Sums ITT9131 Konkreetne Matemaatika

Chapter Two

Notation Sums and Recurrences Manipulation of Sums Multiple Sums General Methods Finite and Infinite Calcult Infinite Sums

Contents

1 Sequences

- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors

4 Manipulation of Sums

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}$, where $a_n = f(n)$
- $\blacksquare \{a_n\}_{n\in\mathbb{N}}$
- $\blacksquare \{a_n\}$
- an is called n-th term of a sequence f

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}$, where $a_n = f(n)$
- $\bullet \{a_n\}_{n\in\mathbb{N}}$
- {*a*_n}
- an is called **n**-th term of a sequence f

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}$, where $a_n = f(n)$
- $\bullet \{a_n\}_{n\in\mathbb{N}}$
- {a_n}
- a_n is called *n*-th term of a sequence f

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

•
$$f = \{a_n\}$$
, where $a_n = f(n)$

$$\{a_n\}_{n\in\mathbb{N}}$$

 a_n is called *n*-th term of a sequence f

Example

$$a_0 = 0, \ a_1 = \frac{1}{2 \cdot 3}, \ a_2 = \frac{2}{3 \cdot 4}, \ a_3 = \frac{3}{4 \cdot 5}, \cdots$$

or

$$\left< 0, \frac{1}{6}, \frac{1}{6}, \frac{3}{20}, \frac{2}{15}, \cdots, \frac{n}{(n+1)(n+2)}, \cdots \right>$$

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

•
$$f = \{a_n\}$$
, where $a_n = f(n)$

$$\{a_n\}_{n\in\mathbb{N}}$$

 a_n is called *n*-th term of a sequence f

Notation

$$f(n) = \frac{n}{(n+1)(n+2)}$$

$$a_n = \frac{n}{(n+1)(n+2)}$$

• \mathbb{N} - set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$

Any countably infinite set can be used for index. Examples of other frequently used indexes are:

$$\blacksquare \mathbb{N}^+ = \mathbb{N} - \{0\} \sim \mathbb{N}$$

• $\mathbb{N} - K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}

$$\mathbb{Z} \sim \mathbb{N}$$

•
$$\{1,3,5,7,\ldots\} = ODD \sim \mathbb{N}$$

• $\{0, 2, 4, 6, \ldots\} = EVEN \sim \mathbb{N}$

- \mathbb{N} set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:

$$\blacksquare \mathbb{N}^+ = \mathbb{N} - \{\mathbf{0}\} \sim \mathbb{N}$$

•
$$\mathbb{N} - K \sim \mathbb{N}$$
, where K is any finite subset of \mathbb{N}

$$\mathbb{Z} \sim \mathbb{N}$$

•
$$\{1, 3, 5, 7, ...\} = ODD \sim \mathbb{N}$$

•
$$\{0, 2, 4, 6, ...\} = EVEN \sim \mathbb{N}$$

- \mathbb{N} set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:

•
$$\mathbb{N}^+ = \mathbb{N} - \{\mathbf{0}\} \sim \mathbb{N}$$

- $\mathbb{N} K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
- $\mathbb{Z} \sim \mathbb{N}$

•
$$\{1,3,5,7,\ldots\} = ODD \sim \mathbb{N}$$

•
$$\{0, 2, 4, 6, ...\} = EVEN \sim \mathbb{N}$$

 $A \sim B$ denotes that sets A and B are of the same cardinality, i.e. |A| = |B|.

• \mathbb{N} - set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$

Any countably infinite set can be used for index. Examples of other frequently used indexes are:

•
$$\mathbb{N}^+ = \mathbb{N} - \{\mathbf{0}\} \sim \mathbb{N}$$

•
$$\mathbb{N} - K \sim \mathbb{N}$$
, where K is any finite subset of \mathbb{N}

$$\mathbb{Z} \sim \mathbb{N}$$

•
$$\{1, 3, 5, 7, ...\} = ODD \sim \mathbb{N}$$

•
$$\{0, 2, 4, 6, ...\} = EVEN \sim \mathbb{N}$$

Two sets A and B have the same cardinality if there exists a bijection, that is, an injective and surjective function, from A to B.

