Sums

ITT9131 Konkreetne Matemaatika

Chapter Two
Notation
Sums and Recurrences
Manipulation of Sums
Multiple Sums
General Methods
Finite and Infinite Calculus
Infinite Sums

Contents

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Sequences

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is set of natural numbers.

Sequences

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- $\left\{a_{n}\right\}$

Sequences

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- $\left\{a_{n}\right\}$
a_{n} is called n-th term of a sequence f

Sequences

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- $\left\{a_{n}\right\}$
a_{n} is called n-th term of a sequence f

Example

$$
\begin{gathered}
a_{0}=0, a_{1}=\frac{1}{2 \cdot 3}, a_{2}=\frac{2}{3 \cdot 4}, a_{3}=\frac{3}{4 \cdot 5}, \cdots \\
\text { or } \\
\left\langle 0, \frac{1}{6}, \frac{1}{6}, \frac{3}{20}, \frac{2}{15}, \cdots, \frac{n}{(n+1)(n+2)}, \cdots\right\rangle
\end{gathered}
$$

Sequences

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- $\left\{a_{n}\right\}$
a_{n} is called n-th term of a sequence f
Notation

$$
\begin{gathered}
f(n)=\frac{n}{(n+1)(n+2)} \\
\quad \text { or } \\
a_{n}=\frac{n}{(n+1)(n+2)}
\end{gathered}
$$

Sets of indexes

$\square \mathbb{N}$ - set of indexes of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$

Sets of indexes

- \mathbb{N} - set of indexes of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:
- $\mathbb{N}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$
- $\mathbb{N}-K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
- $\mathbb{Z} \sim \mathbb{N}$
- $\{1,3,5,7, \ldots\}=O D D \sim \mathbb{N}$
- $\{0,2,4,6, \ldots\}=E V E N \sim \mathbb{N}$

Sets of indexes

- \mathbb{N} - set of indexes of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:
- $\mathbb{N}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$
- $\mathbb{N}-K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
- $\mathbb{Z} \sim \mathbb{N}$
- $\{1,3,5,7, \ldots\}=O D D \sim \mathbb{N}$
- $\{0,2,4,6, \ldots\}=E V E N \sim \mathbb{N}$
$A \sim B$ denotes that sets A and B are of the same cardinality, i.e. $|A|=|B|$.

Sets of indexes

- \mathbb{N} - set of indexes of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:
- $\mathbb{N}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$
- $\mathbb{N}-K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
- $\mathbb{Z} \sim \mathbb{N}$
- $\{1,3,5,7, \ldots\}=O D D \sim \mathbb{N}$
- $\{0,2,4,6, \ldots\}=E V E N \sim \mathbb{N}$

Two sets A and B have the same cardinality if there exists a bijection, that is, an injective and surjective function, from A to B.
(See
http://www.mathsisfun.com/sets/injective-surjective-bijective.html for detailed explanation)

Finite sequence

- Finite sequence of elements of a set A is a function $f: K \rightarrow A$, where K is set a finite subset of natural numbers

For example: $f:\{1,2,3,4, \cdots, n\} n \rightarrow A, n \in \mathbb{N}$
Special case: $n=0$, i.e. empty sequence: $f(\emptyset)=e$

Domain of the sequence

$$
\begin{gathered}
f: T \rightarrow A \\
a_{n}=\frac{n}{(n-2)(n-5)}
\end{gathered}
$$

Domain of f is $T=\mathbb{N}-\{2,5\}$

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Notation

For a finite set $K=\{1,2, \cdots, m\}$ and a given sequence $f: K \rightarrow \mathbb{R}$ with $f(n)=a_{n}$ we write

$$
\sum_{k=1}^{m} a_{k}=a_{1}+a_{2}+\cdots+a_{m}
$$

Notation

For a finite set $K=\{1,2, \cdots, m\}$ and a given sequence $f: K \rightarrow \mathbb{R}$ with $f(n)=a_{n}$ we write

$$
\sum_{k=1}^{m} a_{k}=a_{1}+a_{2}+\cdots+a_{m}
$$

Alternative notations

$$
\sum_{k=1}^{m} a_{k}=\sum_{1 \leqslant k \leqslant m} a_{k}=\sum_{k \in\{1, \cdots, m\}} a_{k}=\sum_{K} a_{k}
$$

