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Next section

Multiple sums



Multiple sums

Yai=) ( i [P(i,j)]>
iJj i J

where P is a predicate P(i,j) = (i € K1) A(j € K2) for sets for indexes Ky and
Ka.




Multiple sums

Lo X (Zaste)
i i J

where P is a predicate P(i,j) = (i € K1) A (j € K2) for sets for indexes Ky and
Ka.

Generalisation of the law of associativity (law of interchanging the order of

summation):
Y Y axlPUKI= Y ax=)Y ak[P(,k)]
J ok P(j.k) k j



Multiple sums

Yo=Y (2, [p(,-,,-)]>
1y J

!

where P is a predicate P(i,j) = (i € K1) A (j € K2) for sets for indexes K; and
Ka.

If aj, = ajak, then
u

£ an-(z) (5)

jeJ eJ kek
ke K



Multiple sums with independent indices

If P(j,k) = Q(j)AR(k), where Q and R are properties and A indicates the logical
conjunction (AND), then the indices j and k are independent and the double sum can
be rewritten:

Y 3k Y 3k ([QU) A R(K)])

J-k Jj.k

= }:kaj,k[O(J)][R(k)]

= YIRMIYakR(Kk) =YY aj«
J k Jj ok

= ;aj,k[R(k)]Z[QU)]:;Zaﬁk



Multiple sums with dependent indices

In general, the indices are not independent, but we can write:
P(j,k) = QU)AR'(j,k) = R(k) A Q'(j, k)

In this case, we can proceed as follows:

zkaj,k = za,-,k[o(j)uR’u,k)l
Js
= Z[Q(/)]Zajk[R’o DI=Y Y ak
JjeJkek!
= Z[R(k 1Y axlQGRI=Y ¥ ajx
k J keK jeJ'

where:
m J={j[QU)}.K ={k|R'(jk)}
m K={k|R(K)} I ={j| QU.k)}
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Warmup: what's wrong with this sum?
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The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.



Examples of multiple summing: Mutual upper bounds

Compute: Y7y Yk ;ajak = L1<j<n Lj<k<n ;- J




Examples of multiple summing: Mutual upper bounds

Compute: Y7y ¥i_;ajak = Yi<j<n Lj<k<n 3jak- J

A crucial observation

Hence,

Also,
[I<j<k<n+[1<k<j<n=[1<jk<n+[1<j=k<n]



Examples of multiple summing: Mutual upper bounds

Compute: }7:1 ZZ:,’ ajak = Ya<j<n Lj<k<n3j3k- J

A crucial observation (cont.)

This can also be understood by considering the following matrix:

aiai aiax aiaz ... aiap
azai azaz dzas coo d2an
asai asaz asas 0oo dazan
anpai1 apd2 apas ... anan

and observing that ZJ'-’ZI Zﬁ:j ajay = Sy is the sum of the elements of the upper
triangular part of the matrix.



Examples of multiple summing: Mutual upper bounds

Compute: Y71 ¥k ;ajak = L1<j<n Lj<k<najk- J

A crucial observation (end)

If we add to Sy the sum S; =Y7_,; Zj-‘;l ajay of the elements of the lower triangular
part of the matrix, we count each element of the matrix once, except those on the
main diagonal, which we count twice.

But the matrix is symmetric, so Sy = S;, and



Examples of multiple summing

Example 1

Sp =



Examples of multiple summing

Example 2



Examples of multiple summing

Example 3

1
o= k=
1<j<k<n K74
. 1
- k
1<j<k+j<n
o 1
B 1<k< k
<k<n 1<j<n—k
n—k
1<k<n k
n
1<k<n 1<k<n
1
=n i n=nH,—n
1<k<n



Examples of multiple summing

Example 3

Sp=

We have proved: Yo<x-n Hx = nH,—n




Next section

General Methods



General Methods: a Review

a, = Z k> forn>0

:I\J
o
—
~
O

16 |25 |36 | 49 | 64 | 81 | 100 | 121 | 144
O, [0]1]|5 |14 |30 55|91 140 | 204 | 285 | 385 | 506 | 650




Next subsection

General Methods
m Looking up



Review: Method 0

Example: O, = Yocken k? forn>0

Find solution from a reference books:
m "CRC Standard Mathematical Tables"
m "Valemeid matemaatikast"

m "The On-Line Encyclopedia of Integer Sequences (OEIS)"
(http://oeis.org/)

m etc

Possible answer:

_ n(n+1)(2n+1)
N 6

O, forn>0


http://oeis.org/

Next subsection

General Methods

m Guessing the answer



Review: Method 1

Example; O, = Yockn k? forn>0

Guess the answer, prove it by induction. }




Review: Method 1

Example; Op = Yocken Kk

Guess the answer, prove it by induction.