(See

http://www.mathsisfun.com/sets/injective-surjective-bijective.html

for detailed explanation)

Finite sequence of elements of a set A is a function $f : K \to A$, where K is set a finite subset of natural numbers

For example:
$$f: \{1,2,3,4,\cdots,n\} n \rightarrow A, n \in \mathbb{N}$$

Special case: n = 0, i.e. empty sequence: $f(\emptyset) = e$

Domain of the sequence

$$f: T \to A$$
$$a_n = \frac{n}{(n-2)(n-5)}$$

Domain of f is $T = \mathbb{N} - \{2, 5\}$

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Notation

For a finite set $K = \{1, 2, \dots, m\}$ and a given sequence $f: K \to \mathbb{R}$ with $f(n) = a_n$ we write

$$\sum_{k=1}^m a_k = a_1 + a_2 + \dots + a_m$$

Alternative notations

$$\sum_{k=1}^{m} a_k = \sum_{1 \leq k \leq m} a_k = \sum_{k \in \{1, \cdots, m\}} a_k = \sum_K a_k$$

Notation

For a finite set $K = \{1, 2, \dots, m\}$ and a given sequence $f: K \to \mathbb{R}$ with $f(n) = a_n$ we write

$$\sum_{k=1}^m a_k = a_1 + a_2 + \dots + a_m$$

Alternative notations

$$\sum_{k=1}^m a_k = \sum_{1\leqslant k\leqslant m} a_k = \sum_{k\in\{1,\cdots,m\}} a_k = \sum_K a_k$$

Options:

- 1 $\sum_{k=4}^{0} q_k = q_4 + q_3 + q_2 + q_1 + q_0 = \sum_{k \in \{4,3,2,1,0\}} q_k = \sum_{k=0}^{4} q_k$. This seems the sensible thing—but:
- 2 $\sum_{4 \le k \le 0} q_k = 0$ also looks like a feasible interpretation—**but**: 3 If

$$\sum_{k=m}^n q_k = \sum_{k\leq n} q_k - \sum_{k< m} q_k,$$

(provided the two sums on the right-hand side exist finite) then $\sum_{k=4}^{0} q_k = \sum_{k \leq 0} q_k - \sum_{k < 4} q_k = -q_1 - q_2 - q_3$.

1
$$\sum_{k=4}^{0} q_k = q_4 + q_3 + q_2 + q_1 + q_0 = \sum_{k \in \{4,3,2,1,0\}} q_k = \sum_{k=0}^{4} q_k$$
.
This seems the sensible thing—but:

2 $\sum_{4 \le k \le 0} q_k = 0$ also looks like a feasible interpretation—but: 3 If

(provided the two sums on the right-hand side exist finite) then $\sum_{k=4}^{0} q_k = \sum_{k<0} q_k - \sum_{k<4} q_k = -q_1 - q_2 - q_3$.

$$\sum_{k=4}^{0} q_k$$

Options:

- 1 $\sum_{k=4}^{0} q_k = q_4 + q_3 + q_2 + q_1 + q_0 = \sum_{k \in \{4,3,2,1,0\}} q_k = \sum_{k=0}^{4} q_k$. This seems the sensible thing—but:
- 2 $\sum_{4 \le k \le 0} q_k = 0$ also looks like a feasible interpretation—but: 3 If

$$\sum_{k=m}^n q_k = \sum_{k\leq n} q_k - \sum_{k< m} q_k,$$

(provided the two sums on the right-hand side exist finite) then $\sum_{k=4}^{0} q_k = \sum_{k \leq 0} q_k - \sum_{k < 4} q_k = -q_1 - q_2 - q_3$.

Compute
$$\sum_{\{0 \le k \le 5\}} a_k$$
 and $\sum_{\{0 \le k^2 \le 5\}} a_{k^2}$.

First sum

$$\{0 \le k \le 5\} = \{0, 1, 2, 3, 4, 5\}$$
:

thus, $\sum_{0 \le k \le 5} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$.