Warmup: What does this notation mean?

$$
\sum_{\sum_{d}^{2}}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum$
This seems the sensible thing-but:
2. $\sum_{4<k<0} 9_{k}=0$ also looks like a feasible interpretation-but:

3 If

$$
\sum_{k=m}^{n} q_{k}=\sum_{k \leq n} q_{k}-\sum_{k<m} q_{k}
$$

(provided the two sums on the right-hand side exist finite)
then $\sum_{k=4}^{0} q_{k}=\sum_{k \leq 0} q_{k}-\sum_{k<4} q_{k}=-q_{1}-q_{2}-q_{3}$.

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing
$2 \sum_{4 \leq k \leq 0} q_{k}=0$ also looks like a feasible interpretation-but:
3 If

(provided the two sums on the right-hand side exist finite)

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing-but:
$2 \sum_{4 \leq k \leq 0} q_{k}=0$ also looks like a feasible interpretation -but:
3 If

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing-but:
$2 \sum_{4 \leq k \leq 0} q_{k}=0$ also looks like a feasible interpretation-but:
3 If

$$
\sum_{k=m}^{n} q_{k}=\sum_{k \leq n} q_{k}-\sum_{k<m} q_{k},
$$

(provided the two sums on the right-hand side exist finite) then $\sum_{k=4}^{0} q_{k}=\sum_{k \leq 0} q_{k}-\sum_{k<4} q_{k}=-q_{1}-q_{2}-q_{3}$.

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leq k \leq 5\}} a_{k}$ and $\sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

$$
\left\{0 \leq k^{2} \leq 5\right\}=\{0,1,2,-1,-2\}
$$

thus

Warmup: Interpreting the \sum-notation

$$
\text { Compute } \sum_{\{0 \leq k \leq 5\}} a_{k} \text { and } \sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}} \text {. }
$$

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leq k \leq 5\}} a_{k}$ and $\sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

$$
\left\{0 \leq k^{2} \leq 5\right\}=\{0,1,2,-1,-2\}
$$

thus,
Σ $\leq k<5 a_{k^{2}}=a_{0}{ }^{2}+a_{1^{2}}+a_{2^{2}}+a_{(-1)^{2}}+a_{(-2)^{2}}=a_{0}+2 a_{1}+2 a_{2}$.

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leq k \leq 5\}} a_{k}$ and $\sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

$$
\left\{0 \leq k^{2} \leq 5\right\}=\{0,1,2,-1,-2\}:
$$

thus,
$\sum_{\{0 \leq k \leq 5\}} a_{k^{2}}=a_{0^{2}}+a_{1^{2}}+a_{2^{2}}+a_{(-1)^{2}}+a_{(-2)^{2}}=a_{0}+2 a_{1}+2 a_{2}$.

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Sums and Recurrences

Computation of any sum

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

can be presented in the recursive form:

$$
\begin{aligned}
& S_{0}=a_{0} \\
& S_{n}=S_{n-1}+a_{n}
\end{aligned}
$$

\Rightarrow Techniques from CHAPTER ONE can be used for finding closed formulas for evaluating sums.

Recalling repertoire method

- Given

$$
\begin{aligned}
& g(0)=\alpha \\
& g(n)=\Phi(g(n-1))+\Psi(\beta, \gamma, \ldots) \quad \text { for } n>0 .
\end{aligned}
$$

where Φ and Ψ are linear, for example if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.

- Functions $A(n), B(n), C(n), \ldots$ could be found from the system of equations

Recalling repertoire method

- Given

$$
\begin{aligned}
& g(0)=\alpha \\
& g(n)=\Phi(g(n-1))+\Psi(\beta, \gamma, \ldots) \quad \text { for } n>0 .
\end{aligned}
$$

where Φ and Ψ are linear, for example if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.

- Closed form is

$$
\begin{equation*}
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\cdots \tag{1}
\end{equation*}
$$

- Functions $A(n), B(n), C(n), \ldots$ could be found from the system of equations $\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\cdots=g_{1}(n)$

Recalling repertoire method

- Given

$$
\begin{aligned}
& g(0)=\alpha \\
& g(n)=\Phi(g(n-1))+\Psi(\beta, \gamma, \ldots) \quad \text { for } n>0 .
\end{aligned}
$$

where Φ and Ψ are linear, for example if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.

