Special Numbers

ITT9131 Konkreetne Matemaatika

Chapter Six
Stirling Numbers
Eulerian Numbers
Harmonic Numbers
Harmonic Summation
Bernoulli Numbers
Fibonacci Numbers
Continuants

Contents

1. Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

- Eulerian numbers
- Bernoulli numbers

Next section

1. Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

- Eulerian numbers
- Bernoulli numbers

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months? How many of them will be adult, and how many will be babies?

Leonardo
Fibonacci
(1175-1235)

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.

How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

- On the first month, the two baby rabbits will have become adults.
- On the second month, the two adult rabbits will have produced a

Leonardo
Fibonacci
(1175-1235) pair of baby rabbits.

- On the third month, the two adult rabbits will have produced another pair of baby rabbits, while the other two baby rabbits will have become adults.
- And so on, and so on ...

Fibonacci numbers: Idea

Fibonacci's problem

A pair of baby rabbits is left on an island.

- A baby rabbit becomes adult in one month.
- A pair of adult rabbits produces a pair of baby rabbits each month.
How many pairs of rabbits will be on the island ofter n months?
How many of them will be adult, and how many will be babies?

Solution (see Exercise 6.6)

month	0	1	2	3	4	5	6	7	8	9	10
baby	1	0	1	1	2	3	5	8	13	21	34
adult	0	1	1	2	3	5	8	13	21	34	55
total	1	1	2	3	5	8	13	21	34	55	89

That is: at month n, there are f_{n+1} pair of rabbits, of which f_{n} pairs of adults, and f_{n-1} pairs of babies.
(Note: this seems to suggest $f_{-1}=1 \ldots$)

Leonardo
Fibonacci
(1175-1235)

Fibonacci Numbers: Main formulas

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing

```
_}\mp@subsup{f}{n}{}=\mp@subsup{f}{n-1}{}+\mp@subsup{f}{n-2}{},\mathrm{ with }\mp@subsup{f}{0}{}=0\mathrm{ and }\mp@subsup{f}{1}{}=
= f
where }\Phi=\frac{1+\sqrt{}{5}}{2}=1.618\ldots\mathrm{ is the golden ratio
```


Generating function

where $\hat{\Phi}=\frac{1-\sqrt{5}}{2}=-0.618 \ldots$ is the algebraic conjugate of ϕ

Fibonacci Numbers: Main formulas

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing:

- $f_{n}=f_{n-1}+f_{n-2}$, with $f_{0}=0$ and $f_{1}=1$.
- $f_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\hat{\phi}^{n}\right)$ ("Binet form")
where $\Phi=\frac{1+\sqrt{5}}{2}=1.618 \ldots$ is the golden ratio.

Generating function

Fibonacci Numbers: Main formulas

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

Formulae for computing

- $f_{n}=f_{n-1}+f_{n-2}$, with $f_{0}=0$ and $f_{1}=1$.
- $f_{n}=\frac{1}{\sqrt{5}}\left(\Phi^{n}-\hat{\Phi}^{n}\right)$ ("Binet form")
where $\Phi=\frac{1+\sqrt{5}}{2}=1.618 \ldots$ is the golden ratio.

Generating function

$$
\sum_{n \geqslant 0} f_{n} z^{n}=\frac{z}{1-z-z^{2}}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\Phi z}-\frac{1}{1-\hat{\Phi} z}\right) \forall z \in \mathbb{C}:|z|<\Phi^{-1},
$$

where $\hat{\Phi}=\frac{1-\sqrt{5}}{2}=-0.618 \ldots$ is the algebraic conjugate of Φ.

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Some Fibonacci Identities

$$
\text { Cassini's Identity } f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n} \text { for all } n>0
$$

The Chessboard Paradox

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Divisors f_{n} and f_{n+1} are relatively prime and f_{k} divides $f_{n k}$:

$$
\operatorname{gcd}\left(f_{n}, f_{m}\right)=f_{\operatorname{gcd}(n, m)}
$$

Some Fibonacci Identities

Cassini's Identity $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$ for all $n>0$

Divisors f_{n} and f_{n+1} are relatively prime and f_{k} divides $f_{n k}$:

$$
\operatorname{gcd}\left(f_{n}, f_{m}\right)=f_{\operatorname{gcd}(n, m)}
$$

Matrix Calculus If A is the 2×2 matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, then

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right), \quad \text { for } n>0
$$

Observe that this is equivalent to Cassini's identity.

