Recurrent Problems
ITT9131 Konkreetne Matemaatika

Chapter One
The Tower of Hanoi

Lines in the Plane

The Josephus Problem




Contents

Binary representation

Generalization of Josephus function

Intermezzo: The repertoire method

Binary representation of generalized Josephus function



Next section

Binary representation



Binary expansion of n =2m+/

n = (bmbm—l 000 b1b0)2,
where b; € {0,1} and b, = 1.

This notation stands for

n=bm2™+ bm 12"+ ... b2+ by

For example

20 = (10100), and 83 = (1010011),



Binary expansion of n =2" 4/  where 0 </ < 2™

Observations:
0= (0bm_1...b1bo)2
20 = (bm-1...b1bo0)2
2m = (10...00), and 1 = (00...01),
n=2"+{=(1bpn_1...b1by)2
20+1=(bm-1...b1bpl)>



Binary expansion of n =2" 4/  where 0 </ < 2™

Observations:
0= (0bm_1...b1bo)2
20 = (bm-1...b1bo0)2
2m = (10...00), and 1 = (00...01),
n=2"+{=(1bpn_1...b1by)2
20+1=(bm-1...b1bpl)>

(. 1|bm-1...b1b0)2) = (bm-1...b1bo )2




Binary expansion of n =2" 4/  where 0 </ < 2™

Observations:
0= (0bm_1...b1bo)2
20 = (bm-1...b1bo0)2
2m = (10...00), and 1 = (00...01),
n=2"+{=(1bpn_1...b1by)2
20+1=(bm-1...b1bpl)>

(. 1|bm-1...b1b0)2) = (bm-1...b1bo )2

| shift T




Binary expansion of n =2" 4/  where 0 </ < 2™

100 = 64 +32+4
J(100) = J((1100100),) = (1001001),
J(100) = 64+8+1=73
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Generalization

Josephus function J: N — N

was defined using recurrences:

J(1) =1,
J(2n) =2J(n) -1, for n>1;
J(2n+1)=2J(n)+1, for n> 1.



Generalization

Josephus function J: N — N

was defined using recurrences:

J(1) =1,
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Introducing natural constants o, and ¥, generalize it as follows:

f(l)=o;
f(2n) =2f(n)+B, forn>1;
f(2n+1) =2f(n)+7, for n>1.



Generalization

Josephus function J: N — N

was defined using recurrences:

J(1) =1,
J(2n) =2J(n) -1, for n>1;
J(2n+1)=2J(n)+1, for n> 1.

Introducing natural constants o, and ¥, generalize it as follows:

f(l)=o;
f(2n) =2f(n)+B, forn>1;
f(2n+1) =2f(n)+7, for n>1.

J=f, fora=1,=-1,y=1 @



Repertoire method

To find closed form of a function f:

Step 1 Find few initial values for f;

Step 2 Find (or guess) closed formula from the values found
by Step 1
(examine a repertoire of cases and combine them to
find general closed formula)

Step 3 Verify the closed formula constructed as the result of
Step 2.



Repertoire method

To find closed form of a function f:

Step 1 Find few initial values for f;

Step 2 Find (or guess) closed formula from the values found
by Step 1
(examine a repertoire of cases and combine them to
find general closed formula)

Step 3 Verify the closed formula constructed as the result of
Step 2.

The idea is to examine a repertoire of cases and use it to find
a general closed formula for the recurrently defined function.




Repertoire method for generalized f-n f: STEP 1

n | f(n) | Calculation

1| o fl)=a

2| 2a+p (2):2f(1)+ﬁ
3| 20+ y | f(3)=2f(1)+vy
4 | 4a+3p8 f(4)=2f(2)+B
51| 4a+2B+y f(5):2f(2)+}’
6| 4a+ B+2y | f(6)=2f(3)+p
7| 4o+ 3y | f(7)=2f(3)+Y
8 | 8a+7pB f(8)=2f(4)+B
9| 8a+6B8+y | f(9)=2f(4)+7y




Repertoire method for generalized f-n f: STEP 2

For n=1, 2, ..., 9, taking n= ok 1 ¢
m Coefficient of o is 2%;
m Coefficient of B is ok _1—¢;
m Coefficient of y is ¢;




Repertoire method for generalized f-n f: STEP 3

If the function f is given by recurrences

f(l)=o;
f(2n) =2f(n)+B, for n>1;
f(2n+1)=2f(n)+7, for n>1,

and let n= 2K+ ¢, then
f(n) = A(n)a+ B(n)B + C(n)y,
where

A(n) =2k,
B(n)=2K-1—¢;
C(n)=¢.