Second sum

$$\{0 \le k^2 \le 5\} = \{0, 1, 2, -1, -2\}$$
:

thus,

 $\sum_{\{0 \le k \le 5\}} a_{k^2} = a_{0^2} + a_{1^2} + a_{2^2} + a_{(-1)^2} + a_{(-2)^2} = a_0 + 2a_1 + 2a_2$

Compute
$$\sum_{\{0 \le k \le 5\}} a_k$$
 and $\sum_{\{0 \le k^2 \le 5\}} a_{k^2}$.

First sum

$$\{0 \le k \le 5\} = \{0, 1, 2, 3, 4, 5\}$$
:

thus,
$$\sum_{\{0 \le k \le 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$$
.

Second sum

$$\{0 \le k^2 \le 5\} = \{0, 1, 2, -1, -2\}$$
:

thus,

 $\sum_{\{0 \le k \le 5\}} a_{k^2} = a_{0^2} + a_{1^2} + a_{2^2} + a_{(-1)^2} + a_{(-2)^2} = a_0 + 2a_1 + 2a_2$

Compute
$$\sum_{\{0 \le k \le 5\}} a_k$$
 and $\sum_{\{0 \le k^2 \le 5\}} a_{k^2}$.

First sum

$$\{0 \le k \le 5\} = \{0, 1, 2, 3, 4, 5\}$$
 :

thus,
$$\sum_{\{0 \le k \le 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$$
.

Second sum

$$\{0 \le k^2 \le 5\} = \{0, 1, 2, -1, -2\}$$
 :

thus,

 $\sum_{\{0 \le k \le 5\}} a_{k^2} = a_{0^2} + a_{1^2} + a_{2^2} + a_{(-1)^2} + a_{(-2)^2} = a_0 + 2a_1 + 2a_2$

Compute
$$\sum_{\{0 \leq k \leq 5\}} a_k$$
 and $\sum_{\{0 \leq k^2 \leq 5\}} a_{k^2}$.

First sum

$$\{0 \le k \le 5\} = \{0, 1, 2, 3, 4, 5\}$$
:

thus, $\sum_{\{0 \le k \le 5\}} a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5$.

Second sum

$$\{0 \le k^2 \le 5\} = \{0, 1, 2, -1, -2\}$$
:

thus,

 $\sum_{\{0 \le k \le 5\}} a_{k^2} = a_{0^2} + a_{1^2} + a_{2^2} + a_{(-1)^2} + a_{(-2)^2} = a_0 + 2a_1 + 2a_2.$

Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Sums and Recurrences

$$S_n = \sum_{k=1}^n a_k$$

can be presented in the recursive form:

$$S_0 = a_0$$
$$S_n = S_{n-1} + a_n$$

 \Rightarrow Techniques from CHAPTER ONE can be used for finding closed formulas for evaluating sums.

Recalling repertoire method

Given

 $egin{aligned} g(0) &= lpha \ g(n) &= \Phi(g(n-1)) + \Psi(eta,\gamma,\ldots) \end{aligned} ext{ for } n > 0. \end{aligned}$

where Φ and Ψ are linear, for example if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$.

Closed form is

 $g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \cdots$

• Functions $A(n), B(n), C(n), \dots$ could be found from the system of equations

 $\alpha_1 A(n) + \beta_1 B(n) + \gamma_1 C(n) + \dots = g_1(n)$ $= \vdots$ $\alpha_m A(n) + \beta_m B(n) + \gamma_m C(n) + \dots = g_m(n)$

where $\alpha_i, \beta_i, \gamma_i \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_i(n)$ and any n.

Recalling repertoire method

Given

$$g(0) = lpha$$

 $g(n) = \Phi(g(n-1)) + \Psi(eta, \gamma, ...)$ for $n > 0$.

where Φ and Ψ are linear, for example if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$.

Closed form is

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \cdots$$

Functions A(n), B(n), C(n),... could be found from the system of equations

$$\alpha_1 A(n) + \beta_1 B(n) + \gamma_1 C(n) + \dots = g_1(n)$$

$$\vdots \qquad = \vdots$$

$$\alpha_m A(n) + \beta_m B(n) + \gamma_m C(n) + \dots = g_m(n)$$

where $lpha_i, eta_i, \gamma_i \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_i(n)$ and any n.