Some Fibonacci Identities (2)

Fibonacci Numbers and Pascal's Triangle: $f_{n+1}=\sum_{j=0}^{n / 2\rfloor}\binom{n-j}{j}$

Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1 s equals the ratio of successive Fibonacci numbers:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{\frac{a_{n-2}+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}{\frac{a_{n}}{a_{n}}}}}=\frac{f_{n+1}}{f_{n}}
$$

where $a_{1}=a_{2}=\cdots=a_{n}=1$.

For example

Some Fibonacci Identities (3)

Continued fractions

The continued fraction composed entirely of 1 s equals the ratio of successive Fibonacci numbers:

$$
a_{1}+\frac{1}{a_{2}+\frac{1}{\frac{a_{n-2}+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}{}}}=\frac{f_{n+1}}{f_{n}}
$$

where $a_{1}=a_{2}=\cdots=a_{n}=1$.
For example

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}=\frac{f_{5}}{f_{4}}=\frac{5}{3}=1 .(6)
$$

Some applications of Fibonacci numbers

1 Let S_{n} denote the number of subsets of $\{1,2, \ldots, n\}$ that do not contain consecutive elements. For example, when $n=3$ the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_{3}=5$. In general, $S_{n}=f_{n+2}$ for $n \geqslant 1$.

Some applications of Fibonacci numbers

1 Let S_{n} denote the number of subsets of $\{1,2, \ldots, n\}$ that do not contain consecutive elements. For example, when $n=3$ the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_{3}=5$. In general, $S_{n}=f_{n+2}$ for $n \geqslant 1$.
2 Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

The number of possible placements D_{n} of dominoes with n dots, consider the rightmost dot in any such placement P. If this dot is not covered by a domino, then P minus the last dot determines a solution counted by D_{n-1}. If the last dot is covered by a domino, then the last two dots in P are covered by this domino. Removing this rightmost domino then gives a solution counted by D_{n-2}. Taking into account these two possibilities $D_{n}=D_{n-1}+D_{n-2}$ for $n \geqslant 3$ with $D_{1}=1, D_{2}=2$. Thus $D_{n}=f_{n+1}$ for $n>0$.

Some applications of Fibonacci numbers

1 Let S_{n} denote the number of subsets of $\{1,2, \ldots, n\}$ that do not contain consecutive elements. For example, when $n=3$ the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_{3}=5$. In general, $S_{n}=f_{n+2}$ for $n \geqslant 1$.
2 Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

Thus $D_{n}=f_{n+1}$ for $n>0$.
3 Compositions: Let T_{n} be the number of ordered compositions of the positive integer n into summands that are odd. For example, $4=1+3=3+1=1+1+1+1$ and $5=5=1+1+3=1+3+1=3+1+1=$ $=1+1+1+1+1$. Therefore, $T_{4}=3$ and $T_{5}=5$. In general, $T_{n}=f_{n}$ for $n>0$.

Some applications of Fibonacci numbers

1 Let S_{n} denote the number of subsets of $\{1,2, \ldots, n\}$ that do not contain consecutive elements. For example, when $n=3$ the allowable subsets are $\emptyset,\{1\},\{2\},\{3\},\{1,3\}$. Therefore, $S_{3}=5$. In general, $S_{n}=f_{n+2}$ for $n \geqslant 1$.
2 Draw n dots in a line. If each domino can cover exactly two such dots, in how many ways can (non-overlapping) dominoes be placed? For example

Thus $D_{n}=f_{n+1}$ for $n>0$.
3 Compositions: Let T_{n} be the number of ordered compositions of the positive integer n into summands that are odd. For example, $4=1+3=3+1=1+1+1+1$ and $5=5=1+1+3=1+3+1=3+1+1=$ $=1+1+1+1+1$. Therefore, $T_{4}=3$ and $T_{5}=5$. In general, $T_{n}=f_{n}$ for $n>0$.
4 Compositions: Let B_{n} be the number of ordered compositions of the positive integer n into summands that are either 1 or 2 . For example, $3=1+2=2+1=1+1+1$ and $4=2+2=1+1+2=1+2+1=$ $=2+1+1=1+1+1+1$.. Therefore, $B_{3}=3$ and $B_{4}=5$. In general, $B_{n}=f_{n+1}$ for $n>0$.

