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Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

A baby rabbit becomes adult in one month.

A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Leonardo
Fibonacci

(1175�1235)
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Fibonacci's problem

A pair of baby rabbits is left on an island.

A baby rabbit becomes adult in one month.

A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

On the �rst month, the two baby rabbits will have become adults.

On the second month, the two adult rabbits will have produced a
pair of baby rabbits.

On the third month, the two adult rabbits will have produced
another pair of baby rabbits, while the other two baby rabbits will
have become adults.

And so on, and so on . . .

Leonardo
Fibonacci

(1175�1235)



Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

A baby rabbit becomes adult in one month.

A pair of adult rabbits produces a pair of baby rabbits each
month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

month 0 1 2 3 4 5 6 7 8 9 10
baby 1 0 1 1 2 3 5 8 13 21 34
adult 0 1 1 2 3 5 8 13 21 34 55
total 1 1 2 3 5 8 13 21 34 55 89

That is: at month n, there are fn+1 pair of rabbits, of which fn pairs of
adults, and fn−1 pairs of babies.
(Note: this seems to suggest f−1 = 1 . . . )

Leonardo
Fibonacci

(1175�1235)



Fibonacci Numbers: Main formulas

n 0 1 2 3 4 5 6 7 8 9 10
fn 0 1 1 2 3 5 8 13 21 34 55

Formulae for computing:

fn = fn−1 + fn−2, with f0 = 0 and f1 = 1.

fn = 1√
5

(
Φn− Φ̂n

)
("Binet form")

where Φ = 1+
√
5

2 = 1.618 . . . is the golden ratio.

Generating function

∑
n>0

fnz
n =

z

1−z−z2
=

1√
5

(
1

1−Φz
− 1

1− Φ̂z

)
∀z ∈ C : |z |< Φ−1 ,

where Φ̂ = 1−
√
5

2 =−0.618 . . . is the algebraic conjugate of Φ.
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The Chessboard Paradox
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Divisors fn and fn+1 are relatively prime and fk divides fnk :

gcd(fn, fm) = fgcd(n,m)



Some Fibonacci Identities

Cassini's Identity fn+1fn−1− f 2n = (−1)n for all n > 0

Divisors fn and fn+1 are relatively prime and fk divides fnk :

gcd(fn, fm) = fgcd(n,m)

Matrix Calculus If A is the 2×2 matrix

(
1 1
1 0

)
, then

An =

(
fn+1 fn
fn fn−1

)
, for n > 0.

Observe that this is equivalent to Cassini's identity.



Some Fibonacci Identities (2)

Fibonacci Numbers and Pascal's Triangle: fn+1 =
bn/2c

∑
j=0

(
n− j

j

)
n fn

(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

) (
n
6

) (
n
7

) (
n
8

)
0 0 1

1 1 1 1

2 1 1 2 1

3 2 1 3 3 1

4 3 1 4 6 4 1

5 5 1 5 10 10 5 1

6 8 1 6 15 20 15 6 1

7 13 1 7 21 35 35 21 7 1

8 21 1 8 28 56 70 56 28 8 1



Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1s equals the ratio of successive
Fibonacci numbers:

a1 +
1

a2 +
1

. . .

an−2 +
1

an−1 +
1

an

=
fn+1

fn
,

where a1 = a2 = · · ·= an = 1.

For example

1+
1

1+
1

1+
1

1

=
f5

f4
=

5

3
= 1.(6)
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Some applications of Fibonacci numbers

1 Let Sn denote the number of subsets of {1,2, . . . ,n} that do not contain
consecutive elements. For example, when n = 3 the allowable subsets are
/0,{1},{2},{3},{1,3}. Therefore, S3 = 5. In general, Sn = fn+2 for n > 1.

2 Draw n dots in a line. If each domino can cover exactly two such dots, in how
many ways can (non-overlapping) dominoes be placed? For example

Thus Dn = fn+1 for n > 0.