(1)

Recalling repertoire method

Given

 $egin{aligned} g(0) &= lpha \ g(n) &= \Phi(g(n-1)) + \Psi(eta,\gamma,\ldots) \end{aligned}$ for n > 0.

where Φ and Ψ are linear, for example if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$.

Closed form is

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \cdots$$
(1)

Functions $A(n), B(n), C(n), \dots$ could be found from the system of equations

$$\alpha_1 A(n) + \beta_1 B(n) + \gamma_1 C(n) + \dots = g_1(n)$$

$$\vdots \qquad = \vdots$$

$$\alpha_m A(n) + \beta_m B(n) + \gamma_m C(n) + \dots = g_m(n)$$

where $\alpha_i, \beta_i, \gamma_i \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_i(n)$ and any n.

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Example 1: arithmetic sequence

Arithmetic sequence: $a_n = a + bn$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n$:

Let's find a closed form for a bit more general recurrent equation:

$$R_0=lpha$$

 $R_n=R_{n-1}+(eta+\gamma n)$, for $n>0.$

Example 1: arithmetic sequence

Arithmetic sequence: $a_n = a + bn$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n$:

Let's find a closed form for a bit more general recurrent equation:

$$egin{aligned} \mathcal{R}_0 &= lpha \ \mathcal{R}_n &= \mathcal{R}_{n-1} + (eta + \gamma n) \ ext{, for } n > 0. \end{aligned}$$

Evaluation of terms $R_n = R_{n-1} + (\beta + \gamma n)$

$$R_{0} = \alpha$$

$$R_{1} = \alpha + \beta + \gamma$$

$$R_{2} = \alpha + \beta + \gamma + (\beta + 2\gamma) = \alpha + 2\beta + 3\gamma$$

$$R_{3} = \alpha + 2\beta + 3\gamma + (\beta + 3\gamma) = \alpha + 3\beta + 6\gamma$$

Observation

$$R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$$

A(n), B(n), C(n) can be evaluated using repertoire method: we will consider three cases

- 1 $R_n = 1$ for all n
- 2 $R_n = n$ for all n
- 3 $R_n = n^2$ for all n

Evaluation of terms $R_n = R_{n-1} + (\beta + \gamma n)$

$$R_{0} = \alpha$$

$$R_{1} = \alpha + \beta + \gamma$$

$$R_{2} = \alpha + \beta + \gamma + (\beta + 2\gamma) = \alpha + 2\beta + 3\gamma$$

$$R_{3} = \alpha + 2\beta + 3\gamma + (\beta + 3\gamma) = \alpha + 3\beta + 6\gamma$$

Observation

$$R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$$

A(n), B(n), C(n) can be evaluated using repertoire method: we will consider three cases

1
$$R_n = 1$$
 for all n
2 $R_n = n$ for all n
3 $R_n = n^2$ for all n

Lemma 1: A(n) = 1 for all n

$$1 = R_0 = \alpha$$

From $R_n = R_{n-1} + (\beta + \gamma n)$ follows that $1 = 1 + (\beta + \gamma n)$. This is possible only when $\beta = \gamma = 0$

Hence

$$1 = A(n) \cdot 1 + B(n) \cdot 0 + C(n) \cdot 0$$

Lemma 2: B(n) = n for all n

$$\bullet \ \alpha = R_0 = 0$$

From $R_n = R_{n-1} + (\beta + \gamma n)$ follows that $n = (n-1) + (\beta + \gamma n)$. I.e. $1 = \beta + \gamma n$. This gives that $\beta = 1$ and $\gamma = 0$

Hence

$$n = A(n) \cdot 0 + B(n) \cdot 1 + C(n) \cdot 0$$

Repertoire method: case 3

Lemma 3:
$$C(n) = \frac{n^2 + n}{2}$$
 for all n

•
$$\alpha = R_0 = 0^2 = 0$$

• Equation
$$R_n = R_{n-1} + (\beta + \gamma n)$$
 can be transformed as
 $n^2 = (n-1)^2 + \beta + \gamma n$
 $n^2 = n^2 - 2n + 1 + \beta + \gamma n$
 $0 = (1+\beta) + n(\gamma - 2)$
This is valid iff $1 + \beta = 0$ and $\gamma - 2 = 0$

