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Division (with remainder)

Let a and b be integers and a > 0. Then division of b by a is finding an integer
quotient g and a remainder r satisfying the condition

b=aqg+r,where 0<r<a.

Here
b — dividend
a — divider (=divisor) (=factor)
q=la/b] — quotient
r=a modb — remainder (=residue)



Division (with remainder)

Let a and b be integers and a > 0. Then division of b by a is finding an integer
quotient g and a remainder r satisfying the condition

b=aqg+r,where 0<r<a.

Here
b — dividend
a — divider (=divisor) (=factor)
q=la/b] — quotient
r=a modb — remainder (=residue)

If a=3 and b=17, then
17=3-5+2. @



Negative dividend

m If the divisor is positive, then the remainder is always non-negative.

For example

If a=3ja b= —17, then
—-17=3-(-6)+1.



Negative dividend

m If the divisor is positive, then the remainder is always non-negative.

For example

If a=3ja b= —17, then
—-17=3-(-6)+1.

m Integer b can be always represented as b= aq+r with 0 < r < a due to the fact
that b either coincides with a term of the sequence

...,—3a,—2a,—a,0,a,2a,3a,...

or lies between two succeeding figures.



NB! Division by a negative integer yields a negative

remainder

5 mod3=5-3|5/3|=2
5 mod —3=5—(-3)|5/(-3)] =-1
—5 mod3=-5-3|-5/3|=1

-5 mod —3=—5—(—3)|-5/(=3)] =2
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Be careful!

Some computer languages use another definition.



NB! Division by a negative integer yields a negative

remainder

5 mod3=5-3|5/3|=2
5 mod —3=5—(-3)|5/(-3)] =-1
—5 mod3=-5-3|-5/3|=1

-5 mod —3=—5—(—3)|-5/(=3)] =2

Be careful!

Some computer languages use another definition.

We assume a > 0 in further slides! J




Divisibility

Definition
Let a and b be integers. We say that a divides b, or a is a divisor of b, or b is a
multiple of a, if there exists an integer m such that b=a-m.

Notations:
m alb a divides b
m a\b a divides b
= ba b is a multiple of a

3111 7|—91 —7|-91



Divisors

If a|b, then

m an integer a is called divisor or factor or multiplier of an integer b.
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Divisors

If a|b, then

m an integer a is called divisor or factor or multiplier of an integer b.

m Any integer b at least four divisors: 1,—1,b,—b.
m a|0 for any integer a; reverse relation 0|a is valid only for a=0. That means 0/0.



Divisors

If a|b, then

m an integer a is called divisor or factor or multiplier of an integer b.

m Any integer b at least four divisors: 1,—1,b,—b.
m a|0 for any integer a; reverse relation 0|a is valid only for a=0. That means 0/0.
m 1|b for any integer b,whereas b|1 is valid iff b=1 or b= —1.



More properties:

If a|b, then +a|+b.
If a|b and a|c, for every m,n integer it is valid that ajmb+ nc.
alb iff ac|bc for every integer c.
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The first property allows to restrict ourselves to study divisibility on positive integers.



More properties:

If a|b, then +a|+b.
If a|b and a|c, for every m,n integer it is valid that ajmb+ nc.
alb iff ac|bc for every integer c.

_________________________________________________________________________________________|
The first property allows to restrict ourselves to study divisibility on positive integers.

It follows from the second property that if an integer a is a divisor of b and c, then it
is the divisor their sum and difference.
Here a is called common divisor of b and ¢ (as well as of b+c, b—c, b+2c etc.)
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Greatest Common Divisor

The greatest common divisor (gcd) of two or more non-zero integers is
the largest positive integer that divides the numbers without a remainder.

Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12.
The greatest common divisor gcd(36,60) = 12.



Greatest Common Divisor

The greatest common divisor (gcd) of two or more non-zero integers is
the largest positive integer that divides the numbers without a remainder.

Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12.
The greatest common divisor gcd(36,60) = 12.

m The greatest common divisor exists always because of the set of
common divisors of the given integers is non-empty and finite.



