
Sums
ITT9131 Konkreetne Matemaatika

Chapter Two

Notation

Sums and Recurrences

Manipulation of Sums

Multiple Sums

General Methods

Finite and In�nite Calculus

In�nite Sums



Contents

1 Sequences

2 Notations for sums

3 Sums and Recurrences

Repertoire method

Perturbation method

Reduction to the known solutions

Summation factors

4 Manipulation of Sums



Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

Repertoire method

Perturbation method

Reduction to the known solutions

Summation factors

4 Manipulation of Sums



Sequences

De�nition

A sequence of elements of a set A is any function f :N→ A,
where N is set of natural numbers.

Notations used:
f = {an}, where an = f (n)

{an}n∈N
{an}

an is called n-th term of a sequence f
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De�nition

A sequence of elements of a set A is any function f :N→ A,
where N is set of natural numbers.

Notations used:
f = {an}, where an = f (n)
{an}n∈N
{an}

an is called n-th term of a sequence f

Example

a0 = 0, a1 =
1

2 ·3
, a2 =

2

3 ·4
, a3 =

3

4 ·5
, · · ·

or〈
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1

6
,
1

6
,

3

20
,

2

15
, · · · , n

(n+1)(n+2)
, · · ·
〉



Sequences

De�nition

A sequence of elements of a set A is any function f :N→ A,
where N is set of natural numbers.

Notations used:
f = {an}, where an = f (n)
{an}n∈N
{an}

an is called n-th term of a sequence f

Notation

f (n) =
n

(n+1)(n+2)

or

an =
n

(n+1)(n+2)



Sets of indexes

N � set of indexes of the sequence f = {an}n∈N
Any countably in�nite set can be used for index. Examples of
other frequently used indexes are:

N+ = N−{0} ∼ N
N−K ∼ N, where K is any �nite subset of N
Z∼ N
{1,3,5,7, . . .}= ODD ∼ N
{0,2,4,6, . . .}= EVEN ∼ N
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A∼ B denotes that sets A and B are of the same cardinality,

i.e. |A|= |B|.



Sets of indexes

N � set of indexes of the sequence f = {an}n∈N
Any countably in�nite set can be used for index. Examples of
other frequently used indexes are:

N+ = N−{0} ∼ N
N−K ∼ N, where K is any �nite subset of N
Z∼ N
{1,3,5,7, . . .}= ODD ∼ N
{0,2,4,6, . . .}= EVEN ∼ N

Two sets A and B have the same cardinality if there exists a

bijection, that is, an injective and surjective function, from A to B.

(See

http://www.mathsisfun.com/sets/injective-surjective-bijective.html

for detailed explanation)

http://www.mathsisfun.com/sets/injective-surjective-bijective.html


Finite sequence

Finite sequence of elements of a set A is a function f : K → A,
where K is set a �nite subset of natural numbers

For example: f : {1,2,3,4, · · · ,n}n→ A, n ∈ N

Special case: n = 0, i.e. empty sequence: f ( /0) = e



Domain of the sequence

f : T → A

an =
n

(n−2)(n−5)

Domain of f is T = N−{2,5}



Next section

1 Sequences

2 Notations for sums

3 Sums and Recurrences

Repertoire method

Perturbation method

Reduction to the known solutions

Summation factors

4 Manipulation of Sums



Notation

For a �nite set K = {1,2, · · · ,m} and a given sequence

f : K → R with f (n) = an we write

m

∑
k=1

ak = a1+a2+ · · ·+am

Alternative notations

m

∑
k=1

ak = ∑
16k6m

ak = ∑
k∈{1,··· ,m}

ak = ∑
K

ak
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Warmup: What does this notation mean?

0

∑
k=4

qk

Options:

1 ∑
0
k=4 qk = q4+q3+q2+q1+q0 = ∑k∈{4,3,2,1,0} qk = ∑

4
k=0 qk .

This seems the sensible thing�but:

2 ∑4≤k≤0 qk = 0 also looks like a feasible interpretation�but:

3 If
n

∑
k=m

qk = ∑
k≤n

qk − ∑
k<m

qk ,

(provided the two sums on the right-hand side exist �nite)

then ∑
0
k=4 qk = ∑k≤0 qk −∑k<4 qk =−q1−q2−q3.
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Warmup: Interpreting the Σ-notation

Compute ∑{0≤k≤5} ak and ∑{0≤k2≤5} ak2 .