- Closed form is

$$
\begin{equation*}
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\cdots \tag{1}
\end{equation*}
$$

- Functions $A(n), B(n), C(n), \ldots$ could be found from the system of equations

$$
\begin{aligned}
\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\cdots & =g_{1}(n) \\
\vdots & =\vdots \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\cdots & =g_{m}(n)
\end{aligned}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_{i}(n)$ and any n.

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Example 1: arithmetic sequence

Arithmetic sequence: $a_{n}=a+b n$
Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+(a+b n), \text { for } n>0 .
\end{aligned}
$$

Example 1: arithmetic sequence

Arithmetic sequence: $a_{n}=a+b n$
Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+(a+b n), \text { for } n>0 .
\end{aligned}
$$

Let's find a closed form for a bit more general recurrent equation:

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{n}=R_{n-1}+(\beta+\gamma n), \text { for } n>0 .
\end{aligned}
$$

Evaluation of terms $R_{n}=R_{n-1}+(\beta+\gamma n)$

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{1}=\alpha+\beta+\gamma \\
& R_{2}=\alpha+\beta+\gamma+(\beta+2 \gamma)=\alpha+2 \beta+3 \gamma \\
& R_{3}=\alpha+2 \beta+3 \gamma+(\beta+3 \gamma)=\alpha+3 \beta+6 \gamma
\end{aligned}
$$

Observation

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

Evaluation of terms $R_{n}=R_{n-1}+(\beta+\gamma n)$

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{1}=\alpha+\beta+\gamma \\
& R_{2}=\alpha+\beta+\gamma+(\beta+2 \gamma)=\alpha+2 \beta+3 \gamma \\
& R_{3}=\alpha+2 \beta+3 \gamma+(\beta+3 \gamma)=\alpha+3 \beta+6 \gamma
\end{aligned}
$$

Observation

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

$A(n), B(n), C(n)$ can be evaluated using repertoire method: we will consider three cases
$1 R_{n}=1$ for all n
$2 R_{n}=n$ for all n
$3 R_{n}=n^{2}$ for all n

Repertoire method: case 1

Lemma 1: $A(n)=1$ for all n

■ $1=R_{0}=\alpha$

- From $R_{n}=R_{n-1}+(\beta+\gamma n)$ follows that $1=1+(\beta+\gamma n)$. This is possible only when $\beta=\gamma=0$

Hence

$$
1=A(n) \cdot 1+B(n) \cdot 0+C(n) \cdot 0
$$

Repertoire method: case 2

Lemma 2: $B(n)=n$ for all n

- $\alpha=R_{0}=0$
- From $R_{n}=R_{n-1}+(\beta+\gamma n)$ follows that $n=(n-1)+(\beta+\gamma n)$.
I.e. $1=\beta+\gamma n$.

This gives that $\beta=1$ and $\gamma=0$
Hence

$$
n=A(n) \cdot 0+B(n) \cdot 1+C(n) \cdot 0
$$

Repertoire method: case 3

Lemma 3: $C(n)=\frac{n^{2}+n}{2}$ for all n

- $\alpha=R_{0}=0^{2}=0$
- Equation $R_{n}=R_{n-1}+(\beta+\gamma n)$ can be transformed as

$$
\begin{aligned}
& n^{2}=(n-1)^{2}+\beta+\gamma n \\
& n^{2}=n^{2}-2 n+1+\beta+\gamma n \\
& 0=(1+\beta)+n(\gamma-2)
\end{aligned}
$$

This is valid iff $1+\beta=0$ and $\gamma-2=0$
Hence

$$
n^{2}=A(n) \cdot 0+B(n) \cdot(-1)+C(n) \gamma \cdot 2
$$

Due to Lemma 2 we get

$$
n^{2}=-n+2 C(n)
$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get
$1 R_{n}=1$ for all n
\Longrightarrow
$A(n)=1$
$2 R_{n}=n$ for all n
\Longrightarrow
\Longrightarrow
$B(n)=n$
$C(n)=\left(n^{2}+n\right) / 2$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get
$1 R_{n}=1$ for all n

$$
\Longrightarrow
$$

$$
A(n)=1
$$

$2 R_{n}=n$ for all n

$$
B(n)=n
$$

$3 R_{n}=n^{2}$ for all n \Longrightarrow

$$
C(n)=\left(n^{2}+n\right) / 2
$$

That means that

$$
R_{n}=\alpha+n \beta+\left(\frac{n^{2}+n}{2}\right) \gamma
$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get
$1 R_{n}=1$ for all n
\Longrightarrow

$$
A(n)=1
$$

$2 R_{n}=n$ for all n $B(n)=n$
$3 R_{n}=n^{2}$ for all n $C(n)=\left(n^{2}+n\right) / 2$

