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Fibonacci Numbers



Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.
m A baby rabbit becomes adult in one month.

= A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Leonardo
Fibonacci
(1175-1235)



Fibonacci numbers: Idea

Fibonacci's problem
A pair of baby rabbits is left on an island.
m A baby rabbit becomes adult in one month.

= A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

Leonardo
= On the first month, the two baby rabbits will have become adults. Fibonacci
m On the second month, the two adult rabbits will have produced a (1175-1235)

pair of baby rabbits.

m On the third month, the two adult rabbits will have produced
another pair of baby rabbits, while the other two baby rabbits will
have become adults.

m And so on, and so on ...



Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.
m A baby rabbit becomes adult in one month.

= A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

Leonardo
month [0 |1 |2 |3 |4|5]| 6 7| 8 9 | 10 Fibonacci
baby 1{0(1|1[2|3]|65 8 [ 13 | 21 | 34 (1175-1235)
adult 0|1 (12|35 8 [13 |21 |34 |55
total 1 (1235|813 |21 |34 |55]89

That is: at month n, there are f,+; pair of rabbits, of which f, pairs of
adults, and f,_; pairs of babies.
(Note: this seems to suggest 1 =1 ...) @



Fibonacci Numbers: Main formulas




Fibonacci Numbers: Main formulas

n|o|1]2|3|4|5]|6] 7] 8]09
fnJO]1]1]2][3]5]38

m fp=fh1+7f 2, with fo=0and f =1.

. f,= % (d>" —&)") ("Binet form")

where ¢ = 14—27\/5 =1.618... is the golden ratio.




Fibonacci Numbers: Main formulas

n|o0|1]2|3]|]4|5]6]7]|8] 9|10
fnJO]1]1]2][3]5]38

Formulae for computing:

m fp=fh1+7f 2, with fo=0and f =1.

. f,= % (d>" —&)") ("Binet form")

where ¢ = 14—27\/5 =1.618... is the golden ratio.

Generating function

z 1 1 1
fn n_ - _ _ . -1
Z A \/E(l—cbz 1—¢z) VzeC: |z]<d™ ",

where & = 1*2‘/5 = —0.618... is the algebraic conjugate of ®.




Some Fibonacci Identities

Cassini's Identity f,1f, 1 —f2=(—1)" for all n>0



Some Fibonacci Identities

Cassini's Identity fp11f,—1—f,2=(=1)" for all n>0

The Chessboard Paradox




Some Fibonacci Identities

Cassini's Identity fp11f, 1 —f2 = (—1)" for all n>0

Divisors f, and f,41 are relatively prime and f; divides f,:

ng(fnv fm) = fgcd(n,m)



Some Fibonacci Identities

Cassini's Identity fpi1f,_1—f2 = (—1)" for all n>0

Divisors f, and f,+; are relatively prime and f divides f,:

ged(fn, fm) = fgcd(n,m)

Matrix Calculus If A is the 2 x 2 matrix ( 1 é ), then

n __ fn+1 fn
A _< £ £ s ) , for n > 0.

Observe that this is equivalent to Cassini’s identity.



Some Fibonacci Identities (2)

Fibonacci Numbers and Pascal’s Triangle:




Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive
Fibonacci numbers:

ai + = —
ax +

an—2+

ap-1+ —
an

where a1 = a, =---=a, =1.



Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive
Fibonacci numbers:

1 i
ai + 1 :";—17
n
a+
1
an—2+
an-1+ —
n
where a1 = a, =---=a, =1.
1 fs 5
1 —=-=1.(6
1 =30



Some applications of Fibonacci numbers

Let S, denote the number of subsets of {1,2,...,n} that do not contain
consecutive elements. For example, when n = 3 the allowable subsets are
0,{1},{2},{3},{1,3}. Therefore, S3 =5. In general, S, = fp42 for n >1.