First sum

{0≤ k ≤ 5}= {0,1,2,3,4,5} :

thus, ∑{0≤k≤5} ak = a0+a1+a2+a3+a4+a5.

Second sum

{0≤ k2 ≤ 5}= {0,1,2,−1,−2} :

thus,

∑{0≤k≤5} ak2 = a02 +a12 +a22+a(−1)2 +a(−2)2 = a0+2a1+2a2.
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Sums and Recurrences

Computation of any sum

Sn =
n

∑
k=1

ak

can be presented in the recursive form:

S0 = a0

Sn = Sn−1+an

⇒ Techniques from CHAPTER ONE can be used for �nding closed

formulas for evaluating sums.



Recalling repertoire method

Given
g(0) = α

g(n) = Φ(g(n−1)) + Ψ(β ,γ, . . .) for n > 0.

where Φ and Ψ are linear, for example if g(n) = λ1g1(n) + λ2g2(n) then
Φ(g(n)) = λ1Φ(g1(n)) + λ2Φ(g2(n)).

Closed form is
g(n) = αA(n) + βB(n) + γC(n) + · · · (1)

Functions A(n),B(n),C(n), . . . could be found from the system of equations

α1A(n) + β1B(n) + γ1C(n) + · · ·= g1(n)

... =
...

αmA(n) + βmB(n) + γmC(n) + · · ·= gm(n)

where αi ,βi ,γi · · · are constants committing (1) and recurrence relationship for
the repertoire case gi (n) and any n.
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Example 1: arithmetic sequence

Arithmetic sequence: an = a+bn

Recurrent equation for the sum Sn = a0+a1+a2+ · · ·+an:

S0 = a

Sn = Sn−1+(a+bn) , for n > 0.

Let's �nd a closed form for a bit more general recurrent equation:

R0 = α

Rn = Rn−1+(β + γn) , for n > 0.
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Evaluation of terms Rn = Rn−1 + (β + γn)

R0 = α

R1 = α +β + γ

R2 = α +β + γ +(β +2γ) = α +2β +3γ

R3 = α +2β +3γ +(β +3γ) = α +3β +6γ

Observation

Rn = A(n)α +B(n)β +C (n)γ

A(n),B(n),C(n) can be evaluated using repertoire method:
we will consider three cases

1 Rn = 1 for all n

2 Rn = n for all n

3 Rn = n2 for all n

.



Evaluation of terms Rn = Rn−1 + (β + γn)

R0 = α
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R3 = α +2β +3γ +(β +3γ) = α +3β +6γ

Observation

Rn = A(n)α +B(n)β +C (n)γ
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.



Repertoire method: case 1

Lemma 1: A(n) = 1 for all n

1= R0 = α

From Rn = Rn−1+(β + γn) follows that 1= 1+(β + γn).
This is possible only when β = γ = 0

Hence

1= A(n) ·1+B(n) ·0+C (n) ·0



Repertoire method: case 2

Lemma 2: B(n) = n for all n

α = R0 = 0

From Rn = Rn−1+(β +γn) follows that n= (n−1)+(β +γn).
I.e. 1= β + γn.
This gives that β = 1 and γ = 0

Hence

n = A(n) ·0+B(n) ·1+C (n) ·0



Repertoire method: case 3

Lemma 3: C (n) = n2+n
2 for all n

α = R0 = 02 = 0

Equation Rn = Rn−1+(β + γn) can be transformed as

n2 = (n−1)2+β + γn
n2 = n2−2n+1+β + γn
0= (1+β )+n(γ−2)
This is valid i� 1+β = 0 and γ−2= 0

Hence

n2 = A(n) ·0+B(n) · (−1)+C (n)γ ·2

Due to Lemma 2 we get

n2 =−n+2C (n)



Repertoire method: summing up

According to Lemma 1, 2, 3, we get

1 Rn = 1 for all n =⇒ A(n) = 1

2 Rn = n for all n =⇒ B(n) = n

3 Rn = n2 for all n =⇒ C(n) = (n2 +n)/2

.



