The method: Making use of Euclidean algorithm, compute such
coe�cients s and t that sa+ tb = gcd(a,b). Then

x =
cs

gcd(a,b)

y =
ct

gcd(a,b)



Linear Diophantine Equations (2)

Example: 92x+17y = 3

From EA:
a b Seos
92 17
17 7 92= 5 ·17+7
7 3 17= 2 ·7+3
3 1 7= 2 ·3+1
1 0

Transformations:

1= 7−2 ·3
= 7−2 · (17−7 ·2) = (−2) ·17+5 ·7=
= (−2) ·17+5 · (92−5 ·17) = 5 ·92+(−27) ·17

gcd(92,7)|3 yields a solution

x =
3 ·5

gcd(92,17)
= 3 ·5= 15

y =
3 · (−27)

gcd(92,17)
=−3 ·27=−81



Linear Diophantine Equations (3)

Example: 5x+3y = 2 → many solutions

gcd(5,3) = 1

As 1= 2 ·5+3 ·3, then one solution is:

x = 2 ·2= 4

y =−3 ·2=−6

As 1= (−10) ·5+17 ·3, then another
solution is:

x =−10 ·2=−20
y = 17 ·2= 34

Example: 15x+9y = 8 → no solutions

Whereas, gcd(15,9) = 3, then the equation can be expressed as

3 · (5x+3y) = 8.

The left-hand side of the equation is divisible by 3, but the right-hand side is not,
therefore the equality cannot be valid for any integer x and y .
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More about Linear Diophantine Equations (1)

General solution of a Diophantine equation ax+by = c is{
x = x0+

kb
gcd(a,b)

y = y0− ka
gcd(a,b)

where x0 and y0 are particular solutions and k is an integer.

Particular solutions can be found by means of Euclidean algorithm:{
x0 = cs

gcd(a,b)

y0 = ct
gcd(a,b)

This equation has a solution (where x and y are integers) if and only if
gcd(a,b)|c

The general solution above provides all integer solutions of the equation (see
proof in http://en.wikipedia.org/wiki/Diophantine_equation)

http://en.wikipedia.org/wiki/Diophantine_equation


More about Linear Diophantine Equations (2)

Example: 5x+3y = 2

We have found, that gcd(5,3) = 1 and its particular solutions are x0 = 4 and y0 =−6.

Thus, for any k ∈ Z: {
x = 4+3k
y = −6−5k

Solutions of the equation for k = . . . ,−3,−2,−1,0,1,2,3, . . . are in�nite sequences of
numbers:

x = . . . , −5, −2, 1, 4, 7, 10, 13, . . .
y = . . . , 9, 4, −1, −6, −11, −16, −21, . . .

Among others, if k =−8, then we get the solution x =−20 ja y = 34.
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Prime and composite numbers

Every integer greater than 1 is either prime or composite, but not both:

A positive integer p is called prime if it has just two divisors, namely
1 and p. By convention, 1 is not prime

Prime numbers: 2,3,5,7,11,13,17,19,23,29,31,37,41, . . .

An integer that has three or more divisors is called composite

Composite numbers: 4,6,8,9,10,12,14,15,16,18,20,21,22, . . .
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Another application of EA

The Fundamental Theorem of Arithmetic

Every positive integer n can be written uniquely as a product of primes:

n= p1 . . .pm =
m

∏
k=1

pk , p1 6 · · ·6 pm

Proof. Suppose we have two factorizations into primes

n= p1 . . .pm = q1 . . .qk , p1 6 · · ·6 pm and q1 6 · · ·6 qk

Assume that p1 < q1. Since p1 and q1 are primes, gcd(p1,q1) = 1.
That means that EA de�nes integers s and t that sp1+ tq1 = 1.
Therefore

sp1q2 . . .qk + tq1q2 . . .qk = q2 . . .qk

Now p1 divides both terms on the left, thus q2 . . .qk/p1 is integer
that contradicts with p1 < q1. This means that p1 = q1.

Similarly, using induction we can prove that p2 = q2, p3 = q3, etc

Q.E.D.



Canonical form of integers

Every positive integer n can be represented uniquely as a product

n = pn1
1
pn2
2
· · ·pnkk = ∏

p

pnp , where each np > 0

For example:

600= 23 ·31 ·52 ·70 ·110 · · ·
35= 20 ·30 ·51 ·71 ·110 · · ·

5 251 400= 23 ·30 ·52 ·71 ·112 ·130 · · · ·290 ·311 ·370 · · ·



Prime-exponent representation of integers

Canonical form of an integer n = ∏p p
np provides a sequence of

powers 〈n1,n2, . . .〉 as another representation.