Some applications of Fibonacci numbers

Let S, denote the number of subsets of {1,2,...,n} that do not contain
consecutive elements. For example, when n = 3 the allowable subsets are
0,{1},{2},{3},{1,3}. Therefore, S3 =5. In general, S, = fp42 for n>1.
Draw n dots in a line. If each domino can cover exactly two such dots, in how
many ways can (non-overlapping) dominoes be placed? For example

n=2 L) E'
n=3 eeo e [Foe o [e 9]

n=4 eeee [0 olee oK)
e o[ [EFEE

The number of possible placements D,, of dominoes with n dots, consider the
rightmost dot in any such placement P. If this dot is not covered by a domino,
then P minus the last dot determines a solution counted by D,_;. If the last
dot is covered by a domino, then the last two dots in P are covered by this
domino. Removing this rightmost domino then gives a solution counted by
D,_».Taking into account these two possibilities D, = D,_1 + D,_o for n >3
with Dy =1, D, =2. Thus D, = f,41 for n> 0.



Some applications of Fibonacci numbers

Let S, denote the number of subsets of {1,2,...,n} that do not contain
consecutive elements. For example, when n = 3 the allowable subsets are
0,{1},{2},{3},{1,3}. Therefore, S3 =5. In general, S, = fp42 for n >1.
Draw n dots in a line. If each domino can cover exactly two such dots, in how
many ways can (non-overlapping) dominoes be placed? For example

n=2 ee [9]

n=3 eee [Ie o[ 9

n=4 eeee [ eee efee]e

eo[f s [T

Thus D, = f,41 for n> 0.
Compositions: Let T, be the number of ordered compositions of the positive
integer n into summands that are odd. For example,
4=143=3+1=1+1+1+1andb5=5=1+1+3=1+43+1=3+1+1=
=141+4+1+1+1. Therefore, T4 =3 and Ts =5. In general, T, =1, for n> 0.



Some applications of Fibonacci numbers

Let S, denote the number of subsets of {1,2,...,n} that do not contain
consecutive elements. For example, when n = 3 the allowable subsets are
0,{1},{2},{3},{1,3}. Therefore, S3 =5. In general, S, = fp42 for n >1.

Draw n dots in a line. If each domino can cover exactly two such dots, in how
many ways can (non-overlapping) dominoes be placed? For example

n=2 ee [9]
n=3 eee [Ie o[ 9
n=4 eeee [ eee efee]e
e o5 [EFE
Thus D, = f,41 for n> 0.

Compositions: Let T, be the number of ordered compositions of the positive
integer n into summands that are odd. For example,
4=143=3+1=1+1+1+1andb5=5=1+1+3=1+43+1=3+1+1=
=141+4+1+1+1. Therefore, T4 =3 and Ts =5. In general, T, =1, for n> 0.

Compositions: Let B, be the number of ordered compositions of the positive
integer n into summands that are either 1 or 2. For example,
3=14+2=2+1=1+1+1and4=2+4+2=1+14+2=1+2+1=
=2+4+141=1+1+4+1+1.. Therefore, B3 =3 and B; =5. In general,

B, = fh+1 for n> 0.
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Approximations

Observation

lim®" =0

n—yeo

°n
[ ] f,,ﬁ\/gasn%oo

‘-5

For example:

fo=| 22 4+ 1| = [ss.00364... + 1 = |55.50364...] = 55
e lE T2 DY e e

fi= |22 4 L] |ssio077s.. 4 L = 89.49775...| =89
11— \/g 2 —_— . e 2 — o e —_—



Approximations

Observation

lim " =0

n—seo

n
B2 asn—o

NG
_ | on
= fo=| % +3]
m S dasnoe
n—1

For example:

iz 89
— = — ~1.61818182~ $ =1.61
o 55 6181818 61803



Fibonacci numbers with negative index: Idea

What can f, be when n is a negative integer?

We want the basic properties to be satisfied for every n € Z:

m Defining formula:
fo=fao1+fho2.

m Expression by golden ratio:

m Matrix form:

f, f, 1 1
n __ n+1 n _
A 7( £, £y ) WhereAf(1 0).
(Consequently, Cassini's identity too.)
Note: For n=0, the above suggest f; =1 ... @



Fibonacci numbers with negative index: Formula

For every n > 1,
= (—1)"’1f,,



Fibonacci numbers with negative index: Formula

For every n > 1,
fon=(-1)""1f,

Proof: As (1—®z)-(1-®z)=1-z—22 itisd 1=—-&=0618...
Then for every n>1,

—

Q.E.D.