That means that

$$
R_{n}=\alpha+n \beta+\left(\frac{n^{2}+n}{2}\right) \gamma
$$

The sum for arithmetic sequence we obtain taking $\alpha=\beta=a$ and $\gamma=b$:

$$
S_{n}=\sum_{k=0}^{n}(a+b k)=(n+1) a+\frac{n(n+1)}{2} b
$$

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Perturbation method

Finding the closed form for $S_{n}=\sum_{0 \leqslant k \leqslant n} a_{k}$:

- Rewrite S_{n+1} by splitting off first and last term:

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{1 \leqslant k \leqslant n+1} a_{k}= \\
& =a_{0}+\sum_{1 \leqslant k+1 \leqslant n+1} a_{k+1}= \\
& =a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
\end{aligned}
$$

- Work on last sum and express in terms of S_{n}.
- Finally, solve for S_{n}.

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

- Splitting off the first term gives

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}= \\
& =a+\sum_{0 \leqslant k \leqslant n} a x^{k+1}= \\
& =a+x \sum_{0 \leqslant k \leqslant n} a x^{k}= \\
& =a+x S_{n}
\end{aligned}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

- Hence, we have the equation

$$
S_{n}+a x^{n+1}=a+x S_{n}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

- Hence, we have the equation

$$
S_{n}+a x^{n+1}=a+x S_{n}
$$

- Solution:

$$
S_{n}=\frac{a-a x^{n+1}}{1-x}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

Closed formula for geometric sum:

$$
S_{n}=\frac{a\left(x^{n+1}-1\right)}{x-1}
$$

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

This sequence can be transformed into geometric sum using following manipulations:

- Divide equations by 2^{n} :

$$
\begin{aligned}
& T_{0} / 2^{0}=0 \\
& T_{n} / 2^{n}=T_{n-1} / 2^{n-1}+1 / 2^{n}
\end{aligned}
$$

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

This sequence can be transformed into geometric sum using following manipulations:

- Divide equations by 2^{n} :

$$
\begin{aligned}
& T_{0} / 2^{0}=0 \\
& T_{n} / 2^{n}=T_{n-1} / 2^{n-1}+1 / 2^{n}
\end{aligned}
$$

- Set $S_{n}=T_{n} / 2^{n}$ to have:

$$
\begin{aligned}
& S_{0}=0 \\
& S_{n}=S_{n-1}+2^{-n}
\end{aligned}
$$

(This is geometric sum with the parameters $a=1$ and $x=1 / 2$.)

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S_{n} & =\frac{0.5\left(0.5^{n}-1\right)}{0.5-1} \quad\left(a_{0}=0 \text { has been left out of the sum }\right) \\
& =1-2^{-n}
\end{aligned}
$$

$$
T_{n}=2^{n} S_{n}=2^{n}-1
$$

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Hence,

$$
\begin{gathered}
S_{n}=\frac{0.5\left(0.5^{n}-1\right)}{0.5-1} \quad \quad \quad\left(a_{0}=0 \text { has been left out of the sum }\right) \\
=1-2^{-n} \\
\\
T_{n}=2^{n} S_{n}=2^{n}-1
\end{gathered}
$$

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the knowr solutions
- Summation factors

4 Manipulation of Sums

Linear recurrence in form $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$

Here $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are any sequences and initial value T_{0} is a constant.

The idea:

Find a summation factor s_{n} satisfying the property

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \quad \text { for any } n
$$

If such a factor exists, one can do following transformations:

- $s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-1}+s_{n} c_{n}=s_{n-1} a_{n-1} T_{n-1}+s_{n} c_{n}$
- Settins $S_{n}=s_{n} a_{n} T$ to rewrite the equation as
$S_{0}=S_{0} a_{0} T_{0}$
$S_{n}=S_{n-1}+s_{n} C_{n}$
- Closed formula (!) for solution

Linear recurrence in form $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$

Here $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are any sequences and initial value T_{0} is a constant.

