Recurrent Problems

ITT9131 Konkreetne Matemaatika

Chapter One

The Tower of Hanoi
Lines in the Plane The Josephus Problem

Contents

1 Binary representation

2 Generalization of Josephus function

3 Intermezzo: The repertoire method

4 Binary representation of generalized Josephus function

Next section

1 Binary representation

2 Generalization of Josephus function

3 Intermezzo: The repertoire method

4 Binary representation of generalized Josephus function

Binary expansion of $n=2^{m}+\ell$

Denote

$$
n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

where $b_{i} \in\{0,1\}$ and $b_{m}=1$.

This notation stands for

$$
n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots b_{1} 2+b_{0}
$$

For example

$$
20=(10100)_{2} \quad \text { and } \quad 83=(1010011)_{2}
$$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Observations:
$1 \ell=\left(0 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
$22 \ell=\left(b_{m-1} \ldots b_{1} b_{0} 0\right)_{2}$
$32^{m}=(10 \ldots 00)_{2}$ and $1=(00 \ldots 01)_{2}$
$4 n=2^{m}+\ell=\left(1 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
$52 \ell+1=\left(b_{m-1} \ldots b_{1} b_{0} 1\right)_{2}$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Observations:
$1 \ell=\left(0 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
$22 \ell=\left(b_{m-1} \ldots b_{1} b_{0} 0\right)_{2}$
$32^{m}=(10 \ldots 00)_{2}$ and $1=(00 \ldots 01)_{2}$
$4 n=2^{m}+\ell=\left(1 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
$52 \ell+1=\left(b_{m-1} \ldots b_{1} b_{0} 1\right)_{2}$

Corollary

$$
J\left(\left(\boxed{1} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(b_{m-1} \ldots b_{1} b_{0} \boxed{1}\right)_{2}
$$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Observations:
$1 \ell=\left(0 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
$22 \ell=\left(b_{m-1} \ldots b_{1} b_{0} 0\right)_{2}$
$32^{m}=(10 \ldots 00)_{2}$ and $1=(00 \ldots 01)_{2}$
$4 n=2^{m}+\ell=\left(1 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$
$52 \ell+1=\left(b_{m-1} \ldots b_{1} b_{0} 1\right)_{2}$

Corollary

$$
\begin{gathered}
J\left(\left(\begin{array}{|c|}
\hline 1 \\
\left.\left.b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(b_{m-1} \ldots b_{1} b_{0}\right. \\
1 \\
\text { shift }
\end{array}\right)_{2}\right. \\
\uparrow
\end{gathered}
$$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Example

$$
\begin{aligned}
100 & =64+32+4 \\
J(100) & =J\left((1100100)_{2}\right)=(1001001)_{2} \\
J(100) & =64+8+1=73
\end{aligned}
$$

Next section

1 Binary representation

2 Generalization of Josephus function

3 Intermezzo: The repertoire method

4 Binary representation of generalized Josephus function

Generalization

Josephus function $J: \mathbb{N} \longrightarrow \mathbb{N}$

was defined using recurrences:

$$
\begin{aligned}
J(1) & =1 ; & & \\
J(2 n) & =2 J(n)-1, & & \text { for } n \geqslant 1 ; \\
J(2 n+1) & =2 J(n)+1, & & \text { for } n \geqslant 1 .
\end{aligned}
$$

Generalization

Josephus function $J: \mathbb{N} \longrightarrow \mathbb{N}$

was defined using recurrences:

$$
\begin{aligned}
J(1) & =1 ; & & \\
J(2 n) & =2 J(n)-1, & & \text { for } n \geqslant 1 ; \\
J(2 n+1) & =2 J(n)+1, & & \text { for } n \geqslant 1 .
\end{aligned}
$$