Hence

$$n^2 = A(n) \cdot 0 + B(n) \cdot (-1) + C(n)\gamma \cdot 2$$

Due to Lemma 2 we get

$$n^2 = -n + 2C(n)$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get

1
$$R_n = 1$$
 for all n \Longrightarrow $A(n) = 1$ 2 $R_n = n$ for all n \Longrightarrow $B(n) = n$ 3 $R_n = n^2$ for all n \Longrightarrow $C(n) = (n^2 + n)/2$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get

1
$$R_n = 1$$
 for all n \implies $A(n) = 1$ 2 $R_n = n$ for all n \implies $B(n) = n$ 3 $R_n = n^2$ for all n \implies $C(n) = (n^2 + n)/2$

That means that

$$R_n = \alpha + n\beta + \left(\frac{n^2 + n}{2}\right)\gamma$$

According to Lemma 1, 2, 3, we get

1 $R_n = 1$ for all n \Longrightarrow A(n) = 12 $R_n = n$ for all n \Longrightarrow B(n) = n3 $R_n = n^2$ for all n \Longrightarrow $C(n) = (n^2 + n)/2$

That means that

$$R_n = \alpha + n\beta + \left(\frac{n^2 + n}{2}\right)\gamma$$

The sum for arithmetic sequence we obtain taking lpha=eta=a and $\gamma=b$.

$$S_n = \sum_{k=0}^n (a+bk) = (n+1)a + \frac{n(n+1)}{2}b$$

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Perturbation method

Finding the closed form for $S_n = \overline{\sum_{0 \leq k \leq n} a_k}$:

Rewrite S_{n+1} by splitting off first and last term:

$$S_n + a_{n+1} = a_0 + \sum_{1 \leqslant k \leqslant n+1} a_k =$$

$$=a_0+\sum_{1\leqslant k+1\leqslant n+1}a_{k+1}=$$

$$=a_0+\sum_{0\leqslant k\leqslant n}a_{k+1}$$

- Work on last sum and express in terms of S_n .
- Finally, solve for S_n .

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a x^k$.

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a x^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Splitting off the first term gives

$$S_n + a_{n+1} = a_0 + \sum_{0 \le k \le n} a_{k+1} =$$
$$= a + \sum_{0 \le k \le n} a x^{k+1} =$$
$$= a + x \sum_{0 \le k \le n} a x^k =$$

 $= a + xS_n$

Hence, we have the equation

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a x^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Hence, we have the equation

$$S_n + ax^{n+1} = a + xS_n$$

Solution

$$S_n = \frac{a - ax^{n+1}}{1 - x}$$

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a x^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Hence, we have the equation

$$S_n + ax^{n+1} = a + xS_n$$

Solution:

$$S_n = \frac{a - ax^{n+1}}{1 - x}$$

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \dots + a_n = \sum_{0 \le k \le n} a_k x^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Closed formula for geometric sum:

$$S_n = \frac{a(x^{n+1}-1)}{x-1}$$

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method

Reduction to the known solutions

Summation factors

4 Manipulation of Sums

The Tower of Hanoi recurrence:

 $T_0 = 0$ $T_n = 2 T_{n-1} + 1$

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2 T_{n-1} + 1$$

This sequence can be transformed into geometric sum using following manipulations:

Divide equations by 2ⁿ:

$$T_0/2^0 = 0$$

$$T_n/2^n = T_{n-1}/2^{n-1} + 1/2^n$$

• Set $S_n = T_n/2^n$ to have

$$S_0 = 0$$

 $S_n = S_{n-1} + 2^{-n}$

(This is geometric sum with the parameters a = 1 and x = 1/2.

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2 T_{n-1} + 1$$

This sequence can be transformed into geometric sum using following manipulations:

Divide equations by 2ⁿ.

$$T_0/2^0 = 0$$

 $T_n/2^n = T_{n-1}/2^{n-1} + 1/2^n$

• Set $S_n = T_n/2^n$ to have:

$$S_0 = 0$$

$$S_n = S_{n-1} + 2^{-n}$$

(This is geometric sum with the parameters a = 1 and x = 1/2.)