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\phi}^{n}=0
$$

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

- $f_{n} \rightarrow \frac{\phi^{n}}{\sqrt{5}}$ as $n \rightarrow \infty$
- $f_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

- $f_{n} \rightarrow \frac{\Phi^{n}}{\sqrt{5}}$ as $n \rightarrow \infty$
- $f_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$

For example:

$$
\begin{aligned}
& f_{10}=\left\lfloor\frac{\phi^{10}}{\sqrt{5}}+\frac{1}{2}\right\rfloor=\left\lfloor 55.00364 \ldots+\frac{1}{2}\right\rfloor=\lfloor 55.50364 \ldots\rfloor=55 \\
& f_{11}=\left\lfloor\frac{\Phi^{11}}{\sqrt{5}}+\frac{1}{2}\right\rfloor=\left\lfloor 88.99775 \ldots+\frac{1}{2}\right\rfloor=\lfloor 89.49775 \ldots\rfloor=89
\end{aligned}
$$

Approximations

Observation

$$
\lim _{n \rightarrow \infty} \widehat{\Phi}^{n}=0
$$

- $f_{n} \rightarrow \frac{\phi^{n}}{\sqrt{5}}$ as $n \rightarrow \infty$
- $f_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$
- $\frac{f_{n}}{f_{n-1}} \rightarrow \Phi$ as $n \rightarrow \infty$

For example:

$$
\frac{f_{11}}{f_{10}}=\frac{89}{55} \approx 1.61818182 \approx \Phi=1.61803 \ldots
$$

Fibonacci numbers with negative index: Idea

Question

What can f_{n} be when n is a negative integer?
We want the basic properties to be satisfied for every $n \in \mathbb{Z}$:

- Defining formula:

$$
f_{n}=f_{n-1}+f_{n-2} .
$$

- Expression by golden ratio:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\Phi^{n}-\hat{\Phi}^{n}\right) .
$$

- Matrix form:

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right) \text { where } A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

(Consequently, Cassini's identity too.)
Note: For $n=0$, the above suggest $f_{-1}=1 \ldots$

Fibonacci numbers with negative index: Formula

Theorem
For every $n \geqslant 1$,

$$
f_{-n}=(-1)^{n-1} f_{n}
$$

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$
f_{-n}=(-1)^{n-1} f_{n}
$$

Proof: As $(1-\Phi z) \cdot(1-\hat{\Phi} z)=1-z-z^{2}$, it is $\Phi^{\mathbf{1}}=-\hat{\Phi}=0.618 \ldots$ Then for every $n \geqslant 1$,

$$
\begin{aligned}
f_{-n} & =\frac{1}{\sqrt{5}}\left(\Phi^{-n}-\hat{\Phi}^{-n}\right) \\
& =\frac{1}{\sqrt{5}}\left((-\hat{\Phi})^{n}-(-\Phi)^{n}\right) \\
& =\frac{(-1)^{n+1}}{\sqrt{5}}\left(\Phi^{n}-\hat{\Phi}^{n}\right) \\
& =(-1)^{n-1} f_{n}
\end{aligned}
$$

Q.E.D.

Fibonacci numbers with negative index: Formula

Theorem

For every $n \geqslant 1$,

$$
f_{-n}=(-1)^{n-1} f_{n}
$$

Proof: As $(1-\Phi z) \cdot(1-\hat{\phi} z)=1-z-z^{2}$, it is $\Phi^{-1}=-\hat{\Phi}=0.618 \ldots$ Then for every $n \geqslant 1$,

$$
\begin{aligned}
f_{-n} & =\frac{1}{\sqrt{5}}\left(\Phi^{-n}-\hat{\Phi}^{-n}\right) \\
& =\frac{1}{\sqrt{5}}\left((-\hat{\Phi})^{n}-(-\Phi)^{n}\right) \\
& =\frac{(-1)^{n+1}}{\sqrt{5}}\left(\Phi^{n}-\hat{\Phi}^{n}\right) \\
& =(-1)^{n-1} f_{n}
\end{aligned}
$$

Q.E.D.

Another proof is by induction with the defining relation in the form $f_{n-2}=f_{n}-f_{n-1}$, with initial conditions $f_{1}=1, f_{0}=0$.

Warmup: The generalized Cassini's identity

Theorem
For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n}
$$

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n}
$$

Why generalization?

Because for $k=1-n$ we get

$$
f_{1}=(-1)^{n-2} f_{n-1} f_{n+1}+(-1)^{n-1} f_{n}^{2},
$$

which is Cassini's identity multiplied by $(-1)^{n}$.