Fibonacci numbers with negative index: Formula

For every n > 1,
m= (—1)"_1f,,

Proof: As (1—®z)-(1-®z)=1-z—22 itisd1=-b=0618...
Then for every n>1,

£, = 2 (o7&

= (o -(or)

_1\n+1 .
_ (35 (on—67)

= ()",

~ &

Q.E.D.

Another proof is by induction with the defining relation in the form f,_» =, — f5_1,
with initial conditions f; =1, fo = 0. @



Warmup: The generalized Cassini's identity

For every n,k € Z,
fork = fcfar1 +fi_1fn



Warmup: The generalized Cassini's identity

For every n,k € Z,
fotk = fifarr +fi_afn

Why generalization?
Because for k =1 —n we get

fi = (—1)" 2 fpifopr +(-1)"1F2,

which is Cassini's identity multiplied by (—1)".



Warmup: The generalized Cassini's identity

For every n,k € Z,

fork = fifar1 +fi_1fn

Proof: For every n € Z let P(n) be the following proposition:

Vk € Z. f,,+k = fkfn+1 + e 1fn.

m For n=0 we get f, =1, -1+0.
For n=1 we get fi 41 =f-1+f_1-1.
m If n>2and P(n—1) and P(n—2) hold, then:
fn+k = 7"n—l-f—k'i_fn—2+k
fefn+fo_1faa+fifoa+fi_1fao
= fk fn+1 o fk*lfn .

m If n<0 and P(n+1) and P(n+2) hold, then

fark = forok—for1k
fefni3s +fe_ifora —fifora —f_1foia

fk fn+1 aF fk_l fn . @



A note on generating functions for bi-infinite sequences

Question

Can we define f, for every n € Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be defined in z=0.)



A note on generating functions for bi-infinite sequences

Question

Can we define f,, for every n € Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be defined in z=10.)

Answer: Yes, but it would not be practical!

A generalization of Laurent’s theorem goes as follows:
Let f be an analytic function defined in an annulus A={ze C|r <|z| < R}.
Then there exists a bi-infinite sequence (an),cz such that:

the series },~0a,2" has convergence radius > R;
the series }',~1 a ,z" has convergence radius > 1/r;
for every z € A it is Y ez anz" = £(2).
We could set r =0, but the power series }.,~1 a_nz" would then need to have infinite

convergence radius! (i.e., lim,_e ¥/|a_s| =0.) However, lim,—. {/|f—,| = ®.
Also, the intersection of two annuli can be empty: making controls on feasibility of
operations much more difficult to check. (Not so for “disks with a hole in zero”.)

@



Fibonacci numbers cheat sheet

m Recurrence:
fo=0; 1 =1;
f,-, = Tp—1 +fn_2 VneZ.

m Binet form:

_ 1 n Hn
f,,_\/g(cb - ) Vhnez.
m Generating function:
z 1
anz":m VzeC, \z|<$.

n>0
= Matrix form: Lo n fon 9
(1 0) :( f fnil)VnEZ.
m Generalized Cassini's identity:
fosk = fufor1 +fu_1fa Vnk €Z.
m Greatest common divisor:

ged (fm, fa) = fgcd(m,n) Vm,n€Z. @



Next section

Harmonic numbers



Harmonic numbers

The harmonic numbers are given by the formula

Hn: % for n> 0, with Hp =0

IL s

m H, is the discrete analogue of the natural logarithm.

m The first twelve harmonic numbers are shown in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11
H 0 1 3 1 25 137 49 363 76l 7120 7381 83711
= 2 6 12 60 20 140 280 2520 2520 27720




Harmonic numbers

n 0 1 2 3 4 5 6 7 8 9 10 11
H 0 1 3 1 25 137 49 363 761 7129 7381 83711
n 2 6 12 60 20 140 280 2520 2520 27720




Harmonic numbers

m Harmonic and Stirling cyclic numbers: H, = % {n—é—l} for all n>1;

3

He=(n+1)(Hp+1—1) for all n > 1;

n+1 1
= _ = >1-
( 5 ) (H"+1 2) forall n>1;

k n+1 1
= —_— >1:
)Hk < 1) (Hn“ 1> for every n>1;

n H,,~Inn—&—)/—&—2i

x
Il
-

[ |
It
=
=L

2 M -
N\

—_ X
i
I
3
Il
38

=
1
8

1 €n
———+-——— wh ~ 0. 21 49 01
o 122 4F T ere Y~ 0.57721 56649 01533 denotes
Euler’s constant.