3 Compositions: Let Tn be the number of ordered compositions of the positive
integer n into summands that are odd. For example,
4 = 1+3 = 3+1 = 1+1+1+1 and 5 = 5 = 1+1+3 = 1+3+1 = 3+1+1 =
= 1+1+1+1+1. Therefore, T4 = 3 and T5 = 5. In general, Tn = fn for n > 0.

4 Compositions: Let Bn be the number of ordered compositions of the positive
integer n into summands that are either 1 or 2. For example,
3 = 1+2 = 2+1 = 1+1+1 and 4 = 2+2 = 1+1+2 = 1+2+1 =
= 2+1+1 = 1+1+1+1.. Therefore, B3 = 3 and B4 = 5. In general,
Bn = fn+1 for n > 0.
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1 Let Sn denote the number of subsets of {1,2, . . . ,n} that do not contain
consecutive elements. For example, when n = 3 the allowable subsets are
/0,{1},{2},{3},{1,3}. Therefore, S3 = 5. In general, Sn = fn+2 for n > 1.

2 Draw n dots in a line. If each domino can cover exactly two such dots, in how
many ways can (non-overlapping) dominoes be placed? For example

The number of possible placements Dn of dominoes with n dots, consider the
rightmost dot in any such placement P. If this dot is not covered by a domino,
then P minus the last dot determines a solution counted by Dn−1. If the last
dot is covered by a domino, then the last two dots in P are covered by this
domino. Removing this rightmost domino then gives a solution counted by
Dn−2.Taking into account these two possibilities Dn = Dn−1 +Dn−2 for n > 3
with D1 = 1, D2 = 2. Thus Dn = fn+1 for n > 0.

3 Compositions: Let Tn be the number of ordered compositions of the positive
integer n into summands that are odd. For example,
4 = 1+3 = 3+1 = 1+1+1+1 and 5 = 5 = 1+1+3 = 1+3+1 = 3+1+1 =
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3 = 1+2 = 2+1 = 1+1+1 and 4 = 2+2 = 1+1+2 = 1+2+1 =
= 2+1+1 = 1+1+1+1.. Therefore, B3 = 3 and B4 = 5. In general,
Bn = fn+1 for n > 0.
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consecutive elements. For example, when n = 3 the allowable subsets are
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√
5
as n→ ∞
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Approximations

Observation

lim
n→∞

Φ̂n = 0

fn→ Φn

√
5
as n→ ∞

fn =
⌊

Φn

√
5

+ 1
2

⌋
For example:

f10 =

⌊
Φ10

√
5

+
1

2

⌋
=

⌊
55.00364 . . .+

1

2

⌋
= b55.50364 . . .c= 55

f11 =

⌊
Φ11

√
5

+
1

2

⌋
=

⌊
88.99775 . . .+

1

2

⌋
= b89.49775 . . .c= 89



Approximations

Observation

lim
n→∞

Φ̂n = 0

fn→ Φn

√
5
as n→ ∞

fn =
⌊

Φn

√
5

+ 1
2

⌋
fn

fn−1
→Φ as n→ ∞

For example:

f11

f10
=

89

55
≈ 1.61818182≈Φ = 1.61803 . . .



Fibonacci numbers with negative index: Idea

Question

What can fn be when n is a negative integer?

We want the basic properties to be satis�ed for every n ∈ Z:
De�ning formula:

fn = fn−1 + fn−2 .

Expression by golden ratio:

fn =
1√
5

(
Φn− Φ̂n

)
.

Matrix form:

An =

(
fn+1 fn
fn fn−1

)
where A =

(
1 1
1 0

)
.

(Consequently, Cassini's identity too.)

Note: For n = 0, the above suggest f−1 = 1 . . .



Fibonacci numbers with negative index: Formula

Theorem

For every n > 1,
f−n = (−1)n−1fn



Fibonacci numbers with negative index: Formula

Theorem

For every n > 1,
f−n = (−1)n−1fn

Proof: As (1−Φz) · (1− Φ̂z) = 1−z−z2, it is Φ−1 =−Φ̂ = 0.618 . . .
Then for every n > 1,

f−n =
1√
5

(
Φ−n− Φ̂−n

)
=

1√
5

(
(−Φ̂)n− (−Φ)n

)
=

(−1)n+1

√
5

(
Φn− Φ̂n

)
= (−1)n−1fn ,

Q.E.D.