Warmup: The generalized Cassini's identity

Theorem

For every $n, k \in \mathbb{Z}$,

$$
f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n}
$$

Proof: For every $n \in \mathbb{Z}$ let $P(n)$ be the following proposition:

$$
\forall k \in \mathbb{Z} \cdot f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n}
$$

- For $n=0$ we get $f_{k}=f_{k} \cdot 1+0$.

For $n=1$ we get $f_{k+1}=f_{k} \cdot 1+f_{k-1} \cdot 1$.

- If $n \geqslant 2$ and $P(n-1)$ and $P(n-2)$ hold, then:

$$
\begin{aligned}
f_{n+k} & =f_{n-1+k}+f_{n-2+k} \\
& =f_{k} f_{n}+f_{k-1} f_{n-1}+f_{k} f_{n-1}+f_{k-1} f_{n-2} \\
& =f_{k} f_{n+1}+f_{k-1} f_{n} .
\end{aligned}
$$

- If $n<0$ and $P(n+1)$ and $P(n+2)$ hold, then

$$
\begin{aligned}
f_{n+k} & =f_{n+2-k}-f_{n+1-k} \\
& =f_{k} f_{n+3}+f_{k-1} f_{n+2}-f_{k} f_{n+2}-f_{k-1} f_{n+1} \\
& =f_{k} f_{n+1}+f_{k-1} f_{n} .
\end{aligned}
$$

A note on generating functions for bi-infinite sequences

Question

Can we define f_{n} for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable?
(We can renounce such $G(z)$ to be defined in $z=0$.)

A note on generating functions for bi-infinite sequences

Question

Can we define f_{n} for every $n \in \mathbb{Z}$ via a single power series which depends from both positive and negative powers of the variable?
(We can renounce such $G(z)$ to be defined in $z=0$.)

Answer: Yes, but it would not be practical!

A generalization of Laurent's theorem goes as follows:
Let f be an analytic function defined in an annulus $A=\{z \in \mathbb{C}|r<|z|<R\}$.
Then there exists a bi-infinite sequence $\left\langle a_{n}\right\rangle_{n \in \mathbb{Z}}$ such that:
1 the series $\sum_{n \geqslant 0} a_{n} z^{n}$ has convergence radius $\geqslant R$;
2 the series $\sum_{n \geqslant 1} a_{-n} z^{n}$ has convergence radius $\geqslant 1 / r$;
3 for every $z \in A$ it is $\sum_{n \in \mathbb{Z}} a_{n} z^{n}=f(z)$.
We could set $r=0$, but the power series $\sum_{n \geqslant 1} a_{-n} z^{n}$ would then need to have infinite convergence radius! (i.e., $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{-n}\right|}=0$.) However, $\lim _{n \rightarrow \infty} \sqrt[n]{\left|f_{-n}\right|}=\Phi$. Also, the intersection of two annuli can be empty: making controls on feasibility of operations much more difficult to check. (Not so for "disks with a hole in zero".)

Fibonacci numbers cheat sheet

- Recurrence:

$$
\begin{aligned}
& f_{0}=0 ; f_{1}=1 ; \\
& f_{n}=f_{n-1}+f_{n-2} \quad \forall n \in \mathbb{Z} .
\end{aligned}
$$

- Binet form:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\Phi^{n}-\hat{\Phi}^{n}\right) \forall n \in \mathbb{Z} .
$$

- Generating function:

$$
\sum_{n \geqslant 0} f_{n} z^{n}=\frac{z}{1-z-z^{2}} \forall z \in \mathbb{C},|z|<\frac{1}{\Phi} .
$$

- Matrix form:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right) \forall n \in \mathbb{Z} .
$$

- Generalized Cassini's identity:

$$
f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n} \forall n, k \in \mathbb{Z}
$$

- Greatest common divisor:

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)} \forall m, n \in \mathbb{Z}
$$

Next section

1 Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

- Eulerian numbers
- Bernoulli numbers

Harmonic numbers

Definition

The harmonic numbers are given by the formula

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} \quad \text { for } n \geqslant 0, \text { with } H_{0}=0
$$

