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Binary expansion of n = 2m+ `

Denote

n = (bmbm−1 . . .b1b0)2,

where bi ∈ {0,1} and bm = 1.

This notation stands for

n = bm2
m +bm−12

m−1 + . . .b12+b0

For example

20 = (10100)2 and 83 = (1010011)2



Binary expansion of n = 2m+ ` , where 06 ` < 2m

Observations:

1 ` = (0bm−1 . . .b1b0)2

2 2` = (bm−1 . . .b1b00)2

3 2m = (10 . . .00)2 and 1 = (00 . . .01)2

4 n = 2m + ` = (1bm−1 . . .b1b0)2

5 2`+1 = (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2) = (bm−1 . . .b1b0 1 )2

shift
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Binary expansion of n = 2m+ ` , where 06 ` < 2m

Example

100 = 64+32+4

J(100) = J((1100100)2) = (1001001)2

J(100) = 64+8+1 = 73
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Generalization

Josephus function J : N−→ N

was de�ned using recurrences:

J(1) = 1;

J(2n) = 2J(n)−1, for n > 1;

J(2n+1) = 2J(n) +1, for n > 1.

Introducing natural constants α,β and γ , generalize it as follows:

f (1) = α;

f (2n) = 2f (n) + β , for n > 1;

f (2n+1) = 2f (n) + γ, for n > 1.

J = f , for α = 1,β =−1,γ = 1
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Repertoire method

To �nd closed form of a function f :

Step 1 Find few initial values for f ;

Step 2 Find (or guess) closed formula from the values found

by Step 1

(examine a repertoire of cases and combine them to

�nd general closed formula)

Step 3 Verify the closed formula constructed as the result of

Step 2.

The idea is to examine a repertoire of cases and use it to �nd

a general closed formula for the recurrently de�ned function.
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Repertoire method for generalized f-n f : STEP 1

n f (n) Calculation

1 α f (1) = α

2 2α + β f (2) = 2f (1) + β

3 2α + γ f (3) = 2f (1) + γ

4 4α +3β f (4) = 2f (2) + β

5 4α +2β + γ f (5) = 2f (2) + γ

6 4α + β +2γ f (6) = 2f (3) + β

7 4α + 3γ f (7) = 2f (3) + γ

8 8α +7β f (8) = 2f (4) + β

9 8α +6β + γ f (9) = 2f (4) + γ



Repertoire method for generalized f-n f : STEP 2

Observations:

For n=1, 2, . . . , 9, taking n = 2k + `

Coe�cient of α is 2k ;

Coe�cient of β is 2k −1− `;

Coe�cient of γ is `;



Repertoire method for generalized f-n f : STEP 3

Proposition:

If the function f is given by recurrences

f (1) = α;

f (2n) = 2f (n)+β , for n > 1;

f (2n+1) = 2f (n)+ γ, for n > 1,

and let n= 2k + `, then

f (n) = A(n)α +B(n)β +C(n)γ,

where

A(n) = 2k ;

B(n) = 2k −1− `;

C(n) = `.



Proof of the proposition (1)

Lemma 1. A(n) = 2k , where n = 2k + ` and 06 ` < 2k .

Proof.

Let α = 1 and β = γ = 0. Then f (n) = A(n) and

A(1) = 1 ; A(2n) = 2A(n) , for n > 0 ; A(2n+1) = 2A(n) , for n > 0

Proof by induction over k:

Basis: If k = 0, then n= 20+ ` and 06 ` < 1. Thus n=1 and

A(1) = 20 = 1

Step: Let assume that A(2k−1+ t) = 2k−1 , where 06 t < 2k−1 Two cases:

If n is even, then ` is even and `/2< 2k−1, thus

A(n) = A(2k + `) = 2A(2k−1+ `/2) = 2 ·2k−1 = 2k

If n is odd, then `−1 is even and (`−1)/2< 2k−1, thus

A(n) = A(2k + `) = 2A(2k−1+(`−1)/2) = 2 ·2k−1 = 2k



Proof of the proposition (2)

Lemma 2. A(n)−B(n)−C (n) = 1, for all n ∈ N.
Proof.

Let f be the constant function f (n) = 1. Then

f (1) = α ; f (2n) = 2f (n)+β ; f (2n+1) = 2f (n)+ γ

or

1= α ; 1= 2+β ; 1= 2+ γ.

As this must hold for every n ≥ 1, it must be α = 1 and β = γ =−1.



Proof of the proposition (3)

Lemma 3. A(n) +C (n) = n, for all n ∈ N.
Proof.

Let f (n) = n. Then

f (1) = α ; f (2n) = 2f (n)+β ; f (2n+1) = 2f (n)+ γ

or

1= α ; 2n= 2n+β ; 2n+1= 2n+ γ.

The solution is α = 1, β = 0 and γ = 1.



Proof of the proposition (4)

From Lemma 3 and Lemma 1 we can conclude

2k +C (n) = A(n) +C (n) = n = 2k + `,

that gives

C (n) = `

From Lemma 2 follows

B(n) = A(n)−1−C (n) = 2k −1− `
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The repertoire method: Basic ideas

Consider the following recursion scheme:

g(0) = α ,
g(n+1) = Φ(g(n)) + Ψ(n;β ,γ, . . .) for n ≥ 0 .

Suppose that:

1 Φ is linear in g : if g(n) = λ1g1(n) + λ2g2(n), then
Φ(g(n)) = λ1Φ(g1(n)) + λ2Φ(g2(n)).
No hypotheses are made on the dependence of g on n.

2 Ψ is linear in each of the m−1 parameters β ,γ, . . .
No hypotheses are made on the dependence of Ψ on n.