Next subsection

Greatest Common Divisor

m The Euclidean algorithm



The Euclidean algorithm

The algorithm to compute gcd(a, b) for positive integers a and b

Input: Positive integers a and b, assume that a > b
Output: gcd(a, b)

= while b >0

do

H r-=amod b
A a=0>b

B b=r
od

m return(a)



Example: compute gcd(2322,654)



Example: compute gcd(2322,654)

2322 654



Example: compute gcd(2322,654)

a b
2322 654
654 360
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Example: compute gcd(2322,654)
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Example: compute gcd(2322,654)

a b
2322 654
654 360
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294 66
66 30



Example: compute gcd(2322,654)

2322
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Example: compute gcd(2322,654)

2322
654
360
294
66
30

654
360
294
66
30



Important questions to answer:

m Does the algorithm terminate for every input?
m Is the result the greatest common divisor?

m How long does it take?



Termination of the Euclidean algorithm

m In any cycle, the pair of integers (a, b) is replaced by (b, r), where r
is the remainder of division of a by b.

m Hence r < b.

m The second number of the pair decreases, but remains non-negative,
so the process cannot last infinitely long.



Correctness of the Euclidean algorithm

If ris a remainder of division of a by b, then

ged(a, b) = ged(b,r)

Proof. It follows from the equality a = bg+ r that

if d|a and d|b, then d|r
if d|b and d|r, then d|a

In other words, the set of common divisors of a and b
equals to the set of common divisors of b and r,
recomputing of (b, r) does not change the greatest
common divisor of the pair.

The number returned r = gcd(r,0). Q.ED.



Complexity of the Euclidean algorithm

The number of steps of the Euclidean algorithm applied to two positive
integers a and b is at most

1+log, a+log, b.

Proof. Let consider the step where the pair (a,b) is replaced by
(b,r). Then we have r < b and b+r < a. Hence
2r<r+b<aor br <ab/2. This is that the product of
the elements of the pair decreases at least 2 times.

If after k cycles the product is still positive, then
ab/2" > 1, that gives

k < log,(ab) = log, a+log, b

Q.E.D. @



The numbers produced by the Euclidean algorithm

a=bg+n r; can be expressed in terms of b and a
b=nrng+n ry can be expressed in terms of r; and b
n=rmrqg+n r3 can be expressed in terms of r» and ry

rk—3 = Mk—oQk—1+rk—1 rx—1 can be expressed in terms of r,_, and r,_3
F—> = rk—1qk + re rx can be expressed in terms of r,_; and ri_»

rk—1 = NkQk+1

Now, one can extract ry = gcd(a, b) from the second last equality and
substitute there step-by-step rx_1,rk_»,... using previous equations.

We obtain finally that r, equals to a linear combination of a and b with

(not necessarily positive) integer coefficients. @



GCD as a linear combination

Theorem (Bézout's identity)
Let d = ged(a, b). Then d can be written in the form

d = as—+ bt
where s and t are integers. In addition,

ged(a,b) =min{n>1|3s,t €Z:n=as+ bt}.

For example: a =360 and b =294

ged(a, b) =294 (—11)+360-9 = —11a+9b



Application of EA: solving of linear Diophantine Equations

Corollary

Let a, b and ¢ be positive integers. The equation
ax+ by =c

has integer solutions if and only if c is a multiple of gcd(a,b).

The method: Making use of Euclidean algorithm, compute such
coefficients s and t that sa+ tb = gcd(a, b). Then

¢

= gecd(a, b)
ot

4 gcd(a, b)



Linear Diophantine Equations (2)

Example: 92x+17y =3

From EA: Transformations:

a b Seos

92 | 17

17 | 7 | 92=5.17+7 1=7-2-3

7 3 17=2-7+3

=7-2-(17-7-2)=(-2)-17+5-7=
3 1 7=2-3+1 ( )=(=2) +
1 0 =(-2)-17+5-(92-5-17) =5-924(-27) - 17

gcd(92,7)|3 yields a solution
3.5
X=—————
gcd(92,17)

3.(-27)
= =220 _ 3.07=_81
Y= gcd(92,17)

=3.5=15



Linear Diophantine Equations (3)

Example: 5x+3y =2 — many solutions

ged(5,3)=1
As 1 =2-5+3-3, then one solution is: As 1 =(—10)-5+17-3, then another
solution is:
x=2-2=4
=_3.2=—-6 x=-10-2=-20

y=17.2=34



Linear Diophantine Equations (3)

Example: 5x+3y =2 — many solutions

ged(5,3)=1
As 1 =2-5+3-3, then one solution is: As 1 =(—10)-5+17-3, then another
solution is:
x=2-2=4
y=-3.2=-6 x=-10-2=-20
y=17-2=34
Example: 15x+9y =8 — no solutions

Whereas, ged(15,9) = 3, then the equation can be expressed as
3-(5x+3y)=8.