Repertoire method: summing up

According to Lemma 1, 2, 3, we get

1 Rn = 1 for all n =⇒ A(n) = 1

2 Rn = n for all n =⇒ B(n) = n

3 Rn = n2 for all n =⇒ C(n) = (n2 +n)/2

.
That means that

Rn = α +nβ +

(
n2 +n

2

)
γ



Repertoire method: summing up

According to Lemma 1, 2, 3, we get

1 Rn = 1 for all n =⇒ A(n) = 1

2 Rn = n for all n =⇒ B(n) = n

3 Rn = n2 for all n =⇒ C(n) = (n2 +n)/2

.
That means that

Rn = α +nβ +

(
n2 +n

2

)
γ

The sum for arithmetic sequence we obtain taking α = β = a and γ = b:

Sn =
n

∑
k=0

(a+bk) = (n+1)a+
n(n+1)

2
b
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Perturbation method

Finding the closed form for Sn = ∑06k6n ak :

Rewrite Sn+1 by splitting o� �rst and last term:

Sn +an+1 = a0 + ∑
16k6n+1

ak =

= a0 + ∑
16k+16n+1

ak+1 =

= a0 + ∑
06k6n

ak+1

Work on last sum and express in terms of Sn.

Finally, solve for Sn.



Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0.
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Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0.

Splitting o� the �rst term gives

Sn +an+1 = a0 + ∑
06k6n

ak+1 =

= a+ ∑
06k6n

axk+1 =

= a+x ∑
06k6n

axk =

= a+xSn

Hence, we have the equation

Sn +axn+1 = a+xSn

Solution:

Sn =
a−axn+1

1−x
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Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :
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Sn = Sn−1 +axn , for n > 0.

Hence, we have the equation
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Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0.

Closed formula for geometric sum:

Sn =
a(xn+1−1)

x−1
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1



Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1

This sequence can be transformed into geometric sum using following manipulations:

Divide equations by 2n:

T0/2
0 = 0

Tn/2
n = Tn−1/2

n−1 +1/2n

Set Sn = Tn/2
n to have:

S0 = 0

Sn = Sn−1 +2−n

(This is geometric sum with the parameters a = 1 and x = 1/2.)
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n to have:
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1

Hence,

Sn =
0.5(0.5n−1)

0.5−1
(a0 = 0 has been left out of the sum)

= 1−2−n

Tn = 2nSn = 2n−1



Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1

Hence,

Sn =
0.5(0.5n−1)

0.5−1
(a0 = 0 has been left out of the sum)

= 1−2−n

Tn = 2nSn = 2n−1

Just the same result we have proven by means of induction! :))
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Linear recurrence in form anTn = bnTn−1 + cn

Here {an}, {bn} and {cn} are any sequences and initial value T0 is a constant.

The idea:

Find a summation factor sn satisfying the property

snbn = sn−1an−1 for any n

If such a factor exists, one can do following transformations:

snanTn = snbnTn−1 + sncn = sn−1an−1Tn−1 + sncn

Setting Sn = snanTn, to rewrite the equation as

S0 = s0a0T0

Sn = Sn−1 + sncn

Closed formula (!) for solution:

Tn =
1

snan
(s0a0T0 +

n

∑
k=1

skck ) =
1

snan
(s1b1T0 +

n

∑
k=1

skck )
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Finding summation factor

Assuming that bn 6= 0 for all n:

Set s0 = 1

Compute next elements using the property snbn = sn−1an−1:

s1 =
a0
b1

s2 =
s1a1
b2

=
a0a1
b1b2

s3 =
s2a2
b3

=
a0a1a2
b1b2b3

. . . . . . . . .

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

(To be proved by induction!)



Example: application of summation factor

an = cn = 1 and bn = 2 gives Hanoi Tower sequence:

Evaluate summation factor

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

=
1

2n

Solution is

Tn =
1

snan
(s1b1T0+

n

∑
k=1

skck)= 2n
n

∑
k=1

1

2k
= 2n(1−2−n)= 2n−1



YAE: constant coe�cients

Equation Zn = aZn−1+b

Taking an = 1,bn = a and cn = b :

Evaluate summation factor

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

=
1

an

Solution is

Zn =
1

snan

(
s1b1Z0 +

n

∑
k=1

skck

)
= an

(
Z0 +b

n

∑
k=1

1

ak

)
= anZ0 +b(1+a+a2 + · · ·+an−1)

= anZ0 +
an−1
a−1

b



YAE : check up on results

Equation Zn = aZn−1 +b

Zn = aZn−1 +b =

= a2Zn−2 +ab+b =

= a3Zn−3 +a2b+ab+b =

· · · · · ·
= akZn−k + (ak−1 +ak−2 + . . .+1)b =

= akZn−k +
ak −1
a−1

b (assuming a 6= 1)