The idea:

Find a summation factor s_{n} satisfying the property

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \quad \text { for any } n
$$

If such a factor exists, one can do following transformations:

- $s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-\mathbf{1}}+s_{n} c_{n}=s_{n-\mathbf{1}} a_{n-\mathbf{1}} T_{n-\mathbf{1}}+s_{n} c_{n}$
- Setting $S_{n}=s_{n} a_{n} T_{n}$, to rewrite the equation as

$$
\begin{aligned}
& S_{0}=s_{0} a_{0} T_{0} \\
& S_{n}=S_{n-1}+s_{n} c_{n}
\end{aligned}
$$

- Closed formula (!) for solution:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{0} a_{0} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

Finding summation factor

Assuming that $b_{n} \neq 0$ for all n :

- Set $s_{0}=1$
- Compute next elements using the property $s_{n} b_{n}=s_{n-1} a_{n-1}$:

$$
\begin{aligned}
s_{1} & =\frac{a_{0}}{b_{1}} \\
s_{2} & =\frac{s_{1} a_{1}}{b_{2}}=\frac{a_{0} a_{1}}{b_{1} b_{2}} \\
s_{3} & =\frac{s_{2} a_{2}}{b_{3}}=\frac{a_{0} a_{1} a_{2}}{b_{1} b_{2} b_{3}} \\
& \ldots \ldots . . \\
s_{n} & =\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}
\end{aligned}
$$

(To be proved by induction!)

Example: application of summation factor

$$
a_{n}=c_{n}=1 \text { and } b_{n}=2 \text { gives Hanoi Tower sequence: }
$$

- Evaluate summation factor

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{2^{n}}
$$

- Solution is

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=2^{n} \sum_{k=1}^{n} \frac{1}{2^{k}}=2^{n}\left(1-2^{-n}\right)=2^{n}-1
$$

YAE: constant coefficients

Equation $Z_{n}=a Z_{n-1}+b$

Taking $a_{n}=1, b_{n}=a$ and $c_{n}=b$:

- Evaluate summation factor

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{a^{n}}
$$

- Solution is

$$
\begin{aligned}
Z_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} Z_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=a^{n}\left(Z_{0}+b \sum_{k=1}^{n} \frac{1}{a^{k}}\right) \\
& =a^{n} Z_{0}+b\left(1+a+a^{2}+\cdots+a^{n-1}\right) \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

YAE : check up on results

Equation $Z_{n}=a Z_{n-1}+b$

$$
\begin{aligned}
Z_{n} & =a Z_{n-1}+b= \\
= & a^{2} Z_{n-2}+a b+b= \\
= & a^{3} Z_{n-3}+a^{2} b+a b+b= \\
& \cdots \cdots \\
= & a^{k} Z_{n-k}+\left(a^{k-1}+a^{k-2}+\ldots+1\right) b= \\
= & a^{k} Z_{n-k}+\frac{a^{k}-1}{a-1} b \quad(\text { assuming } a \neq 1)
\end{aligned}
$$

YAE : check up on results

Equation $Z_{n}=a Z_{n-1}+b$

$$
\begin{aligned}
Z_{n} & =a Z_{n-1}+b= \\
= & a^{2} Z_{n-2}+a b+b= \\
= & a^{3} Z_{n-3}+a^{2} b+a b+b= \\
& \cdots \cdots \\
= & a^{k} Z_{n-k}+\left(a^{k-1}+a^{k-2}+\ldots+1\right) b= \\
= & a^{k} Z_{n-k}+\frac{a^{k}-1}{a-1} b \quad(\text { assuming } a \neq 1)
\end{aligned}
$$

Continuing until $k=n$:

$$
\begin{aligned}
Z_{n} & =a^{n} Z_{n-n}+\frac{a^{n}-1}{a-1} b= \\
& =a^{n} Z_{0}+\frac{a^{n}-1}{a-1} b
\end{aligned}
$$

Efficiency of quick sort

Average number of comparisons: $C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}$

Efficiency of quick sort (2)

The average number of comparison steps when it is applied to n items

$$
\begin{aligned}
& C_{0}=0 \\
& C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}
\end{aligned}
$$