For example:

600= 〈3,1,2,0,0,0, . . .〉
35= 〈0,0,1,1,0,0,0, . . .〉

5 251 400= 〈3,0,2,1,2,0,0,0,0,0,1,0,0, . . .〉



Prime-exponent representation and arithmetic operations

Multiplication

Let
m = pm1

1
pm2

2
· · ·pmk

k = ∏
p

pmp

n = pn1
1
pn2
2
· · ·pnkk = ∏

p

pnp

Then
mn = pm1+n1

1
pm2+n2
2

· · ·pmk+nk
k = ∏

p

pmp+np

Using prime-exponent representation:
mn = 〈m1+n1,m2+n2,m3+n3, . . .〉

For example

600 ·35= 〈3,1,2,0,0,0, . . .〉 · 〈0,0,1,1,0,0,0, . . .〉
= 〈3+0,1+0,2+1,0+1,0+0,0+0, . . .〉
= 〈3,1,3,1,0,0, . . .〉= 21 000
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Some other operations

The greatest common divisor and the least common multiple (lcm)

gcd(m,n) = 〈min(m1,n1),min(m2,n2),min(m3,n3), . . .〉

lcm(m,n) = 〈max(m1,n1),max(m2,n2),max(m3,n3), . . .〉

Example

120= 23 ·31 ·51 = 〈3,1,1,0,0, · · · 〉

36= 22 ·32 = 〈2,2,0,0, · · · 〉

gcd(120,36) = 2min(3,2) ·3min(1,2) ·5min(1,0) = 22 ·31 = 〈2,1,0,0, . . .〉= 12

lcm(120,36) = 2max(3,2) ·3max(1,2) ·5max(1,0) = 23 ·32 ·51 = 〈3,2,1,0,0, . . .〉= 360
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Properties of the GCD

Homogeneity

gcd(na,nb) = n ·gcd(a,b) for every positive integer n.

Proof.

Let a= pα1
1
· · ·pαk

k , b = p
β1
1
· · ·pβk

k , and gcd(a,b) = p
γ1
1
· · ·pγk

k , where γi =min(αi ,βi ). If

n= pn1
1
· · ·pnkk , then

gcd(na,nb) = p
min(α1+n1 ,β1+n1)
1

· · ·pmin(αk+nk ,βk+nk )
k =

= p
min(α1 ,β1)
1

pn1
1
· · ·pmin(αk ,βk )

k p
nk
k =

= pn1
1
· · ·pnkk p

γ1
1
· · ·pγk

k = n ·gcd(a,b)

Q.E.D.



Properties of the GCD

GCD and LCM

gcd(a,b) · lcm(a,b) = ab for every two positive integers a and b

Proof.

gcd(a,b) · lcm(a,b) = p
min(α1 ,β1)
1

· · ·pmin(αk ,βk )
k ·pmax(α1 ,β1)

1
· · ·pmax(αk ,βk )

k =

= p
min(α1 ,β1)+max(α1 ,β1)
1

· · ·pmin(αk ,βk )+max(αk ,βk )
k =

= p
α1+β1
1

· · ·pαk+βk
k = ab

Q.E.D.



Relatively prime numbers

De�nition

Two integers a and b are said to be relatively prime (or co-prime) if the only positive
integer that evenly divides both of them is 1.

Notations used:

gcd(a,b) = 1

a⊥ b

For example

16⊥ 25 and 99⊥ 100

Some simple properties:

Dividing a and b by their greatest common divisor yields relatively primes:

gcd

(
a

gcd(a,b)
,

b

gcd(a,b)

)
= 1

Any two positive integers a and b can be represented as a= a′d and b = b′d ,
where d = gcd(a,b) and a′ ⊥ b′
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Notations used:

gcd(a,b) = 1

a⊥ b

For example

16⊥ 25 and 99⊥ 100

Some simple properties:

Dividing a and b by their greatest common divisor yields relatively primes:

gcd

(
a

gcd(a,b)
,

b

gcd(a,b)

)
= 1

Any two positive integers a and b can be represented as a= a′d and b = b′d ,
where d = gcd(a,b) and a′ ⊥ b′



Properties of relatively prime numbers

Theorem

If a⊥ b, then gcd(ac,b) = gcd(c,b) for every positive integer c.

Proof.

Assuming canonic representation of a= ∏p p
αp , b = ∏p p

βp and
c = ∏p p

γp , one can conclude that for any prime p:

The premise a⊥ b implies that pmin(αp ,βp) = 1, it is that either
αp = 0 or βp = 0.

If αp = 0, then pmin(αp+γp ,βp) = pmin(γp ,βp).
If βp = 0, then

pmin(αp+γp ,βp) = pmin(αp+γp ,0) = 1= pmin(γp ,0) = pmin(γp ,βp).

Hence, the set of common divisors of ac and b is equal to the set of
common divisors of c and b.

Q.E.D.



Divisibility

Observation

Let
a= ∏

p

pαp

and
b = ∏

p

pβp .

Then a|b i� αp 6 βp for every prime p.