Introducing natural constants α, β and γ, generalize it as follows:

$$
\begin{array}{rlrl}
f(1) & =\alpha ; \\
f(2 n) & =2 f(n)+\beta, & & \text { for } n \geqslant 1 ; \\
f(2 n+1) & =2 f(n)+\gamma, & & \text { for } n \geqslant 1 .
\end{array}
$$

Generalization

Josephus function $J: \mathbb{N} \longrightarrow \mathbb{N}$

was defined using recurrences:

$$
\begin{aligned}
J(1) & =1 ; & & \\
J(2 n) & =2 J(n)-1, & & \text { for } n \geqslant 1 ; \\
J(2 n+1) & =2 J(n)+1, & & \text { for } n \geqslant 1 .
\end{aligned}
$$

Introducing natural constants α, β and γ, generalize it as follows:

$$
\begin{array}{rlrl}
f(1) & =\alpha ; \\
f(2 n) & =2 f(n)+\beta, & & \text { for } n \geqslant 1 ; \\
f(2 n+1) & =2 f(n)+\gamma, & \quad \text { for } n \geqslant 1 .
\end{array}
$$

$$
J=f, \quad \text { for } \alpha=1, \beta=-1, \gamma=1
$$

Repertoire method

To find closed form of a function f :
Step 1 Find few initial values for f;
Step 2 Find (or guess) closed formula from the values found by Step 1
(examine a repertoire of cases and combine them to find general closed formula)
Step 3 Verify the closed formula constructed as the result of Step 2.

The idea is to examine a repertoire of cases and use it to find a general closed formula for the recurrently defined function.

Repertoire method

To find closed form of a function f :
Step 1 Find few initial values for f;
Step 2 Find (or guess) closed formula from the values found by Step 1
(examine a repertoire of cases and combine them to find general closed formula)
Step 3 Verify the closed formula constructed as the result of Step 2.

The idea is to examine a repertoire of cases and use it to find a general closed formula for the recurrently defined function.

Repertoire method for generalized f-n f: STEP 1

n	$f(n)$	Calculation
1	α	$f(1)=\alpha$
2	$2 \alpha+\beta$	$f(2)=2 f(1)+\beta$
3	$2 \alpha+\quad \gamma$	$f(3)=2 f(1)+\gamma$
4	$4 \alpha+3 \beta$	$f(4)=2 f(2)+\beta$
5	$4 \alpha+2 \beta+\gamma$	$f(5)=2 f(2)+\gamma$
6	$4 \alpha+\beta+2 \gamma$	$f(6)=2 f(3)+\beta$
7	$4 \alpha+\quad 3 \gamma$	$f(7)=2 f(3)+\gamma$
8	$8 \alpha+7 \beta$	$f(8)=2 f(4)+\beta$
9	$8 \alpha+6 \beta+\gamma$	$f(9)=2 f(4)+\gamma$

Repertoire method for generalized f-n f : STEP 2

Observations:

For $n=1,2, \ldots, 9$, taking $n=2^{k}+\ell$

- Coefficient of α is 2^{k};
- Coefficient of β is $2^{k}-1-\ell$;
- Coefficient of γ is ℓ;

Repertoire method for generalized f-n f: STEP 3

Proposition:
If the function f is given by recurrences

$$
\begin{array}{rlrl}
f(1) & =\alpha ; & \\
f(2 n) & =2 f(n)+\beta, & \text { for } n \geqslant 1 ; \\
f(2 n+1) & =2 f(n)+\gamma, & \text { for } n \geqslant 1, \\
& & \\
& \text { and let } n=2^{k}+\ell, \text { then } & \\
f(n) & =A(n) \alpha+B(n) \beta+C(n) \gamma,
\end{array}
$$

where

$$
\begin{aligned}
& A(n)=2^{k} \\
& B(n)=2^{k}-1-\ell ; \\
& C(n)=\ell
\end{aligned}
$$

Proof of the proposition (1)

Lemma 1. $A(n)=2^{k}$, where $n=2^{k}+\ell$ and $0 \leqslant \ell<2^{k}$.