Proof of the proposition (1)

Lemma 1. A(n) =2k, where n=2%+¢ and 0 < ¢ < 2.

Proof.
Let o =1 and f=y=0. Then f(n) = A(n) and

Al)=1; A(2n) =2A(n) , for n>0 ; A(2n+1)=2A(n) , for n>0
Proof by induction over k:
Basis: If k=0, then n=2%+¢ and 0 <¢<1. Thus n=1 and
A1)=2°=1
Step: Let assume that A(214t) =2k~1  where 0 < t < 2K~ Two cases:
m If nis even, then £ is even and £/2 < 251, thus
A(n) = AQK+6) =2A(2K 1 4 £/2) =2.2k=1 =2k
m If nis odd, then £—1 is even and (£—1)/2 < 2K~1, thus

A(n) = AQK+0) =240 +(£-1)/2) = 2.2k =2k

- @



Proof of the proposition (2)

Lemma 2. A(n)—B(n)— C(n)=1, for all n€ N.
Proof.
Let f be the constant function f(n) =1. Then
fl)=a; f(2n)=2f(n)+p ; f(2n+1)=2f(n)+y

or
l=a; 1=2+48; 1=2+y.

As this must hold for every n>1, it must be @ =1 and f =y=—1.



Proof of the proposition (3)

Lemma 3. A(n)+ C(n)=n, for all ne N.
Proof.
Let f(n) = n. Then
fy=a; f(2n) =2f(n)+p ; f(2n+1)=2f(n)+y

or
l=a; 2n=2n+p; 2n+1=2n+y.

The solution is @ =1, =0 and y=1.



Proof of the proposition (4)

From Lemma 3 and Lemma 1 we can conclude
2k4 C(n)=A(n)+C(n)=n=2"+1,

that gives
C(n)=¢

From Lemma 2 follows

B(n)=A(n)—1—C(n)=2k—1—¢
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Intermezzo: The repertoire method



The repertoire method: Basic ideas

Consider the following recursion scheme:

g0) = «a,
gln+1) = &(g(n))+V¥(nmpB.,y,...) for n>0.
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Suppose that:

® is linear in g: if g(n) = A181(n) + A2g2(n), then
®(g(n)) = L10(g1(n)) + A29(g2(n)).
No hypotheses are made on the dependence of g on n.

V is linear in each of the m—1 parameters 3,7, ...
No hypotheses are made on the dependence of W on n.



The repertoire method: Basic ideas

Consider the following recursion scheme:

g0) = «a,
gln+1) = &(g(n))+V¥(nmpB.,y,...) for n>0.

Suppose that:

® is linear in g: if g(n) = A181(n) + A2g2(n), then
®(g(n)) = L10(g1(n)) + A29(g2(n)).
No hypotheses are made on the dependence of g on n.

V is linear in each of the m—1 parameters 3,7, ...
No hypotheses are made on the dependence of W on n.

Then the whole system is linear in the parameters a, 3,7, ...
We can then look for a general solution of the form

g(n) = aA(n)+BB(n)+yC(n)+... @



The repertoire method: Description

Suppose we have a repertoire of m pairs of the form
(i, Bis%is---),gi(n)) satisfying the following conditions:

For every i =1,2,...,m, gi(n) is the solution of the system
corresponding to the values ¢ = ;, =B,y =7, --

The m m-tuples (o, B;,7;,...) are linearly independent.

Then the functions A(n), B(n), C(n),... are uniquely determined.
The reason is that, for every fixed n,

wA(n) +BiB(n) +nC(n) +.. = &(n)

OmA(n) +BnB(n) +¥mC(n) +... = gm(n)

is a system of m linear equations in the m unknowns
A(n),B(n),C(n),... whose coefficients matrix is invertible. @
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Binary representation of generalized Josephus function

Generalized Josephus function (GJ-function) is
defined for o, By, B1 as follows:

fll)=o
f(2n+j)=2f(n)+B; . for j=0,1 and n> 0.




Binary representation of generalized Josephus function

Generalized Josephus function (GJ-function) is
defined for o, By, B1 as follows:

fll)=o
f(2n+j)=2f(n)+B; . for j=0,1 and n> 0.

We obtain the definition used before if to select fo = and B =7.



Binary representation of generalized Josephus function (2)

Case A. Let’s consider even number 2n

If 2n =2™ 4/, then the binary notation is

2n= (bmbm-1...b1bg)2

or
20 = bm2™ 4+ by_12™ 1+ ...+ b2+ by

where b; € {0,1}, bp =0 and b, =1.