- H_{n} is the discrete analogue of the natural logarithm.
- The first twelve harmonic numbers are shown in the following table:

n	0	1	2	3	4	5	6	7	8	9	10	11
H_{n}	0	1	$\frac{3}{2}$	$\frac{11}{6}$	$\frac{25}{12}$	$\frac{137}{60}$	$\frac{49}{20}$	$\frac{363}{140}$	$\frac{761}{280}$	$\frac{7129}{2520}$	$\frac{7381}{2520}$	$\frac{83711}{27720}$

Harmonic numbers

n	0	1	2	3	4	5	6	7	8	9	10	11
H_{n}	0	1	$\frac{3}{2}$	$\frac{11}{6}$	$\frac{25}{12}$	$\frac{137}{60}$	$\frac{49}{20}$	$\frac{363}{140}$	$\frac{761}{280}$	$\frac{7129}{2520}$	$\frac{7381}{2520}$	$\frac{83711}{27720}$

Harmonic numbers

Properties:

- Harmonic and Stirling cyclic numbers: $H_{n}=\frac{1}{n!}\left[\begin{array}{c}n+1 \\ 2\end{array}\right]$ for all $n \geqslant 1$;
- $\sum_{k=1}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)$ for all $n \geqslant 1$;
- $\sum_{k=1}^{n} k H_{k}=\binom{n+1}{2}\left(H_{n+1}-\frac{1}{2}\right)$ for all $n \geqslant 1$;
- $\sum_{k=1}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)$ for every $n \geqslant 1$;
- $\lim _{n \rightarrow \infty} H_{n}=\infty$;
- $H_{n} \sim \ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{\varepsilon_{n}}{120 n^{4}}$ where $\gamma \approx 0.577215664901533$ denotes Euler's constant.

Approximation

- $H_{10} \approx 2.928968257896$
- $H_{1000000} \approx 14.3927267228657236313811275$

Harmonic numbers

Properties:

- Harmonic and Stirling cyclic numbers: $H_{n}=\frac{1}{n!}\left[\begin{array}{c}n+1 \\ 2\end{array}\right]$ for all $n \geqslant 1$;
- $\sum_{k=1}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)$ for all $n \geqslant 1$;
- $\sum_{k=1}^{n} k H_{k}=\binom{n+1}{2}\left(H_{n+1}-\frac{1}{2}\right)$ for all $n \geqslant 1$;
- $\sum_{k=1}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)$ for every $n \geqslant 1$;
- $\lim _{n \rightarrow \infty} H_{n}=\infty$;
- $H_{n} \sim \ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{\varepsilon_{n}}{120 n^{4}}$ where $\gamma \approx 0.577215664901533$ denotes Euler's constant.

Approximation

- $H_{10} \approx 2.928968257896$
- $H_{1000000} \approx 14.3927267228657236313811275$

Harmonic numbers

Generating function:

$$
\frac{1}{1-z} \ln \frac{1}{1-z}=z+\frac{3}{2} z^{2}+\frac{11}{6} z^{3}+\frac{25}{12} z^{4}+\cdots=\sum_{n \geqslant 0} H_{n} z^{n}
$$

Indeed, $\frac{1}{1-z}=\sum_{n \geqslant 0} z^{n}, \ln \frac{1}{1-z}=\sum_{n \geqslant 0} \frac{z^{n}}{n}$, and

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\sum_{k=1}^{n} 1^{n-k} \frac{1}{k}
$$

Harmonic numbers

Generating function:

$$
\frac{1}{1-z} \ln \frac{1}{1-z}=z+\frac{3}{2} z^{2}+\frac{11}{6} z^{3}+\frac{25}{12} z^{4}+\cdots=\sum_{n \geqslant 0} H_{n} z^{n}
$$

Indeed, $\frac{1}{1-z}=\sum_{n \geqslant 0} z^{n}, \ln \frac{1}{1-z}=\sum_{n \geqslant 0} \frac{z^{n}}{n}$, and

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\sum_{k=1}^{n} 1^{n-k} \frac{1}{k}
$$

A general remark

If $G(z)$ is the generating function of the sequence $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle$, then $G(z) /(1-z)$ is the generating function of the sequence of the partial sums of the original sequence:

$$
\text { if } G(z)=\sum_{n \geqslant 0} g_{n} z^{n} \text { then } \frac{G(z)}{1-z}=\sum_{n \geqslant 0}\left(\sum_{k=0}^{n} g_{k}\right) z^{n}
$$