The left-hand side of the equation is divisible by 3, but the right-hand side is not,
therefore the equality cannot be valid for any integer x and y.

@



More about Linear Diophantine Equations (1)

m General solution of a Diophantine equation ax+ by = c is

_ kb

X = 0t gaden)
— a

y = Y- ged(a,b)

where xp and yp are particular solutions and k is an integer.
m Particular solutions can be found by means of Euclidean algorithm:
— cs
X0 = ged(a,b)
_ ct
YO = gad(ab)
m This equation has a solution (where x and y are integers) if and only if
ged(a,b)|c

m The general solution above provides all integer solutions of the equation (see
proof in http://en.wikipedia.org/wiki/Diophantine_equation)


http://en.wikipedia.org/wiki/Diophantine_equation

More about Linear Diophantine Equations (2)

Example: 5x+3y =2

We have found, that ged(5,3) =1 and its particular solutions are xg =4 and yo = —6.

Thus, for any k € Z:

x = 443k
y = —6-5k
Solutions of the equation for k=...,—3,—2,—1,0,1,2,3,... are infinite sequences of
numbers:
x = .. -5 -2 1, 4, 7, 10, 13,
y = ..., 9 4 -1, -6, -11, -16, -—21,

Among others, if k = —8, then we get the solution x = —20 ja y = 34.



Next section

Primes



Prime and composite numbers

Every integer greater than 1 is either prime or composite, but not both:

m A positive integer p is called prime if it has just two divisors, namely
1 and p. By convention, 1 is not prime

Prime numbers: 2,3,5,7,11,13,17,19,23,29,31,37,41,... J

m An integer that has three or more divisors is called composite

Composite numbers: 4,6,8,9,10,12,14,15,16,18,20,21,22, ... J




Next subsection

Primes
m The Fundamental Theorem of Arithmetic



Another application of EA

The Fundamental Theorem of Arithmetic

Every positive integer n can be written uniquely as a product of primes:

m
n=p1...pm=[] P« pL< < Pm
k=1

Proof. Suppose we have two factorizations into primes
n=pi...pm=q1...q, p1<: < pmand g1 <o < gk

Assume that p1 < g1. Since p; and gy are primes, ged(p1,q1) =1.
That means that EA defines integers s and t that sp; +tq; = 1.
Therefore

Sp1q2 .-Gk +tq192...Gk = q2.... gk

Now p; divides both terms on the left, thus g»...qx/p1 is integer
that contradicts with p; < g1. This means that p; = qz.

Similarly, using induction we can prove that p, = g2, p3 = g3, etc

Q.E.D. @



Canonical form of integers

m Every positive integer n can be represented uniquely as a product

ny na

n=pipy? - pk = Hp”P where each n, >0

For example:

600=23.31.52.79.11°...
35=20.30.51.71.110...
5251 400=2%.3%.52.71.112.13%....29%.311.370...



Prime-exponent representation of integers

m Canonical form of an integer n =[], p"» provides a sequence of
powers (ny,n,,...) as another representation.

For example:

600 = (3,1,2,0,0,0,...)
35=1(0,0,1,1,0,0,0,...)
5 251 400 = (3,0,2,1,2,0,0,0,0,0,1,0,0,...)



Prime-exponent representation and arithmetic operations

Multiplication

Let
m=pytpy?-. k—Hpmp

n=ptpy?---pk = Hp”"
p
Then

_ pmtny _matny my+ng mp+n,
mn= pl p2 . pk = Hp P P
P



Prime-exponent representation and arithmetic operations

Multiplication

Let
m=pytpy?-. k—Hpmp

n
n= P11P22 : 'Pk = Hpnp
P
Then
mn = p{n1+n1 p£n2+"z “pZ”’kJr”k — Hpmp+np

P

Using prime-exponent representation:
mn = {(my + ny,my+ ny,ms+ns,...)



Prime-exponent representation and arithmetic operations

Multiplication

Let
m=pytpy?-. k—Hpmp

n=ptpy?-eeppt = Hp””
p

Then

_ . mitn _ma+nz my+ng mp—+n,
mn_pl p2 pk _HPP P

P

Using prime-exponent representation:
mn = {(my + ny,my+ ny,ms+ns,...)