Let's compute
n |0|1]2] 3 4 5 6 7 8 9
n” [0]1 16 | 25 | 36 | 49 64 81
O, [ 0] 1|5 |14 | 30 |55]| 91 [ 140 | 204 | 285

=~
©




Review: Method 1

Example; O, = Yo<k<n k2 forn>0

Guess the answer, prove it by induction.

Let's compute

n 0|1 2 3 4 5 6 7 8 9

n? 0|1 4 9 16 25 36 49 64 81

=) 0]1 5 14 30 55 91 140 204 285
O,/n® | -] 1] 125 [ 156 | 188 |22 | 253 | 286 | 3.19 | 352




Review: Method 1

Example; O, = Yo k<n k? forn>0

Guess the answer, prove it by induction.

Let's compute

n 0|1 2 3 4 5 6 7 8 9

n? 0|1 4 9 16 25 36 49 64 81

O, 0|1 5 14 30 55 91 140 204 285
0,/n? - (1] 125 | 156 | 1.88 | 2.2 | 253 | 2.86 | 3.19 | 3.52
30,/n* | — | 3] 375 | 467 | 563 | 6.6 | 7.58 | 857 | 9.56 | 10.56




Review: Method 1

Example; O, = Yo k<n k? forn>0

Guess the answer, prove it by induction.

Let's compute

n 0|1 2 3 4 5 6 7 8 9

n? 0|1 4 9 16 25 36 49 64 81

O, 0|1 5 14 30 55 91 140 204 285
0,/n? - |1 | 125 | 156 | 1.88 | 2.2 | 253 | 2.86 | 3.19 | 3.52
30,/n> | - [ 3375 | 467 | 563 | 6.6 | 758 | 857 | 9.56 | 10.56
n(n+1) [ 0 | 2 6 12 20 30 42 56 72 90




Review: Method 1

Example; O, = Yo<k<n k2 for n>0

Guess the answer, prove it by induction.

Let's compute

n 0] 1 2 3 4 5 6 7 8 9
n? 0| 1 4 9 16 | 25 | 36 | 49 | 64 81
0, 0| 1 5 14 | 30 | 55 | 91 | 140 | 204 | 285
0,/n” — | 1 [ 125|156 | 1.88 | 22 | 253 | 2.86 | 3.19 | 352
30,/n° —| 3 [ 375 | 467 | 563 | 6.6 | 7.58 | 857 | 9.56 | 10.56
n(n+1) 0| 2 6 12 | 20 | 30 | 42 | 56 | 72 90
30,/n(n+1) | - | 15 | 25 | 35 | 45 |55 | 65 | 75 | 85 | 05



Review: Method 1

Example; O, = Yock<n k2 forn>0

Guess the answer, prove it by induction.

Let's compute

n 0 1 2 3 4 5 6 7 8 9

n? 0 1 4 9 16 25 36 49 64 81

O, 0 1 5 14 30 55 91 140 204 285
0,/n? = 1 125 | 1.56 | 1.88 | 22 | 253 | 2.86 | 3.19 3.52
30,/n? = 8 3.75 | 467 | 563 | 6.6 | 7.58 | 857 | 9.56 | 10.56
n(n+1) 0 2 6 12 20 30 42 56 72 90
30,/n(n+1) [ - | 15| 25 | 35 | 45 |55 | 65 | 75 | 85 95

Hypothesis:
30, _ L .
n(n+1) 2
o - n(n+1/2)(n+1 _ n(n+1)(2n+1) @
. = =

3 6



Review: Method 1

Proof. 30, =n(n+1)(n+1)



Review: Method 1

Proof. 30, =n(n+1)(n+1)

Assume that the formula is true for n—1



Review: Method 1

Proof. 30, =n(n+1)(n+1)

Assume that the formula is true for n—1
We know that O, = O,_1 + n?



Review: Method 1

Proof. 30, = n(n+ %)(n—i—l)

Assume that the formula is true for n—1
We know that O, = O,_1 + n?
We have

1
3Dn=(n71)(n7§)n+3n2

3 1
_(3_°2,2, 2
=(n >N +2n)+3n
3 1
—E S o
=n +2n +2n

1
=n(n+3)(n+1)

Q.E.D.



Next subsection

General Methods

m Perturbation



Review: Method 2

Example; O, = Yock<n k2 forn>0

Perturb the sum. J




Review: Method 2

Example; O, = Yock<n k2 forn>0

Perturb the sum. J

m Define a sumdd, =034+134+23 .. +n3.



Review: Method 2

Example; O, = Yock<n k2 forn>0

Perturb the sum. J

m Define a sumdd, =034+134+23 .. +n3.
m Then we have
Do+ (n+1)2= Y (k+1)2= Y (K+3k*+3k+1)
0<k<n 0<k<n

(n+1)n
2

=@, +30,+3 +(n+1).