Harmonic numbers and binomial coefficients

$$
\sum_{k=0}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)
$$

Harmonic numbers and binomial coefficients

Theorem

$$
\sum_{k=0}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)
$$

Take $v(x)=\binom{x}{m+1}$: then

$$
\Delta v(x)=\binom{x+1}{m+1}-\binom{x}{m+1}=\frac{x \underline{m}}{m!} \cdot \frac{x+1-(x-m)}{m+1}=\binom{x}{m}
$$

We can then sum by parts with $u(x)=H_{x}$ and get:

$$
\begin{aligned}
& \sum\binom{x}{m} H_{x} \delta x=\binom{x}{m+1} H_{x}-\sum\binom{x+1}{m+1} x-1 \\
& m x \\
&=\binom{x}{m+1}\left(H_{x}-\frac{1}{m+1}\right)+C
\end{aligned}
$$

Then $\sum_{k=0}^{n}\binom{k}{m} H_{k}=\left.\binom{x}{m+1}\left(H_{x}-\frac{1}{m+1}\right)\right|_{x=0} ^{x=n+1}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)$, as desired.

Harmonic numbers and binomial coefficients

Theorem

$$
\sum_{k=0}^{n}\binom{k}{m} H_{k}=\binom{n+1}{m+1}\left(H_{n+1}-\frac{1}{m+1}\right)
$$

Corollary

For $m=0$ we get:

$$
\sum_{k=0}^{n} H_{k}=(n+1)\left(H_{n+1}-1\right)=(n+1) H_{n}-n
$$

For $m=1$ we get:

$$
\sum_{k=0}^{n} k H_{k}=\frac{n(n+1)}{2}\left(H_{n+1}-\frac{1}{2}\right)=\frac{n(n+1)}{2} H_{n+1}-\frac{n(n+1)}{4}
$$

Harmonic numbers of higher order

Definition

For $n \geqslant 1$ and $m \geqslant 2$ integer, the nth harmonic number of order m is

$$
H_{n}^{(m)}=\sum_{k=1}^{n} \frac{1}{k^{m}}
$$

As with the "first order" harmonic numbers, we put $H_{0}^{(m)}=0$ as an empty sum.
For $m \geqslant 2$ the quantities

$$
H_{\infty}^{(m)}=\lim _{n \rightarrow \infty} H_{n}^{(m)}
$$

exist finite: they are the values of the Riemann zeta function $\zeta(s)=\sum_{n \geqslant 1} \frac{1}{n^{s}}$ for $s=m$.

Euler's γ constant

Euler's approximation of harmonic numbers
For every $n \geqslant 1$ the following equality holds:

$$
H_{n}-\ln n=1-\sum_{m \geqslant 2} \frac{1}{m}\left(H_{n}^{(m)}-1\right)
$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \geqslant 1$ the following equality holds:

$$
H_{n}-\ln n=1-\sum_{m \geqslant 2} \frac{1}{m}\left(H_{n}^{(m)}-1\right)
$$

For $k \geqslant 2$ we can write:

$$
\ln \frac{k}{k-1}=\ln \frac{1}{1-\frac{1}{k}}=\sum_{m \geqslant 1} \frac{1}{m \cdot k^{m}}
$$

As $\ln (a / b)=\ln a-\ln b$ and $\ln 1=0$, by summing for k from 2 to n we get:

$$
\ln n=\sum_{k=2}^{n} \sum_{m \geqslant 1} \frac{1}{m \cdot k^{m}}=\sum_{m \geqslant 1} \sum_{k=2}^{n} \frac{1}{m \cdot k^{m}}=H_{n}-1+\sum_{m \geqslant 2}\left(H_{n}^{(m)}-1\right)
$$

Euler's γ constant

Euler's approximation of harmonic numbers

For every $n \geqslant 1$ the following equality holds:

$$
H_{n}-\ln n=1-\sum_{m \geqslant 2} \frac{1}{m}\left(H_{n}^{(m)}-1\right)
$$

For $m \geqslant 2, H_{n}^{(m)}$ converges from below to $\zeta(m)$.
It turns out that $\zeta(s)-1 \sim 2^{-s}$, therefore the series $\sum_{m \geqslant 2} \frac{1}{m}(\zeta(m)-1)$ converges.
The quantity

$$
\gamma=1-\sum_{m \geqslant 2} \frac{1}{m}(\zeta(m)-1)
$$

is called Euler's constant. The following approximation holds:

$$
H_{n}=\ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+o\left(\frac{1}{n^{3}}\right)
$$