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$ and subtract to eliminate the sum:

$$
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k}
$$

Efficiency of quick sort (2)

The average number of comparison steps when it is applied to n items

$$
\begin{aligned}
& C_{0}=0 \\
& C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}
\end{aligned}
$$

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$ and subtract to eliminate the sum:

$$
\begin{gathered}
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k} \\
n C_{n}-(n-1) C_{n-1}=n^{2}+n+2 C_{n-1}-(n-1)^{2}-(n-1)
\end{gathered}
$$

Efficiency of quick sort (2)

The average number of comparison steps when it is applied to n items

$$
\begin{aligned}
C_{0} & =0 \\
C_{n} & =n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}
\end{aligned}
$$

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$ and subtract to eliminate the sum:

$$
\begin{gathered}
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k} \\
n C_{n}-n C_{n-1}+C_{n-1}=n^{2}+n+2 C_{n-1}-n^{2}+2 n-1-n+1
\end{gathered}
$$

Efficiency of quick sort (2)

The average number of comparison steps when it is applied to n items

$$
\begin{aligned}
& C_{0}=0 \\
& C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}
\end{aligned}
$$

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$ and subtract to eliminate the sum:

$$
\begin{gathered}
(n-1) C_{n-1}=(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k} \\
n C_{n}-n C_{n-1}=C_{n-1}+2 n
\end{gathered}
$$

Efficiency of quick sort (2)

The average number of comparison steps when it is applied to n items

$$
\begin{aligned}
& C_{0}=0 \\
& C_{n}=n+1+\frac{2}{n} \sum_{k=0}^{n-1} C_{k}
\end{aligned}
$$

The following transformations reduce this equation

$$
n C_{n}=n^{2}+n+2 \sum_{k=0}^{n-2} C_{k}+2 C_{n-1}
$$

Write the last equation for $n-1$ and subtract to eliminate the sum:

$$
\begin{aligned}
(n-1) C_{n-1} & =(n-1)^{2}+(n-1)+2 \sum_{k=0}^{n-2} C_{k} \\
n C_{n} & =(n+1) C_{n-1}+2 n
\end{aligned}
$$

Efficiency of quick sort (3)

Equation $n C_{n}=(n+1) C_{n-1}+2 n$

- Assuming $a_{n}=n, b_{n}=n+1$ and $c_{n}=2 n$ evaluate summation factor

$$
s_{n}=\frac{a_{1} a_{2} \ldots a_{n-1}}{b_{2} b_{3} \ldots b_{n}}=\frac{1 \cdot 2 \cdot \ldots \cdot(n-1)}{3 \cdot 4 \cdot \ldots \cdot(n+1)}=\frac{2}{n(n+1)}
$$

- Solution is

$$
\begin{aligned}
C_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} C_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \\
& =\frac{n+1}{2} \sum_{k=1}^{n} \frac{4 k}{k(k+1)} \\
& =2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}=2(n+1)\left(\sum_{k=1}^{n} \frac{1}{k}+\frac{1}{n+1}-1\right) \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ is n-th harmonic number.

Efficiency of quick sort (3)

Equation $n C_{n}=(n+1) C_{n-1}+2 n$

- Assuming $a_{n}=n, b_{n}=n+1$ and $c_{n}=2 n$ evaluate summation factor

$$
s_{n}=\frac{a_{1} a_{2} \ldots a_{n-1}}{b_{2} b_{3} \ldots b_{n}}=\frac{1 \cdot 2 \cdot \ldots \cdot(n-1)}{3 \cdot 4 \cdot \ldots \cdot(n+1)}=\frac{2}{n(n+1)}
$$

- Solution is

$$
\begin{aligned}
C_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} C_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \\
& =\frac{n+1}{2} \sum_{k=1}^{n} \frac{4 k}{k(k+1)} \\
& =2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}=2(n+1)\left(\sum_{k=1}^{n} \frac{1}{k}+\frac{1}{n+1}-1\right) \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ is n-th harmonic number.
(k-th harmonic produced by a violin string is the fundamental tone produced by a string that is

Efficiency of quick sort (3)