Proof.

Let $\alpha=1$ and $\beta=\gamma=0$. Then $f(n)=A(n)$ and

$$
A(1)=1 ; \quad A(2 n)=2 A(n), \text { for } n>0 ; \quad A(2 n+1)=2 A(n), \text { for } n>0
$$

Proof by induction over k :
Basis: If $k=0$, then $n=2^{0}+\ell$ and $0 \leqslant \ell<1$. Thus $n=1$ and

$$
A(1)=2^{0}=1
$$

Step: Let assume that $A\left(2^{k-1}+t\right)=2^{k-1}$, where $0 \leqslant t<2^{k-1}$ Two cases:

- If n is even, then ℓ is even and $\ell / 2<2^{k-1}$, thus

$$
A(n)=A\left(2^{k}+\ell\right)=2 A\left(2^{k-1}+\ell / 2\right)=2 \cdot 2^{k-1}=2^{k}
$$

- If n is odd, then $\ell-1$ is even and $(\ell-1) / 2<2^{k-1}$, thus

$$
A(n)=A\left(2^{k}+\ell\right)=2 A\left(2^{k-1}+(\ell-1) / 2\right)=2 \cdot 2^{k-1}=2^{k}
$$

Proof of the proposition (2)

Lemma 2. $A(n)-B(n)-C(n)=1$, for all $n \in \mathbb{N}$.

Proof.

Let f be the constant function $f(n)=1$. Then

$$
f(1)=\alpha ; \quad f(2 n)=2 f(n)+\beta ; \quad f(2 n+1)=2 f(n)+\gamma
$$

or

$$
1=\alpha ; \quad 1=2+\beta ; \quad 1=2+\gamma
$$

As this must hold for every $n \geq 1$, it must be $\alpha=1$ and $\beta=\gamma=-1$.

Proof of the proposition (3)

Lemma 3. $A(n)+C(n)=n$, for all $n \in \mathbb{N}$.

Proof.

Let $f(n)=n$. Then

$$
f(1)=\alpha ; \quad f(2 n)=2 f(n)+\beta ; \quad f(2 n+1)=2 f(n)+\gamma
$$

or

$$
1=\alpha ; \quad 2 n=2 n+\beta ; \quad 2 n+1=2 n+\gamma
$$

The solution is $\alpha=1, \beta=0$ and $\gamma=1$.

Proof of the proposition (4)

From Lemma 3 and Lemma 1 we can conclude

$$
2^{k}+C(n)=A(n)+C(n)=n=2^{k}+\ell,
$$

that gives

$$
C(n)=\ell
$$

From Lemma 2 follows

$$
B(n)=A(n)-1-C(n)=2^{k}-1-\ell
$$

Next section

1 Binary representation

2 Generalization of Josephus function

3 Intermezzo: The repertoire method

4 Binary representation of generalized Josephus function

The repertoire method: Basic ideas

Consider the following recursion scheme:

$$
\begin{aligned}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0 .
\end{aligned}
$$

The repertoire method: Basic ideas

Consider the following recursion scheme:

$$
\begin{aligned}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0 .
\end{aligned}
$$

Suppose that:
1Φ is linear in g : if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$, then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2Ψ is linear in each of the $m-1$ parameters β, γ, \ldots
No hypotheses are made on the dependence of Ψ on n.