Consequences from the theorems above

1 If a⊥ c and b ⊥ c , then ab ⊥ c

2 If a|bc and a⊥ b, then a|c

3 If a|c , b|c and a⊥ b, then ab|c

Example: compute gcd(560,315)

gcd(560,315) = gcd(5 ·112,5 ·63) =
= 5 ·gcd(112,63) =
= 5 ·gcd(24 ·7,63) =
= 5 ·gcd(7,63)
= 5 ·7= 35



Consequences from the theorems above

1 If a⊥ c and b ⊥ c , then ab ⊥ c

2 If a|bc and a⊥ b, then a|c

3 If a|c , b|c and a⊥ b, then ab|c

Example: compute gcd(560,315)

gcd(560,315) = gcd(5 ·112,5 ·63) =
= 5 ·gcd(112,63) =
= 5 ·gcd(24 ·7,63) =
= 5 ·gcd(7,63)
= 5 ·7= 35



The number of divisors

Canonic form of a positive integer permits to compute the number
of its factors without factorization:

If
n = pn1

1
pn2
2
· · ·pnkk ,

then any divisor of n can be constructed by multiplying 0,1, · · · ,n1
times the prime divisor p1, then 0,1, · · · ,n2 times the prime divisor
p2 etc.

Then the number of divisors of n should be

(n1+1)(n2+1) · · ·(nk +1).

Example

Integer 694 575 has 694 575= 34 ·52 ·73 on (4+1)(2+1)(3+1) = 60
factors.
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Number of primes

Euclid's theorem

There are in�nitely many prime numbers.

Proof. Let's assume that there is �nite number of primes:

p1,p2,p3, . . . ,pk .

Consider
n= p1p2p3 · · ·pk +1.

Like any other natural number, n is divisible at least by 1 and itself,
i.e. it can be prime. Dividing n by p1,p2,p3, . . . or pk yields the
remainder 1. So, n should be prime that di�ers from any of numbers
p1,p2,p3, . . . ,pk , that leads to a contradiction with the assumption
that the set of primes is �nite.

Q.E.D.



Number of primes (another proof)

Theorem

There are in�nitely many prime numbers.

Proof. For any natural number n, there exits a prime number greater than n:

Let p be the smallest divisor of n!+1 that is greater than 1. Then

p is a prime number, as otherwise it wouldn't be the smallest
divisor.
p > n, as otherwise p|n! and p|n!+1 and p|(n!+1)−n! = p|1.

Q.E.D.



Number of primes: A proof by Paul Erd®s

Theorem

∑
p prime

1

p
= ∞



Number of primes: A proof by Paul Erd®s

Theorem

∑
p prime

1

p
= ∞

By contradiction, assume ∑p prime
1

p < ∞.

Call a prime p large if ∑q prime≥p
1

q < 1

2
. Let N be the number of small primes.

For m ≥ 1 let Um = {1≤ n ≤m | nonlyhassmallprimefactors}.
For n ∈ Um it is n= d ·k2 where q is a product of distinct small primes. Then

|Um| ≤ 2N ·
√
m

For m ≥ 1 and p prime let Dm,p = {1≤ n ≤m | p \n}. Then

|{1, . . . ,m}\Um| ≤ ∑
p largeprime

|Dm,p |<
m

2

Then
m

2
≤ |Um| ≤ 2N

√
m: this is false for m large enough.



Primes are distributed �very irregularly�

Since all primes except 2 are odd, the di�erence between two primes must be at
least two, except 2 and 3.

Two primes whose di�erence is two are called twin primes. For example (17, 19)
or (3557 and 3559). There is no proof of the hypothesis that there are in�nitely
many twin primes.

Theorem

For every positive integer k, there exist k consecutive composite integers.

Proof. Let n= k+1 and consider the numbers n!+2,n!+3, . . . ,n!+n. All
these numbers are composite because of i |n!+ i for every
i = 2,3, . . . ,n.

Q.E.D.



Distribution diagrams for primes



The prime counting function π(n)

De�nition:

π(n) = number of primes in the set{1,2, . . . ,n}

The �rst values:

π(1) = 0 π(2) = 1 π(3) = 2 π(4) = 2

π(5) = 3 π(6) = 3 π(7) = 4 π(8) = 4



The Prime Number Theorem

Theorem

The quotient of division of π(n) by n/lnn will be arbitrarily close to 1 as n gets large.
It is also denoted as

π(n)∼ n

lnn

Studying prime tables C. F. Gauss come up with the formula in ∼ 1791.

J. Hadamard and C. de la Vallée Poussin proved the theorem independently
from each other in 1896.



The Prime Number Theorem (2)

Example: How many primes are with 200 digits?

The total number of positive integers with 200 digits:

10200−10199 = 9 ·10199

Approximate number of primes with 200 digits

π(10200)−π(10199)≈ 10200

200 ln10
− 10199

199 ln10
≈ 1,95 ·10197

Percentage of primes

1,95 ·10197

9 ·10199
≈ 1

460
= 0.22%



Warmup: Extending π(x) to positive reals

Problem

Let π(x) be the number of primes which are not larger than x ∈ R.
Prove or disprove: π(x)−π(x−1) = [x isprime].



Warmup: Extending π(x) to positive reals

Problem

Let π(x) be the number of primes which are not larger than x ∈ R.
Prove or disprove: π(x)−π(x−1) = [x isprime].

Solution

The formula is true if x is integer: but x is real . . .

But clearly π(x) = π(bxc): then

π(x)−π(x−1) = π(bxc)−π(bx−1c)
= π(bxc)−π(bxc−1)
= [bxc isprime] ,

which is true.
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