Next section

1 Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

- Eulerian numbers

■ Bernoulli numbers

Next subsection

1 Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

- Eulerian numbers
- Bernoulli numbers

Eulerian Numbers

Don't mix up with Euler numbers!

$$
E=\langle 1,0,-1,0,5,0,-61,0,1385,0, \ldots\rangle \leftrightarrow \frac{1}{\sinh x}=\frac{2}{e^{x}+e^{-x}}=\sum_{n} \frac{E_{n}}{n!} x^{n}
$$

Eulerian Numbers

Definition

Let $\pi=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ be a permutation of $\{1,2, \ldots, n\}$. An ascent of the permutation π is any index $i(1 \leqslant i<n)$ such that $\pi_{i}<\pi_{i+1}$. The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is the number of permutations of $\{1,2, \ldots, n\}$ with exactly k ascents.

Eulerian Numbers

Definition

Let $\pi=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ be a permutation of $\{1,2, \ldots, n\}$. An ascent of the permutation π is any index $i(1 \leqslant i<n)$ such that $\pi_{i}<\pi_{i+1}$. The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is the number of permutations of $\{1,2, \ldots, n\}$ with exactly k ascents.

Examples

- The permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)=(1,2,3,4)$ has three ascents since $1<2<3<4$ and it is the only permutation in $S_{4}=\{1,2,3,4\}$ with three ascents; this is $\left\langle\begin{array}{l}4 \\ 3\end{array}\right\rangle=1$
- There are $\left\langle\begin{array}{l}4 \\ 1\end{array}\right\rangle=11$ permutations in S_{4} with one ascent:

$$
\begin{aligned}
& (1,4,3,2),(2,1,4,3),(2,4,3,1),(3,1,4,2),(3,2,1,4),(3,2,4,1),(3,4,2,1) \text {, } \\
& (4,1,3,2),(4,2,1,3),(4,2,3,1), \text { and }(4,3,1,2) .
\end{aligned}
$$

Eulerian Numbers

Definition

Let $\pi=\left(\pi_{1}, \pi_{2}, \ldots \pi_{n}\right)$ be a permutation of $\{1,2, \ldots, n\}$. An ascent of the permutation π is any index $i(1 \leqslant i<n)$ such that $\pi_{i}<\pi_{i+1}$. The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is the number of permutations of $\{1,2, \ldots, n\}$ with exactly k ascents.

n	$\left\langle\begin{array}{c}n \\ 0\end{array}\right\rangle$	$\left\langle\begin{array}{c}n \\ 1\end{array}\right\rangle$	$\left\langle\begin{array}{c}n \\ 2\end{array}\right\rangle$	$\left\langle\begin{array}{c}n \\ 3\end{array}\right\rangle$	$\left\langle\begin{array}{l}n \\ 4\end{array}\right\rangle$	$\left\langle\begin{array}{l}n \\ 5\end{array}\right\rangle$
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57	302	302	57	1

Eulerian Numbers

Some identities:

- $\left\langle\begin{array}{l}n \\ 0\end{array}\right\rangle=\left\langle\begin{array}{c}n \\ n-1\end{array}\right\rangle=1$ for all $n \geqslant 1 ;$

Symmetry: $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=\left\langle\begin{array}{c}n \\ n-1-k\end{array}\right\rangle$ for all $n \geqslant 1$;
Recurrency: $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=(k+1)\left\langle\begin{array}{c}n-1 \\ k\end{array}\right\rangle+(n-k)\left\langle\begin{array}{l}n-1 \\ k-1\end{array}\right\rangle$ for all $n \geqslant 2$;

- $\sum_{k=0}^{n-1}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=n$! for all $n \geqslant 2$;

Worpitzky's identity: $\quad x^{n}=\sum_{k=0}^{n-1}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\binom{ x+k}{n}$ for all $n \geqslant 2$;

$$
\text { - }\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=\sum_{j=0}^{k}(-1)^{j}\binom{n+1}{j}(k+1-j)^{n} \text { for all } n \geqslant 1
$$

Stirling numbers: $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\frac{1}{m!} \sum_{k=0}^{n-1}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\binom{ k}{n-m}$ for all $n \geqslant m$ and $n \geqslant 1$;
Generating f-n: $\frac{1-x}{e^{(x-1) t}-x}=\sum_{n, m}\left\langle\begin{array}{l}n \\ m\end{array}\right\rangle x^{m} \frac{t^{n}}{n!}$.