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

Hence,

$$S_n = {0.5(0.5^n - 1) \over 0.5 - 1}$$
 (a₀ = 0 has been left out of the sum)
= 1 - 2⁻ⁿ

$$T_n = 2^n S_n = 2^n - 1$$

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

Hence,

$$S_n = \frac{0.5(0.5^n - 1)}{0.5 - 1} \qquad (a_0 = 0 \text{ has been left out of the sum})$$
$$= 1 - 2^{-n}$$

$$T_n = 2^n S_n = 2^n - 1$$

Just the same result we have proven by means of induction! :))

Next subsection

1 Sequences

2 Notations for sums

3 Sums and Recurrences

- Repertoire method
- Perturbation method
- Reduction to the known solutions
- Summation factors

4 Manipulation of Sums

Linear recurrence in form $a_n T_n = b_n T_{n-1} + c_n$

Here $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are any sequences and initial value T_0 is a constant.

The idea: Find a summation factor s_n satisfying the property $s_n b_n = s_{n-1} a_{n-1}$ for any n

If such a factor exists, one can do following transformations

$$s_n a_n T_n = s_n b_n T_{n-1} + s_n c_n = s_{n-1} a_{n-1} T_{n-1} + s_n c_n$$

• Setting $S_n = s_n a_n T_n$, to rewrite the equation as

$$S_0 = s_0 a_0 T_0$$
$$S_n = S_{n-1} + s_n c_n$$

Closed formula (!) for solution:

$$T_n = \frac{1}{s_n a_n} (s_0 a_0 T_0 + \sum_{k=1}^n s_k c_k) = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k)$$

Linear recurrence in form $a_n T_n = b_n T_{n-1} + c_n$

Here $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are any sequences and initial value T_0 is a constant.

The idea:

Find a summation factor s_n satisfying the property

 $s_n b_n = s_{n-1} a_{n-1}$ for any n

If such a factor exists, one can do following transformations:

$$s_n a_n T_n = s_n b_n T_{n-1} + s_n c_n = s_{n-1} a_{n-1} T_{n-1} + s_n c_n$$

• Setting $S_n = s_n a_n T_n$, to rewrite the equation as

$$S_0 = s_0 a_0 T_0$$
$$S_n = S_{n-1} + s_n c_n$$

Closed formula (!) for solution:

$$T_n = \frac{1}{s_n a_n} (s_0 a_0 T_0 + \sum_{k=1}^n s_k c_k) = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k)$$

Finding summation factor

Assuming that $b_n \neq 0$ for all *n*:

■ Set *s*₀ = 1

• Compute next elements using the property $s_n b_n = s_{n-1}a_{n-1}$:

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1\dots a_{n-1}}{b_1b_2\dots b_n}$$

(To be proved by induction!)

Example: application of summation factor

$a_n = c_n = 1$ and $b_n = 2$ gives Hanoi Tower sequence:

Evaluate summation factor

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1\dots a_{n-1}}{b_1b_2\dots b_n} = \frac{1}{2^n}$$

Solution is

$$T_n = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k) = 2^n \sum_{k=1}^n \frac{1}{2^k} = 2^n (1 - 2^{-n}) = 2^n - 1$$

YAE: constant coefficients

Equation $Z_n = aZ_n - 1 + b$

Taking
$$a_n = 1, b_n = a$$
 and $c_n = b$

Evaluate summation factor

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1\dots a_{n-1}}{b_1b_2\dots b_n} = \frac{1}{a^n}$$

Solution is

$$Z_n = \frac{1}{s_n a_n} \left(s_1 b_1 Z_0 + \sum_{k=1}^n s_k c_k \right) = a^n \left(Z_0 + b \sum_{k=1}^n \frac{1}{a^k} \right)$$

= $a^n Z_0 + b(1 + a + a^2 + \dots + a^{n-1})$
= $a^n Z_0 + \frac{a^n - 1}{a - 1} b$