Hence
n=bm2™ 4 by 122 .+ b2+ by

or
n= (bmbmfl s00 bl)z



Binary representation of generalized Josephus function (3)

Case B. Odd number 2n+1

If 2n+1=2™+4/, then the binary notation is
2n+1 =(bmbm,1..‘b1b0)2
or
2n+1=bp2™+ by 12" 4.+ 12+ by
where b; € {0,1}, bp =1 and by, =1.
We get
= 241 = b2+ by 12" 4. 4 b2 41
20 =bp2™ + by 12™ 4 4 b2
n=bm2" 4+ bn 12" 4.+ b2+ by

or
n= (bmbm,;[ ...b1)2



Binary representation of generalized Josephus function (3)

Case B. Odd number 2n+1

If 2n+1=2™M+/, then the binary notation is
2n+1 =(bmbm,1...b1b0)2
or
2n+1=bm2™+bp_12™ 1+ ...+ b2+ by
where b; € {0,1}, bp =1 and by, =1.

We get
s 2n+1=bp2™+ by 12™ 4.+ b2 +1
2n=bm2™ + byp_12™ L+ 4+ b2

n=bm2™ 1+ by 12" 2+ .+ b2+ by

Same results for cases A and B indicates that we don't need to consider even
and odd cases separately. @




Binary representation of generalized Josephus function (4)

Let's evaluate:

f((bmsbm-1,-..,b1,b0)2) = 2f ((bm,bm-1,.-.,b1)2) + Br,y
= 2(2f((bm, bm-1,--,b2)2) + Bby ) + Bby
=4f((bm,bm-1,---,b2)2) +2ﬁbl +ﬁb°

= f((bm)2)2™ 4 Boy 127 4.+ Bry 24 Bro
= £(1)2™ +Bb,, 12"+ 4 Boy 2+ o
= (x2m+ﬁbmf12m71 +...+ Bpy 2+ Boy>

where

_ B, ifbj:l
ﬁbf‘{ﬁo if bj=0



Binary representation of generalized Josephus function (4)

Let's evaluate:

f((bmsbm-1,-..,b1,b0)2) = 2f ((bm,bm-1,.-.,b1)2) + Br,y
= 2(2f((bm, bm-1,--,b2)2) + Bby ) + Bby
=4f((bm,bm-1,---,b2)2) +2ﬁbl +ﬁb°

= f((bm)2)2™ 4 Boy 127 4.+ Bry 24 Bro
= £(1)2™ +Bb,, 12"+ 4 Boy 2+ o
= (x2m+ﬁbmf12m71 +"~+ﬁb12+ﬁb07

where

_ B, ifbj:l
ﬁbf‘{ﬁo if bj=0

F((Bmbm-1..-b1b0)2) = (b, 4 Boyya - B Boo)2 @



Example

Original Josephus function: =1, fp=—1, fi=1i.e.

f(1) =1
f(2n) =2f(n)—1
f(2n+1)=2f(n)+1

f((bmbm-1---b1bo)2) = (0Bp,,_, Bby 2 - - - Bby Bbo )2

£(100) = £((1100100),) = (1,1,—1,—1,1,—1,—1),
=64432—-16—8+4—-2-1=73



Nothing special with base 2!

Recursion by division by 3

f(l) = 0

f(2) = 0
f(3n) = 2f(n)+Bo
f(3n+1) = 2f(n)+pB
f(3n+2) = 2f(n)+f2

Representation in base 3

n=(tmtm_1...t1tg)3 =tm-3"+tm 1-3" 1 4+...+t -3+t
where t; € {0,1,2} are trits (instead of bits)

@



Nothing special with base 2! (cont.)

Let's evaluate:

Let n= (tmtm—1...t1to)3. Then t, € {1,2} and:

F((tmtm—1---t1t0)3)

2-f((tmtm-1---t1)3) + B
2-(2- f((tmtm-1---12)3)+ Br,) + Bro
4f((tmtm_1 ...t2)3) + 2B, +ﬁto

2™ f(tm)+2" " B+ 2 By + B
2™ e, +2" 7 By o+ 2 By + B



Nothing special with base 2! (conclusion)

General problem, general solution

Let d > 2 be an integer. Consider the recurrent problem:

f(i)y = a; forie{l,...,d -1}
f(dn+j) = cf(n)+p; forie{0,...,d—1}

Let n = (XmXm—1...X1X0)d- Then x,m, € {1,...,d —1} and:

f((XmXm=1...x1%0)d) = C-F((XmXm=1---X1)d)+ Bx
= c-(c- F((xmXm-1---%2)d) + Bx) + Bxo

M O+ €™ By o C B+ B
= (@B 0008080l
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