Fibonacci numbers with negative index: Formula

Theorem

For every n > 1,
f−n = (−1)n−1fn

Proof: As (1−Φz) · (1− Φ̂z) = 1−z−z2, it is Φ−1 =−Φ̂ = 0.618 . . .
Then for every n > 1,

f−n =
1√
5

(
Φ−n− Φ̂−n

)
=

1√
5

(
(−Φ̂)n− (−Φ)n

)
=

(−1)n+1

√
5

(
Φn− Φ̂n

)
= (−1)n−1fn ,

Q.E.D.

Another proof is by induction with the de�ning relation in the form fn−2 = fn− fn−1,
with initial conditions f1 = 1, f0 = 0.



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fk fn+1 + fk−1fn



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fk fn+1 + fk−1fn

Why generalization?

Because for k = 1−n we get

f1 = (−1)n−2fn−1fn+1 + (−1)n−1f 2n ,

which is Cassini's identity multiplied by (−1)n.



Warmup: The generalized Cassini's identity

Theorem

For every n,k ∈ Z,
fn+k = fk fn+1 + fk−1fn

Proof: For every n ∈ Z let P(n) be the following proposition:

∀k ∈ Z . fn+k = fk fn+1 + fk−1fn .

For n = 0 we get fk = fk ·1+0.
For n = 1 we get fk+1 = fk ·1+ fk−1 ·1.
If n > 2 and P(n−1) and P(n−2) hold, then:

fn+k = fn−1+k + fn−2+k

= fk fn + fk−1fn−1 + fk fn−1 + fk−1fn−2

= fk fn+1 + fk−1fn .

If n < 0 and P(n+1) and P(n+2) hold, then

fn+k = fn+2−k − fn+1−k

= fk fn+3 + fk−1fn+2− fk fn+2− fk−1fn+1

= fk fn+1 + fk−1fn .



A note on generating functions for bi-in�nite sequences

Question

Can we de�ne fn for every n ∈ Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be de�ned in z = 0.)



A note on generating functions for bi-in�nite sequences

Question

Can we de�ne fn for every n ∈ Z via a single power series which depends from both
positive and negative powers of the variable?
(We can renounce such G(z) to be de�ned in z = 0.)

Answer: Yes, but it would not be practical!

A generalization of Laurent's theorem goes as follows:
Let f be an analytic function de�ned in an annulus A = {z ∈ C | r < |z |< R}.
Then there exists a bi-in�nite sequence 〈an〉n∈Z such that:

1 the series ∑n>0 anz
n has convergence radius > R;

2 the series ∑n>1 a−nz
n has convergence radius > 1/r ;

3 for every z ∈ A it is ∑n∈Z anz
n = f (z).

We could set r = 0, but the power series ∑n>1 a−nz
n would then need to have in�nite

convergence radius! (i.e., limn→∞
n

√
|a−n|= 0.) However, limn→∞

n

√
|f−n|= Φ.

Also, the intersection of two annuli can be empty: making controls on feasibility of
operations much more di�cult to check. (Not so for �disks with a hole in zero�.)



Fibonacci numbers cheat sheet

Recurrence:
f0 = 0 ; f1 = 1 ;
fn = fn−1 + fn−2 ∀n ∈ Z .

Binet form:

fn =
1√
5

(
Φn− Φ̂n

)
∀n ∈ Z .

Generating function:

∑
n>0

fnz
n =

z

1−z−z2
∀z ∈ C , |z |< 1

Φ
.

Matrix form: (
1 1
1 0

)n

=

(
fn+1 fn
fn fn−1

)
∀n ∈ Z .

Generalized Cassini's identity:

fn+k = fk fn+1 + fk−1fn ∀n,k ∈ Z .

Greatest common divisor:

gcd(fm, fn) = fgcd(m,n) ∀m,n ∈ Z .