YAE : check up on results

Equation
$$Z_n = aZ_{n-1} + b$$

$$Z_{n} = aZ_{n-1} + b =$$

$$= a^{2}Z_{n-2} + ab + b =$$

$$= a^{3}Z_{n-3} + a^{2}b + ab + b =$$
.....
$$= a^{k}Z_{n-k} + (a^{k-1} + a^{k-2} + ... + 1)b =$$

$$= a^{k}Z_{n-k} + \frac{a^{k} - 1}{a - 1}b \quad (\text{assuming } a \neq 1)$$

Continuing until k = n:

$$Z_n = a^n Z_{n-n} + \frac{a^n - 1}{a - 1}b =$$
$$= a^n Z_0 + \frac{a^n - 1}{a - 1}b$$

YAE : check up on results

Equation
$$Z_n = aZ_{n-1} + b$$

$$Z_{n} = aZ_{n-1} + b =$$

$$= a^{2}Z_{n-2} + ab + b =$$

$$= a^{3}Z_{n-3} + a^{2}b + ab + b =$$
.....
$$= a^{k}Z_{n-k} + (a^{k-1} + a^{k-2} + ... + 1)b =$$

$$= a^{k}Z_{n-k} + \frac{a^{k} - 1}{a - 1}b \quad (\text{assuming } a \neq 1)$$

Continuing until k = n:

$$Z_n = a^n Z_{n-n} + \frac{a^n - 1}{a - 1}b =$$
$$= a^n Z_0 + \frac{a^n - 1}{a - 1}b$$

The average number of comparison steps when it is applied to *n* items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2}C_k$$

The average number of comparison steps when it is applied to *n* items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2}C_k$$

$$nC_n - (n-1)C_{n-1} = n^2 + n + 2C_{n-1} - (n-1)^2 - (n-1)$$

The average number of comparison steps when it is applied to *n* items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2}C_k$$

$$nC_n - nC_{n-1} + C_{n-1} = n^2 + n + 2C_{n-1} - n^2 + 2n - 1 - n + 1$$

The average number of comparison steps when it is applied to *n* items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2}C_k$$

$$nC_n - nC_{n-1} = C_{n-1} + 2n$$

The average number of comparison steps when it is applied to *n* items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2}C_k$$

$$nC_n = (n+1)C_{n-1} + 2n$$

Equation $nC_n = (n+1)C_{n-1} + 2n$

S

• Assuming $a_n = n, b_n = n+1$ and $c_n = 2n$ evaluate summation factor

$$s_n = \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 \dots b_n} = \frac{1 \cdot 2 \cdot \dots \cdot (n-1)}{3 \cdot 4 \cdot \dots \cdot (n+1)} = \frac{2}{n(n+1)}$$

Solution is

$$C_n = \frac{1}{s_n a_n} \left(s_1 b_1 C_0 + \sum_{k=1}^n s_k c_k \right)$$

$$= \frac{n+1}{2} \sum_{k=1}^n \frac{4k}{k(k+1)}$$

$$= 2(n+1) \sum_{k=1}^n \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} - 1 \right)$$

$$= 2(n+1)H_n - 2n$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is *n*-th harmonic number.

Equation $nC_n = (n+1)C_{n-1} + 2n$

• Assuming $a_n = n, b_n = n+1$ and $c_n = 2n$ evaluate summation factor

$$s_n = \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 \dots b_n} = \frac{1 \cdot 2 \cdot \dots \cdot (n-1)}{3 \cdot 4 \cdot \dots \cdot (n+1)} = \frac{2}{n(n+1)}$$

• Solution is

$$C_n = \frac{1}{s_n a_n} \left(s_1 b_1 C_0 + \sum_{k=1}^n s_k c_k \right)$$

$$= \frac{n+1}{2} \sum_{k=1}^n \frac{4k}{k(k+1)}$$

$$= 2(n+1) \sum_{k=1}^n \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} - 1 \right)$$

$$= 2(n+1)H_n - 2n$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is *n*-th harmonic number.