Then the whole system is linear in the parameters α,β ,γ, . . .
We can then look for a general solution of the form

g(n) = αA(n) + βB(n) + γC (n) + . . .
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The repertoire method: Description

Suppose we have a repertoire of m pairs of the form

((αi ,βi ,γi , . . .),gi (n)) satisfying the following conditions:

1 For every i = 1,2, . . . ,m, gi (n) is the solution of the system

corresponding to the values α = αi ,β = βi ,γ = γi , . . .

2 The m m-tuples (αi ,βi ,γi , . . .) are linearly independent.

Then the functions A(n),B(n),C (n), . . . are uniquely determined.

The reason is that, for every �xed n,

α1A(n) +β1B(n) +γ1C (n) + . . . = g1(n)
... =

...

αmA(n) +βmB(n) +γmC (n) + . . . = gm(n)

is a system of m linear equations in the m unknowns

A(n),B(n),C (n), . . . whose coe�cients matrix is invertible.
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Binary representation of generalized Josephus function

De�nition

Generalized Josephus function (GJ-function) is

de�ned for α,β0,β1 as follows:

f (1) = α

f (2n+ j) = 2f (n) + βj , for j = 0,1 and n > 0.

We obtain the de�nition used before if to select β0 = β and β1 = γ.
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Binary representation of generalized Josephus function (2)

Case A. Let's consider even number 2n
If 2n= 2m+ `, then the binary notation is

2n= (bmbm−1 . . .b1b0)2

or

2n= bm2
m+bm−12

m−1+ . . .+b12+b0

where bi ∈ {0,1}, b0 = 0 and bm = 1.

Hence

n= bm2
m−1+bm−12

m−2+ . . .+b22+b1

or

n= (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B. Odd number 2n+1

If 2n+1= 2m+ `, then the binary notation is

2n+1= (bmbm−1 . . .b1b0)2

or

2n+1= bm2
m+bm−12

m−1+ . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1= bm2

m+bm−12
m−1+ . . .+b12+1

2n= bm2
m+bm−12

m−1+ . . .+b12

n= bm2
m−1+bm−12

m−2+ . . .+b22+b1

or

n= (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B. Odd number 2n+1

If 2n+1= 2m+ `, then the binary notation is

2n+1= (bmbm−1 . . .b1b0)2

or

2n+1= bm2
m+bm−12

m−1+ . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1= bm2

m+bm−12
m−1+ . . .+b12+1

2n= bm2
m+bm−12

m−1+ . . .+b12

n= bm2
m−1+bm−12

m−2+ . . .+b22+b1

Same results for cases A and B indicates that we don't need to consider even

and odd cases separately.



Binary representation of generalized Josephus function (4)

Let's evaluate:

f ((bm,bm−1, . . . ,b1,b0)2) = 2f ((bm,bm−1, . . . ,b1)2)+βb0

= 2(2f ((bm,bm−1, . . . ,b2)2)+βb1 )+βb0

= 4f ((bm,bm−1, . . . ,b2)2)+2βb1 +βb0

.

.

.

= f ((bm)2)2
m+βbm−12

m−1+ . . .+βb12+βb0

= f (1)2m+βbm−12
m−1+ . . .+βb12+βb0

= α2m+βbm−12
m−1+ . . .+βb12+βb0 ,

where

βbj =

{
β1, if bj = 1

β0 if bj = 0

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2
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Example

Original Josephus function: α = 1, β0 =−1, β1 = 1 i.e.

f (1) = 1

f (2n) = 2f (n)−1

f (2n+1) = 2f (n) +1

Compute

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0)2

f (100) = f ((1100100)2) = (1,1,−1,−1,1,−1,−1)2

= 64+32−16−8+4−2−1 = 73



Nothing special with base 2!

Recursion by division by 3

f (1) = α1

f (2) = α2

f (3n) = 2f (n) + β0

f (3n+1) = 2f (n) + β1

f (3n+2) = 2f (n) + β2

Representation in base 3

n = (tmtm−1 . . . t1t0)3 = tm ·3m + tm−1 ·3m−1 + . . .+ t1 ·3+ t0
where t1 ∈ {0,1,2} are trits (instead of bits)



Nothing special with base 2! (cont.)

Let's evaluate:

Let n = (tmtm−1 . . . t1t0)3. Then tm ∈ {1,2} and:

f ((tmtm−1 . . . t1t0)3) = 2 · f ((tmtm−1 . . . t1)3) + βt0

= 2 · (2 · f ((tmtm−1 . . . t2)3) + βt1) + βt0

= 4f ((tmtm−1 . . . t2)3) +2βt1 + βt0

= . . .

= 2m · f (tm) +2m−1 ·βtm−1 + . . .+2 ·βt1 + βt0

= 2m ·αtm +2m−1 ·βtm−1 + . . .+2 ·βt1 + βt0



Nothing special with base 2! (conclusion)

General problem, general solution

Let d ≥ 2 be an integer. Consider the recurrent problem:

f (i) = αi for i ∈ {1, . . . ,d −1}
f (dn+ j) = cf (n) + βj for i ∈ {0, . . . ,d −1}

Let n = (xmxm−1 . . .x1x0)d . Then xm ∈ {1, . . . ,d −1} and:

f ((xmxm−1 . . .x1x0)d) = c · f ((xmxm−1 . . .x1)d) + βx0

= c · (c · f ((xmxm−1 . . .x2)d) + βx1) + βx0

= . . .

= cm ·αxm + cm−1 ·βxm−1 + . . .+ c ·βx1 + βx0

= (αxmβxm−1 . . .βx1βx0)c
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