Continuing until k = n:

Zn = anZn−n +
an−1
a−1

b =

= anZ0 +
an−1
a−1

b



YAE : check up on results

Equation Zn = aZn−1 +b

Zn = aZn−1 +b =

= a2Zn−2 +ab+b =

= a3Zn−3 +a2b+ab+b =

· · · · · ·
= akZn−k + (ak−1 +ak−2 + . . .+1)b =

= akZn−k +
ak −1
a−1

b (assuming a 6= 1)

Continuing until k = n:

Zn = anZn−n +
an−1
a−1

b =

= anZ0 +
an−1
a−1

b



E�ciency of quick sort

Average number of comparisons: Cn = n+1+ 2
n ∑

n−1
k=0Ck



E�ciency of quick sort (2)

The average number of comparison steps when it is applied to n items

C0 = 0

Cn = n+1+
2

n

n−1

∑
k=0

Ck

The following transformations reduce this equation

nCn = n2 +n+2
n−2

∑
k=0

Ck +2Cn−1

Write the last equation for n−1 and subtract to eliminate the sum:

(n−1)Cn−1 = (n−1)2 + (n−1) +2
n−2

∑
k=0

Ck



E�ciency of quick sort (2)

The average number of comparison steps when it is applied to n items

C0 = 0

Cn = n+1+
2

n

n−1

∑
k=0

Ck

The following transformations reduce this equation

nCn = n2 +n+2
n−2

∑
k=0

Ck +2Cn−1

Write the last equation for n−1 and subtract to eliminate the sum:

(n−1)Cn−1 = (n−1)2 + (n−1) +2
n−2

∑
k=0

Ck

nCn− (n−1)Cn−1 = n2 +n+2Cn−1− (n−1)2− (n−1)



E�ciency of quick sort (2)

The average number of comparison steps when it is applied to n items

C0 = 0

Cn = n+1+
2

n

n−1

∑
k=0

Ck

The following transformations reduce this equation

nCn = n2 +n+2
n−2

∑
k=0

Ck +2Cn−1

Write the last equation for n−1 and subtract to eliminate the sum:

(n−1)Cn−1 = (n−1)2 + (n−1) +2
n−2

∑
k=0

Ck

nCn−nCn−1 +Cn−1 = n2 +n+2Cn−1−n2 +2n−1−n+1



E�ciency of quick sort (2)

The average number of comparison steps when it is applied to n items

C0 = 0

Cn = n+1+
2

n

n−1

∑
k=0

Ck

The following transformations reduce this equation

nCn = n2 +n+2
n−2

∑
k=0

Ck +2Cn−1

Write the last equation for n−1 and subtract to eliminate the sum:

(n−1)Cn−1 = (n−1)2 + (n−1) +2
n−2

∑
k=0

Ck

nCn−nCn−1 = Cn−1 +2n



E�ciency of quick sort (2)

The average number of comparison steps when it is applied to n items

C0 = 0

Cn = n+1+
2

n

n−1

∑
k=0

Ck

The following transformations reduce this equation

nCn = n2 +n+2
n−2

∑
k=0

Ck +2Cn−1

Write the last equation for n−1 and subtract to eliminate the sum:

(n−1)Cn−1 = (n−1)2 + (n−1) +2
n−2

∑
k=0

Ck

nCn = (n+1)Cn−1 +2n



E�ciency of quick sort (3)

Equation nCn = (n+1)Cn−1 +2n

Assuming an = n,bn = n+1 and cn = 2n evaluate summation factor

sn =
a1a2 . . .an−1
b2b3 . . .bn

=
1 ·2 · . . . · (n−1)

3 ·4 · . . . · (n+1)
=

2

n(n+1)

Solution is

Cn =
1

snan

(
s1b1C0 +

n

∑
k=1

skck

)

=
n+1

2

n

∑
k=1

4k

k(k +1)

= 2(n+1)
n

∑
k=1

1

k +1
= 2(n+1)

(
n

∑
k=1

1

k
+

1

n+1
−1

)
= 2(n+1)Hn−2n

where Hn = 1+ 1
2 + 1

3 + . . .+ 1
n is n-th harmonic number.