Harmonic numbers

m Harmonic and Stirling cyclic numbers: H, = % {n—é—l} for all n>1;

n
= ZHk:(n-i—l)(H,,H—l) for all n>1;
k=1
z n+1 1
kH, = H — =) f In>1;
Ikgl k (2)("+1 2) oralln=>1,;
Nk n+1 1
= - =21,
-k§1<m)Hk <m+1> (H,,H m_"_1>foreveryn/1,
m lim H, =oo;
n—oo

where Y~ 0.57721 56649 01533 denotes

1 €n
Hy ~1 by =
B Yt T 12 T 12008

Euler’s constant.

m Hjp~2.92896 82578 96 @
® Hiooo0000 ~ 14.39272 67228 65723 63138 11275



Harmonic numbers

Generating function:

1 1 3

25
— 2 4
TNy =t g et = T e’
Indeed, ;=2 =Y 1p>02", In7=> =Y,>0 %, and
| o 1
H, = Z - — Z 1n7k7
sk S k



Harmonic numbers

Generating function:

1 1 11 25
I = el - 3 il 4 = H.z"
" z+ + +57 Eo nZ

1 _ 1 _ z"
Indeed, 1=, =¥,02", In 5 =Ynz % and

nk L
k

»\n—l
uM=

A general remark

If G(z) is the generating function of the sequence (go,g1,82,--.), then G(z)/(1—2z) is
the generating function of the sequence of the partial sums of the original sequence:

n=>0 n=>0

if G(z)= Y gnz" then GE Z(ng>z



Harmonic numbers and binomial coefficients

Nk n+1 1
£ ()= (2 3) (o= 553



Harmonic numbers and binomial coefficients

n+1 H _ 1
m+1 oAl m+1

Z ()
Take v(x) = (%

m+1): then

av=(10) () = ™= ()

m+1 m
We can then sum by parts with u(x) = Hy and get:

Z(:’) H,6x (mj—l) HX—Z(;—:ll)xiSX

X 1
<m+1) (HX* m+1)+c

Then £7_o (£)Hk = (mia) (He— 751)

x=n+1
m+1

__ (n+1
x=0 _>(

m+1) (H,,H = #ﬂ) as desired.

@



Harmonic numbers and binomial coefficients

LS < n+1 1
L ()= (2 13) (e 77

Corollary

For m=0 we get:
Z He=(n+1)(Hpy1—-1)=(n+1)H,—n
k=0

For m=1 we get:

2 _ n(n+1) 1\ n(n+1) n(n+1)
kgo kHy = 5 (Hn+1 5) =% Hon a




Harmonic numbers of higher order

For n > 1 and m > 2 integer, the nth harmonic number of order m is

(m)_ v L
H™ = T

Il =

As with the “first order’ harmonic numbers, we put H((,m) =0 as an empty sum.

For m > 2 the quantities
H™ = lim H{™

n—oo

exist finite: they are the values of the Riemann zeta function {(s) =¥, & for s=m.



Euler's ¥ constant

Euler's approximation of harmonic numbers

For every n > 1 the following equality holds:

Ho—nn=1- Y — (H™-1)

m>2 M



Euler's ¥ constant

Euler's approximation of harmonic numbers
For every n > 1 the following equality holds:
1
m) _

Hp—Inn=1— —(H("’) 1)
m>2
For k > 2 we can write:
k 1 1
In =In = -
k—1 17% mZ>1 m-km

As In(a/b) =Ina—Inb and In1 =0, by summing for k from 2 to n we get:
n 1 =
=H,-1+ ¥ (H™-1)

n 1 B
- Z Z m-km =k

Inn—=
ne EZ’""‘"’ m>1 k=2




Euler's ¥ constant

Euler's approximation of harmonic numbers

For every n > 1 the following equality holds:

Hp—Inn=1-Y l(H,(,’"Ll)

m>2 m

For m>2, H(™ converges from below to {(m).
It turns out that {(s) —1 ~27%, therefore the series ¥,,~» = (&(m)—1) converges.

The quantity

y=1- ¥ = (¢(m)-1)

m>2

is called Euler’s constant. The following approximation holds:

L

Ho=Inn+vy+ —— : +o0 1
ne 4 2n  12n2 n3
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Mini-guide to other number series
m Eulerian numbers



Eulerian Numbers

Don't mix up with Euler numbers!