For example

600-35 = (3,1,2,0,0,0,...)-(0,0,1,1,0,0,0,...)
=(340,14+0,2+1,0+1,0+0,0+0,...) o
(3.1.3.1.0.0....) = 21 000



Some other operations

The greatest common divisor and the least common multiple (/em)
ged(m,n) = (min(my, ny),min(my, ny), min(ms, n3),...)

lem(m, n) = (max(my, n1),max(mg, n2), max(ms, n3),...)



Some other operations

The greatest common divisor and the least common multiple (/em)
ged(m,n) = (min(my, ny),min(my, ny), min(ms, n3),...)

lem(m, n) = (max(my, n1),max(mg, n2), max(ms, n3),...)

120=23.3'.51 =(3,1,1,0,0,---)
36 =22.32=(2,2,0,0,---)

gcd(120,36) = 2min(3.2) . gmin(12) gmin(1.0) — 92.31 — (21 0,0,...) =12
lem(120,36) = 2max(3:2) . gmax(1.2) gmax(1.0) — 53 .32 .51 — (3 2 1,0,0,...) = 360




Properties of the GCD

ged(na,nb) = n- ged(a, b) for every positive integer n. J
Proof.
Let a=p* - pk , b= pﬁ1 pf“, and gcd(a, b) = pk , where y; = min(a;, ;). If

n=pg*-- plk, then

ged(na, nb) = pn(eatnfrtn), .p"(ni"(ak"'"kﬁk"'"k) _

P1
pmm(vu B1) Pt ,_p'[:'i"(akﬁk)p,f:k _
=pg---pkptt - plk = n-gcd(a, b)

Q.E.D.



Properties of the GCD

GCD and LCM

ged(a, b) - Iem(a, b) = ab for every two positive integers a and b J

Proof.

gcd(a, b) - lem(a, b) = p;“i"(alaﬁl) ,,_p:'i"(akﬁk) ,p;“ax(al B1) __p"("ax(o‘kaﬁk)

_ p;"i"(ax,ﬁﬂ-%—ma)((al,ﬁl) “p;("i"(akﬁk)-*-max(ak,ﬁk) _

og +P1 .

=p szrﬁk —

P

Q.E.D.



Relatively prime numbers

Two integers a and b are said to be relatively prime (or co-prime) if the only positive
integer that evenly divides both of them is 1.

Notations used:
m gcd(a,b)=1
malb

For example

16 L 25 and 99 L 100
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Relatively prime numbers

Two integers a and b are said to be relatively prime (or co-prime) if the only positive
integer that evenly divides both of them is 1.

Notations used:
m gcd(a,b)=1
malb

For example
16 L 25 and 99 L 100

Some simple properties:

m Dividing a and b by their greatest common divisor yields relatively primes:

ged—2 b )4
ged(a, b)’ ged(a, b)

= Any two positive integers a and b can be represented as a=a'd and b= b'd,
where d = ged(a,b) and & L b @



Properties of relatively prime numbers

If a_L b, then gcd(ac, b) = ged(c, b) for every positive integer c. J

Proof.

Assuming canonic representation of a =[], p%, b= prﬁp and
c =TI, p™, one can conclude that for any prime p:

m The premise a L b implies that p™"(%:Bp) = 1 it is that either
o, =0or B, =0.

m If op = 0, then pmi"(ap‘*'vaﬁP) = pmi"(vaﬁp)_

m If B, =0, then
pmin(ap+yp,ﬁp) — pmin(aer"yp,O) —1= pmin(yp,O) — pmin(yp,ﬁp)_

Hence, the set of common divisors of ac and b is equal to the set of
common divisors of ¢ and b.

Q.E.D.



Divisibility

Let
a=[]r*
P

and

b= Hpﬁp.
P

Then a|b iff o, < B, for every prime p.



Consequences from the theorems above

If al cand b_Lc, thenab L c
If albc and a L b, then alc
If alc, b|c and a L b, then ab|c



Consequences from the theorems above

If al cand b_Lc, thenab L c
If albc and a L b, then alc
If alc, b|c and a L b, then ab|c

Example: compute gecd(560,315)

ged(560,315) = ged(5-112,5-63) =
=5-gcd(112,63) =
=5.gcd(2*-7,63) =
—5.gcd(7,63)
=5-7=35



The number of divisors

m Canonic form of a positive integer permits to compute the number
of its factors without factorization:

m If
n=py*py?---pe,
then any divisor of n can be constructed by multiplying 0,1,---,m
times the prime divisor p;, then 0,1,--- ny times the prime divisor
p2 etc.

m Then the number of divisors of n should be

(m+1)(n2+1)---(ng+1).