The repertoire method: Basic ideas

Consider the following recursion scheme:

$$
\begin{aligned}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0 .
\end{aligned}
$$

Suppose that:
1Φ is linear in g : if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$, then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2Ψ is linear in each of the $m-1$ parameters β, γ, \ldots
No hypotheses are made on the dependence of Ψ on n.
Then the whole system is linear in the parameters $\alpha, \beta, \gamma, \ldots$
We can then look for a general solution of the form

$$
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\ldots
$$

The repertoire method: Description

Suppose we have a repertoire of m pairs of the form $\left(\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right), g_{i}(n)\right)$ satisfying the following conditions:
1 For every $i=1,2, \ldots, m, g_{i}(n)$ is the solution of the system corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$
2 The m-tuples $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right)$ are linearly independent.
Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined.
The reason is that, for every fixed n,

$$
\begin{aligned}
\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\ldots & =g_{1}(n) \\
\vdots & \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\ldots & =g_{m}(n)
\end{aligned}
$$

is a system of m linear equations in the m unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

Next section

1 Binary representation

2 Generalization of Josephus function

3 Intermezzo: The repertoire method

4 Binary representation of generalized Josephus function

Binary representation of generalized Josephus function

Definition

Generalized Josephus function (GJ-function) is defined for $\alpha, \beta_{0}, \beta_{1}$ as follows:

$$
\begin{aligned}
f(1) & =\alpha \\
f(2 n+j) & =2 f(n)+\beta_{j}, \quad \text { for } j=0,1 \text { and } n>0 .
\end{aligned}
$$

Binary representation of generalized Josephus function

Definition

Generalized Josephus function (GJ-function) is defined for $\alpha, \beta_{0}, \beta_{1}$ as follows:

$$
\begin{aligned}
f(1) & =\alpha \\
f(2 n+j) & =2 f(n)+\beta_{j}, \quad \text { for } j=0,1 \text { and } n>0 .
\end{aligned}
$$

We obtain the definition used before if to select $\beta_{0}=\beta$ and $\beta_{1}=\gamma$.

Binary representation of generalized Josephus function (2)

Case A. Let's consider even number $2 n$
If $2 n=2^{m}+\ell$, then the binary notation is

$$
2 n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=0$ and $b_{m}=1$.

Hence

$$
n=b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
$$

or

$$
n=\left(b_{m} b_{m-1} \ldots b_{1}\right)_{2}
$$

Binary representation of generalized Josephus function (3)

Case B. Odd number $2 n+1$

If $2 n+1=2^{m}+\ell$, then the binary notation is

$$
2 n+1=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n+1=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=1$ and $b_{m}=1$.

We get

$$
\begin{aligned}
2 n+1 & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+1 \\
2 n & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2 \\
n & =b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
\end{aligned}
$$

or

$$
n=\left(b_{m} b_{m-1} \ldots b_{1}\right)_{2}
$$

Binary representation of generalized Josephus function (3)

Case B. Odd number $2 n+1$

If $2 n+1=2^{m}+\ell$, then the binary notation is

$$
2 n+1=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n+1=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=1$ and $b_{m}=1$.

We get

$$
\begin{aligned}
2 n+1 & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+1 \\
2 n & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2 \\
n & =b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
\end{aligned}
$$

Same results for cases A and B indicates that we don't need to consider even and odd cases separately.

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
& =2\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& \vdots \\
& =f\left(\left(b_{m}\right)_{2}\right) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =f(1) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =\alpha 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}}
\end{aligned}
$$

where

$$
\beta_{b_{j}}= \begin{cases}\beta_{1}, & \text { if } b_{j}=1 \\ \beta_{0} & \text { if } b_{j}=0\end{cases}
$$

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
& =2\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& \vdots \\
& =f\left(\left(b_{m}\right)_{2}\right) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =f(1) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =\alpha 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}}
\end{aligned}
$$

where

$$
\beta_{b_{j}}= \begin{cases}\beta_{1}, & \text { if } b_{j}=1 \\ \beta_{0} & \text { if } b_{j}=0\end{cases}
$$

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{2}
$$

Example

Original Josephus function: $\alpha=1, \beta_{0}=-1, \beta_{1}=1$ i.e.

$$
\begin{aligned}
f(1) & =1 \\
f(2 n) & =2 f(n)-1 \\
f(2 n+1) & =2 f(n)+1
\end{aligned}
$$

Compute

$$
\begin{aligned}
& f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{2} \\
& f(100)=f\left((1100100)_{2}\right)=(1,1,-1,-1,1,-1,-1)_{2} \\
&=64+32-16-8+4-2-1=73
\end{aligned}
$$

Nothing special with base 2 !