1 2 En

E=(1,0,-1,0,5,0,—61,0,1385,0,... — = =
<77 s V59, Y, ) sy ><_)sinhx X fex ;n!x




Eulerian Numbers

Definition

Let & = (m1,72,...7n) be a permutation of {1,2,...,n}. An ascent of the permutation
7 is any index i (1 < i< n) such that m; < 7; 1. The Eulerian number <Z> is the

number of permutations of {1,2,...,n} with exactly k ascents.



Eulerian Numbers

Definition

Let 7 = (m1,72,...Tn) be a permutation of {1,2,...,n}. An ascent of the permutation
7 is any index i (1 <7< n) such that m; < m;1. The Eulerian number <Z> is the

number of permutations of {1,2,...,n} with exactly k ascents.

Examples

m The permutation 7@ = (71, 72,...7T,) = (1,2,3,4) has three ascents since
1<2<3<4and it is the only permutation in S4 = {1,2,3,4} with three

ascents; this is <§> =1

m There are <£1‘> =11 permutations in S4 with one ascent:

(1747372)7(2717473)7(2747371)7(3717472)7(3727174)7(3727471)7(3747271)7
(4,1,3,2),(4,2,1,3),(4,2,3,1), and (4,3,1,2).



Eulerian Numbers

Let @ = (my,72,...7,) be a permutation of {1,2,...,n}. An ascent of the permutation
7 is any index i (1 < i< n) such that m; < m; ;. The Eulerian number <Z> is the

number of permutations of {1,2,...,n} with exactly k ascents.

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1




Eulerian Numbers

Some identities:

> < >_1foralln21;
> < >fora||n>1;
> k+1)<”—1>+(n—k)<zj> for all n > 2;

> n! for all n > 2;

Recurrency:

(3
Symmetry: <
(¢
5

n—1
Worpitzky's identity: x" = Z Z S for all n > 2;
k=0 n

x
x>

o <Z> = ;(71)’<n7 )(k+1 )" for all n >

J

n—1 k
Stirling numbers: {Z} = ”1, Z <Z> (n m) foralln>mand n>1;

k=0

tn

. = n

Generating f-n: e(x]—.:l.i)):ﬂ( =) <m>x”’—|. @
o n!
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Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:
n—1 n
Sm(n)=0"+1"+ . +(n—1)"= Y km=) xMéx
k=0 0

Plotting an expansion with respect to n yields:

ot P

YR (R

S3(n) = §”4 —gn"' -i-gn2

San) = i I 4lp 1,

Se(m) = 1m0 I 3 X

Se(n) = in7 —inﬁ +%n5 ,ins !

S7(n) = I i 7l _34,,4 +1§2

s = e ke B CEe (B g,
DGR VU VS S s L 0



Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:
n—-1 n
Sm(n)=0"+1"+ . +(n—1)"= Y km=) xMéx
k=0 0

Bernoulli observed the following regularities:

m The leading coefficient of S, is always %ﬂ = #ﬂ ("'3'1)

m The coefficient of n™ in S, is always f% = 7% . % . (m1+1)

m The coefficient of n™~1 in S, is always 3 = 1. #ﬂ (’"2+1

m The coefficient of n™2 in S, is always 0.

m The coefficient of n™3 in S, is always —% = —% - % . (’"4“).

m The coefficient of n™ % in S, is always 0.
m The coefficient of n™5 in S, is always i - #ﬂ : ("’;1).

m And so on, and soon ...



Bernoulli numbers

The kth Bernoulli number is the unique value By such that, for every m >0,

1 mom+1 _
Sm — B m+1—k
(n) —m+1k§0( 5 ) e

Bernoulli numbers are also defined by the recurrence:

)3 (’"jl)sk:[mﬂ]

k=0

Observe that the above is simply Sp,(1).

nlo 1 2 3 4 5 6 7 8 9 10 11 12
691
Bo|l —3 § 0 —35 0 23 0 —35 0 5 —2730



Bernoulli numbers and the Riemann zeta function

For every n > 1,
q 22n71n.2n an

¢(2n) = (-1)"" DI

In particular,
2

@=L a=%
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