Next section

1 Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

Eulerian numbers

Bernoulli numbers



Harmonic numbers

De�nition

The harmonic numbers are given by the formula

Hn =
n

∑
k=1

1

k
for n > 0, with H0 = 0

Hn is the discrete analogue of the natural logarithm.

The �rst twelve harmonic numbers are shown in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11

Hn 0 1 3
2

11
6

25
12

137
60

49
20

363
140

761
280

7129
2520

7381
2520

83711
27720
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n 0 1 2 3 4 5 6 7 8 9 10 11
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Harmonic numbers

Properties:

Harmonic and Stirling cyclic numbers: Hn = 1
n!

[
n+1
2

]
for all n > 1;

n

∑
k=1

Hk = (n+1)(Hn+1−1) for all n > 1;

n

∑
k=1

kHk =

(
n+1

2

)(
Hn+1−

1

2

)
for all n > 1;

n

∑
k=1

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)
for every n > 1;

lim
n→∞

Hn = ∞;

Hn ∼ lnn+ γ +
1

2n
− 1

12n2
+

εn

120n4
where γ ≈ 0.57721 56649 01533 denotes

Euler's constant.

Approximation

H10 ≈ 2.92896 82578 96

H1000000 ≈ 14.39272 67228 65723 63138 11275
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Hn = ∞;

Hn ∼ lnn+ γ +
1

2n
− 1

12n2
+

εn

120n4
where γ ≈ 0.57721 56649 01533 denotes

Euler's constant.

Approximation

H10 ≈ 2.92896 82578 96

H1000000 ≈ 14.39272 67228 65723 63138 11275



Harmonic numbers

Generating function:

1

1−z
ln

1

1−z
= z +

3

2
z2 +

11

6
z3 +

25

12
z4 + · · ·= ∑

n>0
Hnz

n

Indeed, 1
1−z = ∑n>0 z

n, ln 1
1−z = ∑n>0

zn

n , and

Hn =
n

∑
k=1

1

k
=

n

∑
k=1

1n−k
1

k



Harmonic numbers

Generating function:

1

1−z
ln

1

1−z
= z +

3

2
z2 +

11

6
z3 +

25

12
z4 + · · ·= ∑

n>0
Hnz

n

Indeed, 1
1−z = ∑n>0 z

n, ln 1
1−z = ∑n>0

zn

n , and

Hn =
n

∑
k=1

1

k
=

n

∑
k=1

1n−k
1

k

A general remark

If G(z) is the generating function of the sequence 〈g0,g1,g2, . . .〉, then G(z)/(1−z) is
the generating function of the sequence of the partial sums of the original sequence:

if G(z) = ∑
n>0

gnz
n then

G(z)

1−z
= ∑

n>0

(
n

∑
k=0

gk

)
zn



Harmonic numbers and binomial coe�cients

Theorem

n

∑
k=0

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)



Harmonic numbers and binomial coe�cients

Theorem

n

∑
k=0

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)

Take v(x) =
(

x
m+1

)
: then

∆v(x) =

(
x +1

m+1

)
−
(

x

m+1

)
=

xm

m!
· x +1− (x−m)

m+1
=

(
x

m

)
We can then sum by parts with u(x) = Hx and get:

∑

(
x

m

)
Hxδx =

(
x

m+1

)
Hx −∑

(
x +1

m+1

)
x−1δx

=

(
x

m+1

)(
Hx −

1

m+1

)
+C

Then ∑
n
k=0

(
k
m

)
Hk =

(
x

m+1

)(
Hx − 1

m+1

)∣∣∣x=n+1

x=0
=
(
n+1
m+1

)(
Hn+1− 1

m+1

)
, as desired.