Recursion by division by 3

$$
\begin{aligned}
f(1) & =\alpha_{1} \\
f(2) & =\alpha_{2} \\
f(3 n) & =2 f(n)+\beta_{0} \\
f(3 n+1) & =2 f(n)+\beta_{1} \\
f(3 n+2) & =2 f(n)+\beta_{2}
\end{aligned}
$$

Representation in base 3

$n=\left(t_{m} t_{m-1} \ldots t_{1} t_{0}\right)_{3}=t_{m} \cdot 3^{m}+t_{m-1} \cdot 3^{m-1}+\ldots+t_{1} \cdot 3+t_{0}$ where $t_{1} \in\{0,1,2\}$ are trits (instead of bits)

Nothing special with base 2! (cont.)

Let's evaluate:

Let $n=\left(t_{m} t_{m-1} \ldots t_{1} t_{0}\right)_{3}$. Then $t_{m} \in\{1,2\}$ and:

$$
\begin{aligned}
f\left(\left(t_{m} t_{m-1} \ldots t_{1} t_{0}\right)_{3}\right) & =2 \cdot f\left(\left(t_{m} t_{m-1} \ldots t_{1}\right)_{3}\right)+\beta_{t_{0}} \\
& =2 \cdot\left(2 \cdot f\left(\left(t_{m} t_{m-1} \ldots t_{2}\right)_{3}\right)+\beta_{t_{1}}\right)+\beta_{t_{0}} \\
& =4 f\left(\left(t_{m} t_{m-1} \ldots t_{2}\right)_{3}\right)+2 \beta_{t_{1}}+\beta_{t_{0}} \\
& =\ldots \\
& =2^{m} \cdot f\left(t_{m}\right)+2^{m-1} \cdot \beta_{t_{m-1}}+\ldots+2 \cdot \beta_{t_{1}}+\beta_{t_{0}} \\
& =2^{m} \cdot \alpha_{t_{m}}+2^{m-1} \cdot \beta_{t_{m-1}}+\ldots+2 \cdot \beta_{t_{1}}+\beta_{t_{0}}
\end{aligned}
$$

Nothing special with base 2! (conclusion)

General problem, general solution

Let $d \geq 2$ be an integer. Consider the recurrent problem:

$$
\begin{aligned}
f(i) & =\alpha_{i} & & \text { for } i \in\{1, \ldots, d-1\} \\
f(d n+j) & =c f(n)+\beta_{j} & & \text { for } i \in\{0, \ldots, d-1\}
\end{aligned}
$$

Let $n=\left(x_{m} x_{m-1} \ldots x_{1} x_{0}\right)_{d}$. Then $x_{m} \in\{1, \ldots, d-1\}$ and:

$$
\begin{aligned}
f\left(\left(x_{m} x_{m-1} \ldots x_{1} x_{0}\right)_{d}\right) & =c \cdot f\left(\left(x_{m} x_{m-1} \ldots x_{1}\right)_{d}\right)+\beta_{x_{0}} \\
& =c \cdot\left(c \cdot f\left(\left(x_{m} x_{m-1} \ldots x_{2}\right)_{d}\right)+\beta_{x_{1}}\right)+\beta_{x_{0}} \\
& =\ldots \\
& =c^{m} \cdot \alpha_{x_{m}}+c^{m-1} \cdot \beta_{x_{m-1}}+\ldots+c \cdot \beta_{x_{1}}+\beta_{x_{0}} \\
& =\left(\alpha_{x_{m}} \beta_{x_{m-1}} \ldots \beta_{x_{1}} \beta_{x_{0}}\right)_{c}
\end{aligned}
$$