Review: Method 2

Example; O, = Yock<n k2 forn>0

Perturb the sum.

m Define a sumdd, =034+134+23 .. +n3.
m Then we have

Do+ (n+1)°= Y (k+1)3= Y (KP+3k*+3k+1)

0<k<n 0<k<n

1
:®n+3mn+3("2 )n

+(n+1).
m Delete &7, and extract [,

30,=(n+1)3-3(n+1)n/2—(n+1)
:(n+1)(n2—|—2n—|—1—gn—1) @



Next subsection

General Methods

m Build a repertoire



Review: Method 3

Example; O, = Yockcn k? forn>0

Build a repertoire.

Recurrence:
Ro=0

Rn=Rn_1+a+Bn+yn?

We look a solution in the form R, = A(n)a+ B(n)B + C(n)y




Review: Method 3

forn>0

Example; O, = Yo<k<n k?

Build a repertoire.

Recurrence:
Ro=0

R = Rn_1+a+Bn+yn?

We look a solution in the form R, = A(n)a+ B(n)B + C(n)y

v

m Equation: n=n—1+ o+ fn+yn?
m Thatisa=1;=y=0,

m and the solution has a form n= A(n).




Review: Method 3

Example; O, = Yock<n k2 forn>0

Build a repertoire.

Recurrence:
Ro=0

Rn=Rn71+0t+ﬁn+7n2

We look a solution in the form R, = A(n)oc+ B(n)B + C(n)y

y

Equation: n? = (n—1)% +a+ Bn+yn?
m Thatisa=-1;=2;y=0,
m and hence, the solution has a form n? = —A(n)+2B(n) = —n+2B(n).

. 2
That gives B(n) = 5.

@



Review: Method 3

Example; O, = Yock<n k? for n>0

Build a repertoire.

Recurrence:
Ro=0

Rn=Rn71+0t+ﬁn+7n2

We look a solution in the form R, = A(n)oc+ B(n)B + C(n)y

y

Equation: n® = (n—1)3+a+Bn+yn? =n®>-3n*4+3n—1+a+Bn+yn?
m Thatisa=1;8=-3;y=3,
2]
m hence, n® = A(n) —3B(n)+3C(n)=n—3"5 +3C(n).
That gives 6C(n) =2 —2n+3n2+3n=2n3+3n2+n= n(2n+1)(n+1).




Review: Method 3

Example; O, = Yock<n k2 forn>0

Build a repertoire.

Recurrence:
Ro=0

Rn=Rn71+0t+ﬁn+7n2

We look a solution in the form R, = A(n)oc+ B(n)B + C(n)y

y

To resume

s Ry,=0,ffa=B=0y=1

m The solution is

_ n(n+1)(2n+1)
[, stz @



Next subsection

General Methods

m Integrals



Review: Method 4

Example; O, = Yock<n k? for n>0
Replace sums by integrals. J
n n3
£x) / X2dx="T 1)
]‘ (o 3

]




Review: Method 4

Example; O, = Yock<n k? for n>0

Replace sums by integrals. J

Evaluate (3):

o (2 ko 2
[E;= k —/ d
kg1( k—lx X)
_§ (- )
k=1 3
n
-£(-3
k=1 3
_(n+t1)n n _ 3n+n
T2 3° 6
Finally, from (2) and (1) we get :
0 _n3+3n2+n_n(n+1)(2n+1) @
= — =

3 6 6



Next subsection

General Methods

m Expansion



Review: Method 5

Example; O, = Yock<n k2 forn>0

Expand and Contract.

2

0<j<n

= % Y (-7 +n(n+1))
1

— L L,
—4n(n+1)—2Dn+2n (n+1) @



Review: Method 5

Example; O, = Yock<n k2 forn>0

Expand and Contract.

2

0<j<n

= % Y (-7 +n(n+1))
1

— L L,
—4n(n+1)—2Dn+2n (n+1) @



Next subsection

General Methods

m More methods



Review: Other methods

Example; O, = Yo k<n k2 forn>0

m Finite calculus

m Generating functions



Next section

Finite and Infinite Calculus



Next subsection

Finite and Infinite Calculus
m Derivative and Difference Operators



Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference
Euler’s notation Af(X) _ f(X+ 1) _ f(X)
f h)—f
Df(x) = lim Fx+h) —f(x)
h—0 h



Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference
Euler’s notation Af(X) _ f(X+ 1) _ f(X)
f h)—f
Df(x) = lim Fx+h) —f(x)
h—0 h

Lagrange’s notation
f'(x) = Df(x)



Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference

Af(x)=f(x+1)—f(x)

Euler’s notation

f h)—f

DF(x) = Jim TN =10
hao

Lagrange’s notation
f'(x) = Df(x)