Integer 694 575 has 694 575 =3*-52.7% on (4+1)(2+1)(3+1) =60

factors. @



Next subsection

Primes

m Distribution of prime numbers



Number of primes

Euclid’s theorem

There are infinitely many prime numbers.

Proof. Let's assume that there is finite number of primes:

P1:P2,P3,- - Pk-

Consider
n=pip2p3---pk+1.

Like any other natural number, n is divisible at least by 1 and itself,
i.e. it can be prime. Dividing n by pi1,p2,p3,... or px yields the
remainder 1. So, n should be prime that differs from any of numbers
P1,P2,P3,---,Pk, that leads to a contradiction with the assumption
that the set of primes is finite.

Q.E.D.



Number of primes (another proof)

There are infinitely many prime numbers.

Proof.  For any natural number n, there exits a prime number greater than n:

Let p be the smallest divisor of nl 41 that is greater than 1. Then

E p is a prime number, as otherwise it wouldn't be the smallest
divisor.
m p > n, as otherwise p|n! and p|n!+1 and p|(n!+1)—n! = p|1.

Q.E.D.



Number of primes: A proof by Paul Erdés




Number of primes: A proof by Paul Erdés

Z,

pprime P

By contradiction, assume ):pprime% < oo,

m Call a prime p large if quﬁmezp% < % Let N be the number of small primes.

m For m>1 let Up ={1 < n < m| nonlyhassmall primefactors}.

For n€ U, it is n=d-k? where g is a product of distinct small primes. Then
|Un| <2N-/m

m For m>1 and p prime let Dy, , ={1<n<m|p\n}. Then

m
|{1,,m}\Um|§ Z ID’T'»P E

plarge prime

<

m Then % < |Um| < 2Ny/m: this is false for m large enough. @



Primes are distributed “very irregularly”

m Since all primes except 2 are odd, the difference between two primes must be at
least two, except 2 and 3.

m Two primes whose difference is two are called twin primes. For example (17, 19)
or (3557 and 3559). There is no proof of the hypothesis that there are infinitely
many twin primes.

For every positive integer k, there exist k consecutive composite integers.

Proof. Let n=k+1 and consider the numbers n!'+2,n!+3,....nl 4+ n. All
these numbers are composite because of i|n! + i for every
i=2,3,...,n.

Q.E.D.



Distribution diagrams for primes

200 400 600 800 1000

37—36—35—34-33-32-31 37— 31

3|8 1|7—16—15—14—1|3 30 17———13
39 18 5—4—3 12 29

| ] [
40 19 6 1—2 11 28 19

[ 1] [
41 20 7—8—9-10 27 41 TQ

[ ] |
42 21-22-23-24-25-26

(4]

43—44—45—46—47—-48-49... 43— 47




The prime counting function 7(n)

m Definition:
7(n) = number of primes in the set{1,2,...,n}

m The first values:



The Prime Number Theorem

The quotient of division of (n) by n/Inn will be arbitrarily close to 1 as n gets large.
It is also denoted as
(n) ~ ——
Inn

m Studying prime tables C. F. Gauss come up with the formula in ~1791.

m J. Hadamard and C. de la Vallée Poussin proved the theorem independently
from each other in 1896.



The Prime Number Theorem (2)

Example: How many primes are with 200 digits?

m The total number of positive integers with 200 digits:

10200 _ 10199 =9. 10199

m Approximate number of primes with 200 digits

10200 10199

m(10°%) = 2(10%°) ~ 255176 ~ 190110

~1,95-10%7

m Percentage of primes

1,95-107 1 o
o109 a0 220



Warmup: Extending m(x) to positive reals

Let m(x) be the number of primes which are not larger than x € R.
Prove or disprove: 7(x)— m(x —1) = [xisprime].



Warmup: Extending m(x) to positive reals

Let 7(x) be the number of primes which are not larger than x € R.
Prove or disprove: m(x)— m(x —1) = [xisprime].

Solution
The formula is true if x is integer: but x is real ...

But clearly m(x) = 7(|x]): then

m(x) —m(x—1) z([x)) = #(lx—1])
n([x)) —=(lx] -1)

= [Ix] isprime] ,

which is true.
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