Harmonic numbers and binomial coe�cients

Theorem

n

∑
k=0

(
k

m

)
Hk =

(
n+1

m+1

)(
Hn+1−

1

m+1

)

Corollary

For m = 0 we get:

n

∑
k=0

Hk = (n+1)(Hn+1−1) = (n+1)Hn−n

For m = 1 we get:

n

∑
k=0

kHk =
n(n+1)

2

(
Hn+1−

1

2

)
=

n(n+1)

2
Hn+1−

n(n+1)

4



Harmonic numbers of higher order

De�nition

For n > 1 and m > 2 integer, the nth harmonic number of order m is

H
(m)
n =

n

∑
k=1

1

km

As with the ��rst order� harmonic numbers, we put H
(m)
0 = 0 as an empty sum.

For m > 2 the quantities

H(m)
∞ = lim

n→∞
H

(m)
n

exist �nite: they are the values of the Riemann zeta function ζ (s) = ∑n>1
1
ns for s = m.



Euler's γ constant

Euler's approximation of harmonic numbers

For every n > 1 the following equality holds:

Hn− lnn = 1− ∑
m>2

1

m

(
H

(m)
n −1

)



Euler's γ constant

Euler's approximation of harmonic numbers

For every n > 1 the following equality holds:

Hn− lnn = 1− ∑
m>2

1

m

(
H

(m)
n −1

)

For k > 2 we can write:

ln
k

k−1
= ln

1

1− 1
k

= ∑
m>1

1

m ·km

As ln(a/b) = lna− lnb and ln1 = 0, by summing for k from 2 to n we get:

lnn =
n

∑
k=2

∑
m>1

1

m ·km
= ∑

m>1

n

∑
k=2

1

m ·km
= Hn−1+ ∑

m>2

(
H

(m)
n −1

)



Euler's γ constant

Euler's approximation of harmonic numbers

For every n > 1 the following equality holds:

Hn− lnn = 1− ∑
m>2

1

m

(
H

(m)
n −1

)

For m > 2, H
(m)
n converges from below to ζ (m).

It turns out that ζ (s)−1∼ 2−s , therefore the series ∑m>2
1

m
(ζ (m)−1) converges.

The quantity

γ = 1− ∑
m>2

1

m
(ζ (m)−1)

is called Euler's constant. The following approximation holds:

Hn = lnn+ γ +
1

2n
− 1

12n2
+o

(
1

n3

)
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Eulerian Numbers

Don't mix up with Euler numbers!

E = 〈1,0,−1,0,5,0,−61,0,1385,0, . . .〉 ↔ 1

sinhx
=

2

ex +e−x
= ∑

n

En

n!
xn



Eulerian Numbers

De�nition

Let π = (π1,π2, . . .πn) be a permutation of {1,2, . . . ,n}. An ascent of the permutation

π is any index i (16 i < n) such that πi < πi+1. The Eulerian number

〈
n
k

〉
is the

number of permutations of {1,2, . . . ,n} with exactly k ascents.



Eulerian Numbers

De�nition

Let π = (π1,π2, . . .πn) be a permutation of {1,2, . . . ,n}. An ascent of the permutation

π is any index i (16 i < n) such that πi < πi+1. The Eulerian number

〈
n
k

〉
is the

number of permutations of {1,2, . . . ,n} with exactly k ascents.

Examples

The permutation π = (π1,π2, . . .πn) = (1,2,3,4) has three ascents since
1< 2< 3< 4 and it is the only permutation in S4 = {1,2,3,4} with three

ascents; this is

〈
4
3

〉
= 1

There are

〈
4
1

〉
= 11 permutations in S4 with one ascent:

(1,4,3,2),(2,1,4,3),(2,4,3,1),(3,1,4,2),(3,2,1,4),(3,2,4,1),(3,4,2,1),
(4,1,3,2),(4,2,1,3),(4,2,3,1), and (4,3,1,2).