Next subsection

1 Fibonacci Numbers

2 Harmonic numbers

3 Mini-guide to other number series

- Eulerian numbers
- Bernoulli numbers

Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

$$
S_{m}(n)=0^{m}+1^{m}+\ldots+(n-1)^{m}=\sum_{k=0}^{n-1} k^{m}=\sum_{0}^{n} x^{m} \delta x
$$

Plotting an expansion with respect to n yields:

$$
\begin{array}{llllll}
S_{0}(n) & =n & & & & \\
S_{1}(n) & =\frac{1}{2} n^{2} & -\frac{1}{2} n & & & \\
S_{2}(n) & = & \frac{1}{3} n^{3} & -\frac{1}{2} n^{2} & +\frac{1}{6} n & \\
S_{3}(n) & = & \frac{1}{4} n^{4} & -\frac{1}{2} n^{3} & +\frac{1}{4} n^{2} & \\
S_{4}(n) & =\frac{1}{5} n^{5} & -\frac{1}{2} n^{4} & +\frac{1}{3} n^{3} & -\frac{1}{30} n & \\
S_{5}(n) & = & \frac{1}{6} n^{6} & -\frac{1}{2} n^{5} & +\frac{5}{12} n^{4} & -\frac{1}{12} n^{2} \\
S_{6}(n) & =\frac{1}{7} n^{7} & -\frac{1}{2} n^{6} & +\frac{1}{2} n^{5} & -\frac{1}{6} n^{3} & +\frac{1}{42} n \\
S_{7}(n) & =\frac{1}{8} n^{8} & -\frac{1}{2} n^{7} & +\frac{7}{12} n^{6} & -\frac{7}{24} n^{4} & +\frac{1}{12} n^{2} \\
S_{8}(n) & =\frac{1}{9} n^{9} & -\frac{1}{2} n^{8} & +\frac{2}{3} n^{7} & -\frac{7}{15} n^{5} & +\frac{2}{9} n^{3} \\
S_{9}(n) & =\frac{1}{10} n^{10} & -\frac{1}{2} n^{9} & +\frac{3}{4} n^{8} & -\frac{7}{10} n^{6} & +\frac{1}{2} n^{4}
\end{array}
$$

Bernoulli numbers: History

Jakob Bernoulli (1654-1705) worked on the functions:

$$
S_{m}(n)=0^{m}+1^{m}+\ldots+(n-1)^{m}=\sum_{k=0}^{n-1} k^{m}=\sum_{0}^{n} x^{m} \delta x
$$

Bernoulli observed the following regularities:

- The leading coefficient of S_{m} is always $\frac{1}{m+1}=\frac{1}{m+1}\binom{m+1}{0}$.
- The coefficient of n^{m} in S_{m} is always $-\frac{1}{2}=-\frac{1}{2} \cdot \frac{1}{m+1} \cdot\binom{m+1}{1}$.
- The coefficient of n^{m-1} in S_{m} is always $\frac{m}{12}=\frac{1}{6} \cdot \frac{1}{m+1} \cdot\binom{m+1}{2}$.
- The coefficient of n^{m-2} in S_{m} is always 0 .
- The coefficient of n^{m-3} in S_{m} is always $-\frac{m(m-1)(m-2)}{720}=-\frac{1}{30} \cdot \frac{1}{m+1} \cdot\binom{m+1}{4}$.
- The coefficient of n^{m-4} in S_{m} is always 0 .
- The coefficient of n^{m-5} in S_{m} is always $\frac{1}{42} \cdot \frac{1}{m+1} \cdot\binom{m+1}{6}$.
- And so on, and so on ...

Bernoulli numbers

Definition

The k th Bernoulli number is the unique value B_{k} such that, for every $m \geqslant 0$,

$$
S_{m}(n)=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k}
$$

Bernoulli numbers are also defined by the recurrence:

$$
\sum_{k=0}^{m}\binom{m+1}{k} B_{k}=[m=0]
$$

Observe that the above is simply $S_{m}(1)$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
B_{n}	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$

Bernoulli numbers and the Riemann zeta function

Theorem

For every $n \geqslant 1$,

$$
\zeta(2 n)=(-1)^{n-1} \frac{2^{2 n-1} \pi^{2 n} B_{2 n}}{(2 n)!}
$$

In particular,

$$
\zeta(2)=\sum_{n \geqslant 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