Equation $n C_{n}=(n+1) C_{n-1}+2 n$

- Assuming $a_{n}=n, b_{n}=n+1$ and $c_{n}=2 n$ evaluate summation factor

$$
s_{n}=\frac{a_{1} a_{2} \ldots a_{n-1}}{b_{2} b_{3} \ldots b_{n}}=\frac{1 \cdot 2 \cdot \ldots \cdot(n-1)}{3 \cdot 4 \cdot \ldots \cdot(n+1)}=\frac{2}{n(n+1)}
$$

- Solution is

$$
\begin{aligned}
C_{n} & =\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} C_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right) \\
& =\frac{n+1}{2} \sum_{k=1}^{n} \frac{4 k}{k(k+1)} \\
& =2(n+1) \sum_{k=1}^{n} \frac{1}{k+1}=2(n+1)\left(\sum_{k=1}^{n} \frac{1}{k}+\frac{1}{n+1}-1\right) \\
& =2(n+1) H_{n}-2 n
\end{aligned}
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \approx \ln n$.
(k-th harmonic produced by a violin string is the fundamental tone produced by a string that is

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Manipulation of Sums

Some properties of sums:
For K being a finite set and $p(k)$ is any permutation of the set of all integers.
Distributive law

$$
\sum_{k \in K} c a_{k}=c \sum_{k \in K} a_{k}
$$

Associative law

$$
\sum_{k \in K}\left(a_{k}+b_{k}\right)=\sum_{k \in K} a_{k}+\sum_{k \in K} b_{k}
$$

Commutative law

$$
\sum_{k \in K} a_{k}=\sum_{p(k) \in K} a_{p(k)}
$$

Application of these laws for $S=\sum_{0 \leqslant k \leqslant n}(a+b k)$

Manipulation of Sums

Some properties of sums:

For K being a finite set and $p(k)$ is any permutation of the set of all integers.
Distributive law

$$
\sum_{k \in K} c a_{k}=c \sum_{k \in K} a_{k}
$$

Associative law

$$
\sum_{k \in K}\left(a_{k}+b_{k}\right)=\sum_{k \in K} a_{k}+\sum_{k \in K} b_{k}
$$

Commutative law

$$
\sum_{k \in K} a_{k}=\sum_{p(k) \in K} a_{p(k)}
$$

Application of these laws for $S=\sum_{0 \leqslant k \leqslant n}(a+b k)$

$$
\begin{aligned}
S & =\sum_{0 \leqslant n-k \leqslant n}(a+b(n-k))=\sum_{0 \leqslant k \leqslant n}(a+b n-b k) \\
2 S & =\sum_{0 \leqslant k \leqslant n}((a+b k)+(a+b n-b k))=\sum_{0 \leqslant k \leqslant n}(2 a+b n) \\
2 S & =(2 a+b n) \sum_{0 \leqslant k \leqslant n} 1=(2 a+b n)(n+1)
\end{aligned} \text { (dssociativity) }
$$

Yet another useful equality

$$
\sum_{k \in K} a_{k}+\sum_{k \in K^{\prime}} a_{k}=\sum_{k \in K \cup K^{\prime}} a_{k}+\sum_{k \in K \cap K^{\prime}} a_{k}
$$

Special cases:
a) for $1 \leqslant m \leqslant n$

$$
\sum_{k=1}^{m} a_{k}+\sum_{k=m}^{n} a_{k}=a_{m}+\sum_{k=1}^{n} a_{k}
$$

b) for $n \geqslant 0$

$$
\sum_{0 \leqslant k \leqslant n} a_{k}=a_{0}+\sum_{1 \leqslant k \leqslant n} a_{k}
$$

c) for $n \geqslant 0$

$$
S_{n}+a_{n+1}=a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
$$

Example: $S_{n}=\sum_{k=0}^{n} k x^{k}$

For $x \neq 1$:

$$
\begin{aligned}
S_{n}+(n+1) x^{n+1} & =\sum_{0 \leqslant k \leqslant n}(k+1) x^{k+1} \\
& =\sum_{0 \leqslant k \leqslant n} k x^{k+1}+\sum_{0 \leqslant k \leqslant n} x^{k+1} \\
& =x S_{n}+\frac{x\left(1-x^{n+1}\right)}{1-x} \\
\sum_{k=0}^{n} k x^{k}= & \frac{x-(n+1) x^{n+1}+n x^{n+2}}{(x-1)^{2}}
\end{aligned}
$$