Equation $nC_n = (n+1)C_{n-1} + 2n$

• Assuming $a_n = n, b_n = n+1$ and $c_n = 2n$ evaluate summation factor

$$s_n = \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 \dots b_n} = \frac{1 \cdot 2 \cdot \dots \cdot (n-1)}{3 \cdot 4 \cdot \dots \cdot (n+1)} = \frac{2}{n(n+1)}$$

• Solution is

$$C_n = \frac{1}{s_n a_n} \left(s_1 b_1 C_0 + \sum_{k=1}^n s_k c_k \right)$$

$$= \frac{n+1}{2} \sum_{k=1}^n \frac{4k}{k(k+1)}$$

$$= 2(n+1) \sum_{k=1}^n \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} - 1 \right)$$

$$= 2(n+1)H_n - 2n$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \approx \ln n$.

Next section

1 Sequences

- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors

4 Manipulation of Sums

Manipulation of Sums

Some properties of sums:

For K being a finite set and p(k) is any permutation of the set of all integers. Distributive law

$$\sum_{k\in K} ca_k = c\sum_{k\in K} a_k$$

Associative law

$$\sum_{k\in K}(a_k+b_k)=\sum_{k\in K}a_k+\sum_{k\in K}b_k$$

Commutative law

$$\sum_{k\in K}a_k=\sum_{p(k)\in K}a_{p(k)}$$

Application of these laws for $S=\sum_{0\leqslant k\leqslant n}(a+bk)$

$$S = \sum_{0 \le n-k \le n} (a+b(n-k)) = \sum_{0 \le k \le n} (a+bn-bk)$$
(commutativity)
$$2S = \sum_{0 \le k \le n} ((a+bk) + (a+bn-bk)) = \sum_{0 \le k \le n} (2a+bn)$$
(associativity)
$$2S = (2a+bn) \sum_{0 \le k \le n} 1 = (2a+bn)(n+1)$$
(distributivity)

Manipulation of Sums

Some properties of sums:

For K being a finite set and p(k) is any permutation of the set of all integers. Distributive law

$$\sum_{k\in K} ca_k = c\sum_{k\in K} a_k$$

Associative law

$$\sum_{k\in K}(a_k+b_k)=\sum_{k\in K}a_k+\sum_{k\in K}b_k$$

Commutative law

$$\sum_{k\in K} a_k = \sum_{p(k)\in K} a_{p(k)}$$

Application of these laws for $S = \sum_{0 \le k \le n} (a + bk)$

$$S = \sum_{0 \le n-k \le n} (a+b(n-k)) = \sum_{0 \le k \le n} (a+bn-bk)$$
(commutativity)

$$2S = \sum_{0 \le k \le n} ((a+bk) + (a+bn-bk)) = \sum_{0 \le k \le n} (2a+bn)$$
(associativity)

$$2S = (2a+bn) \sum_{0 \le k \le n} 1 = (2a+bn)(n+1)$$
(distributivity)

Yet another useful equality

$$\sum_{k\in K}a_k+\sum_{k\in K'}a_k=\sum_{k\in K\cup K'}a_k+\sum_{k\in K\cap K'}a_k$$

Special cases:

a) for $1\leqslant m\leqslant n$

$$\sum_{k=1}^m a_k + \sum_{k=m}^n a_k = a_m + \sum_{k=1}^n a_k$$

b) for $n \ge 0$

$$\sum_{0\leqslant k\leqslant n} \mathsf{a}_k = \mathsf{a}_0 + \sum_{1\leqslant k\leqslant n} \mathsf{a}_k$$

c) for $n \ge 0$

$$S_n + a_{n+1} = a_0 + \sum_{0 \leqslant k \leqslant n} a_{k+1}$$

Example:
$$S_n = \sum_{k=0}^n k x^k$$

• For
$$x \neq 1$$
:

$$S_n + (n+1)x^{n+1} = \sum_{0 \leq k \leq n} (k+1)x^{k+1}$$

$$= \sum_{0 \leq k \leq n} kx^{k+1} + \sum_{0 \leq k \leq n} x^{k+1}$$

$$= xS_n + \frac{x(1-x^{n+1})}{1-x}$$

$$\sum_{k=0}^n kx^k = \frac{x - (n+1)x^{n+1} + nx^{n+2}}{(x-1)^2}$$