Eulerian Numbers

De�nition

Let π = (π1,π2, . . .πn) be a permutation of {1,2, . . . ,n}. An ascent of the permutation

π is any index i (16 i < n) such that πi < πi+1. The Eulerian number

〈
n
k

〉
is the

number of permutations of {1,2, . . . ,n} with exactly k ascents.

n

〈
n
0

〉 〈
n
1

〉 〈
n
2

〉 〈
n
3

〉 〈
n
4

〉 〈
n
5

〉
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1



Eulerian Numbers

Some identities:

•
〈
n
0

〉
=

〈
n

n−1

〉
= 1 for all n > 1;

Symmetry:

〈
n
k

〉
=

〈
n

n−1−k

〉
for all n > 1;

Recurrency:

〈
n
k

〉
= (k +1)

〈
n−1
k

〉
+ (n−k)

〈
n−1
k−1

〉
for all n > 2;

•
n−1

∑
k=0

〈
n
k

〉
= n! for all n > 2;

Worpitzky's identity: xn =
n−1

∑
k=0

〈
n
k

〉(
x +k

n

)
for all n > 2;

•
〈
n
k

〉
=

k

∑
j=0

(−1)j
(
n+1

j

)
(k +1− j)n for all n > 1;

Stirling numbers:

{
n
k

}
= 1

m!

n−1

∑
k=0

〈
n
k

〉(
k

n−m

)
for alln >m and n > 1;

Generating f-n: 1−x
e(x−1)t−x

= ∑
n,m

〈
n
m

〉
xm

tn

n!
.
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Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

Sm(n) = 0m +1m + . . .+ (n−1)m =
n−1

∑
k=0

km =
n

∑
0

xmδx

Plotting an expansion with respect to n yields:

S0(n) = n

S1(n) = 1
2n

2 − 1
2n

S2(n) = 1
3n

3 − 1
2n

2 + 1
6n

S3(n) = 1
4n

4 − 1
2n

3 + 1
4n

2

S4(n) = 1
5n

5 − 1
2n

4 + 1
3n

3 − 1
30n

S5(n) = 1
6n

6 − 1
2n

5 + 5
12n

4 − 1
12n

2

S6(n) = 1
7n

7 − 1
2n

6 + 1
2n

5 − 1
6n

3 + 1
42n

S7(n) = 1
8n

8 − 1
2n

7 + 7
12n

6 − 7
24n

4 + 1
12n

2

S8(n) = 1
9n

9 − 1
2n

8 + 2
3n

7 − 7
15n

5 + 2
9n

3 − 1
30n

S9(n) = 1
10n

10 − 1
2n

9 + 3
4n

8 − 7
10n

6 + 1
2n

4 − 3
20n

2



Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

Sm(n) = 0m +1m + . . .+ (n−1)m =
n−1

∑
k=0

km =
n

∑
0

xmδx

Bernoulli observed the following regularities:

The leading coe�cient of Sm is always 1
m+1 = 1

m+1

(
m+1
0

)
.

The coe�cient of nm in Sm is always − 1
2 =− 1

2 ·
1

m+1 ·
(
m+1
1

)
.

The coe�cient of nm−1 in Sm is always m
12 = 1

6 ·
1

m+1 ·
(
m+1
2

)
.

The coe�cient of nm−2 in Sm is always 0.

The coe�cient of nm−3 in Sm is always −m(m−1)(m−2)
720 =− 1

30 ·
1

m+1 ·
(
m+1
4

)
.

The coe�cient of nm−4 in Sm is always 0.

The coe�cient of nm−5 in Sm is always 1
42 ·

1
m+1 ·

(
m+1
6

)
.

And so on, and so on . . .



Bernoulli numbers

De�nition

The kth Bernoulli number is the unique value Bk such that, for every m > 0,

Sm(n) =
1

m+1

m

∑
k=0

(
m+1

k

)
Bkn

m+1−k

Bernoulli numbers are also de�ned by the recurrence:

m

∑
k=0

(
m+1

k

)
Bk = [m = 0]

Observe that the above is simply Sm(1).

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Bn 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 0 − 691

2730



Bernoulli numbers and the Riemann zeta function

Theorem

For every n > 1,

ζ (2n) = (−1)n−1
22n−1π2nB2n

(2n)!

In particular,

ζ (2) = ∑
n>1

1

n2
=

π2

6


	Fibonacci Numbers
	Harmonic numbers
	Mini-guide to other number series
	Eulerian numbers
	Bernoulli numbers