E�ciency of quick sort (3)

Equation nCn = (n+1)Cn−1 +2n

Assuming an = n,bn = n+1 and cn = 2n evaluate summation factor

sn =
a1a2 . . .an−1
b2b3 . . .bn

=
1 ·2 · . . . · (n−1)

3 ·4 · . . . · (n+1)
=

2

n(n+1)

Solution is

Cn =
1

snan

(
s1b1C0 +

n

∑
k=1

skck

)

=
n+1

2

n

∑
k=1

4k

k(k +1)

= 2(n+1)
n

∑
k=1

1

k +1
= 2(n+1)

(
n

∑
k=1

1

k
+

1

n+1
−1

)
= 2(n+1)Hn−2n

where Hn = 1+ 1
2 + 1

3 + . . .+ 1
n is n-th harmonic number.

(k-th harmonic produced by a violin string is the fundamental tone produced by a string that is
1/k times as long.)



E�ciency of quick sort (3)

Equation nCn = (n+1)Cn−1 +2n

Assuming an = n,bn = n+1 and cn = 2n evaluate summation factor

sn =
a1a2 . . .an−1
b2b3 . . .bn

=
1 ·2 · . . . · (n−1)

3 ·4 · . . . · (n+1)
=

2

n(n+1)

Solution is

Cn =
1

snan

(
s1b1C0 +

n

∑
k=1

skck

)

=
n+1

2

n

∑
k=1

4k

k(k +1)

= 2(n+1)
n

∑
k=1

1

k +1
= 2(n+1)

(
n

∑
k=1

1

k
+

1

n+1
−1

)
= 2(n+1)Hn−2n

where Hn = 1+ 1
2 + 1

3 + . . .+ 1
n ≈ lnn.

(k-th harmonic produced by a violin string is the fundamental tone produced by a string that is
1/k times as long.)
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1 Sequences

2 Notations for sums

3 Sums and Recurrences

Repertoire method

Perturbation method

Reduction to the known solutions

Summation factors

4 Manipulation of Sums



Manipulation of Sums

Some properties of sums:

For K being a �nite set and p(k) is any permutation of the set of all integers.

Distributive law

∑
k∈K

cak = c ∑
k∈K

ak

Associative law

∑
k∈K

(ak +bk ) = ∑
k∈K

ak + ∑
k∈K

bk

Commutative law

∑
k∈K

ak = ∑
p(k)∈K

ap(k)

Application of these laws for S = ∑06k6n(a+bk)

S = ∑
06n−k6n

(a+b(n−k)) = ∑
06k6n

(a+bn−bk) (commutativity)

2S = ∑
06k6n

((a+bk) + (a+bn−bk)) = ∑
06k6n

(2a+bn) (associativity)

2S = (2a+bn) ∑
06k6n

1 = (2a+bn)(n+1) (distributivity)



Manipulation of Sums

Some properties of sums:

For K being a �nite set and p(k) is any permutation of the set of all integers.

Distributive law

∑
k∈K

cak = c ∑
k∈K

ak

Associative law

∑
k∈K

(ak +bk ) = ∑
k∈K

ak + ∑
k∈K

bk

Commutative law

∑
k∈K

ak = ∑
p(k)∈K

ap(k)

Application of these laws for S = ∑06k6n(a+bk)

S = ∑
06n−k6n

(a+b(n−k)) = ∑
06k6n

(a+bn−bk) (commutativity)

2S = ∑
06k6n

((a+bk) + (a+bn−bk)) = ∑
06k6n

(2a+bn) (associativity)

2S = (2a+bn) ∑
06k6n

1 = (2a+bn)(n+1) (distributivity)



Yet another useful equality

∑
k∈K

ak + ∑
k∈K ′

ak = ∑
k∈K∪K ′

ak + ∑
k∈K∩K ′

ak

Special cases:

a) for 16m 6 n
m

∑
k=1

ak +
n

∑
k=m

ak = am +
n

∑
k=1

ak

b) for n > 0

∑
06k6n

ak = a0 + ∑
16k6n

ak

c) for n > 0
Sn +an+1 = a0 + ∑

06k6n

ak+1



Example: Sn = ∑
n
k=0 kx

k

For x 6= 1:

Sn+(n+1)xn+1 = ∑
06k6n

(k+1)xk+1

= ∑
06k6n

kxk+1+ ∑
06k6n

xk+1

= xSn+
x(1−xn+1)

1−x

n

∑
k=0

kxk =
x− (n+1)xn+1+nxn+2

(x−1)2
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