Leibnitz's notation If y = f(x), then
df( x) Df(X)

& =800="9



Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference

Euler’s notation Af(x) = f(x+1)—f(x)
M
hao

Df(x) =
Lagrange’s notation
f'(x) = Df(x)

Leibnitz's notation If y = f(x), then
df( x) Df(X)

& =800="9

Newton's notation
y="f'(x)



Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference

Euler’s notation Af(x) = f(x+1)—f(x)

f h)—f
Df(x) = ’HOM In general, if h€R (or h e C), then

Forward difference
Lagrange’s notation Ap[f](x) = flx+h) = f(x)
BRI Backward difference
Leibnitz's notation If y = f(x), then Vil ) = g s

df(x
dx = dx( x) =g ) =Df(x) Central difference
Newton's notation %f] (X)f(:X+ Lh)—f(x—Lh)
y="F(x) 2



Derivative and Difference Operators

Infinite calculus: derivative Finite calculus: difference

Euler's notation Af(x) = f(x+1)—f(x)

f h)—f
Df(x) = M In general, if heR (or he C), then

h—>0
Forward difference

Lagrange’s notation Ap[f](x) = f(x+h) = f(x)
T(5) —
Fi(x) = DF() Backward difference
Leibnitz's notation If y = f(x), then Vi [f](x) = f(x) = f(x—h)

df (x
dx = dx( x) =g ) =Df(x) Central difference
Newton's notation iyl (X)f: 1py_f 1p
7= ) (x+3h)=f(x—zh)
D (x) = lim 20 [71()
h—0




Derivative of Power function

3

Example: f(x)=x

In this case
Ap[f1(x) = f(x+h)—f(x)
=(x+h)3-x3
=3 +3x%h+3xh? + h> — x3
= h(3x% +3xh+ h?)
Hence ) )
Df(x) = lim (S SRS RER I e +3xh+ h? = 3x2
h—0 h h—0



Derivative of Power function

3

Example: f(x)=x

In this case
Ap[f](x) = f(x+ h) = f(x)
= (X+h)3 —x3
=x34+3x2h+3xh2 + h> —x3
= h(3x2 4+ 3xh + h?)
Hence ) )
h h+ h
DF(x) = lim T EIRENT) 302 4 3 12 = 32
h—0 h h—0
In general:

D(x™) = mx™?




(Forward) Difference of Power Function

Example: f(x) = x3

In this case
Af(x) = A1 [f](x) =3x% +3x+1



(Forward) Difference of Power Function

3

Example: f(x)=x

In this case
Af(x) = A1 [f](x) =3x% +3x+1

In general:

A(x™) = i (r:)x'"’k

k=1




Falling and Rising Factorials

The falling factorial power (or simply falling factorial) is defined for m > 0 by
xmzx(x—l)(x—2)---(x—m+1)
The rising factorial power (or simply rising factorial) is defined for m > 0 by

X™ = x(x+1)(x+2)---(x+m—1)




Falling and Rising Factorials

The falling factorial power (or simply falling factorial) is defined for m > 0 by
szx(x—l)(x—2)---(x—m+1)
The rising factorial power (or simply rising factorial) is defined for m > 0 by

X™ = x(x+1)(x+2)---(x+m—1)

v
W (Z1)™(—x) X X2 = XX (xP) (x — )=, for > m
nl=n" XMEN — 5 My — m)2
nl=1" o xmEL
A ok xX—m .
k)~ k! xm— X

T (x+ D) (x+2)(x+m) =



Warmup: what is 077

Then 02 =0-(-1)m-1=0.



Warmup: what is 077

Then 02 =0-(-1)m-1=0.

Then 0 =1 because it is defined as an empty product.



Warmup: what is 077

Then 02 =0-(-1)m-1=0.

Then 0 =1 because it is defined as an empty product.

Then we want 1 =02 =07.(0— m)=".
But as m< 0, (—m)~™ = |m|!, and

0™ =1/|m|!



Difference of Falling Power Function

A = (x41)1 XM

=(x+1)x(x—=1)---(x—=m+2)—x(x—1)---(x—m+2)(x—m+1)
x(x=1)-(x—=m+2)((x+1)— (x—m+1))
mx(x—1)---(x—m+2)

Xm—l

=m



Difference of Falling Power Function

A(XT) = (x41)T0 — XM

Hence

(x+1)x(x—-1)

x(x=1)(x—

o (x=m+2)—x(x—1)---(x—=m+2)(x—m+1)
m+2)((x+1) — (x—m+1))

mx(x—1)---(x—m+2)

mxm=L

A(xM) = mxm-1




Difference of Falling Power Function (2)

Let's check this formula for negative power:

Ax=2 = (x+1)2—x=2
_ 1 1
T (x+2)(x+3)  (x+1)(x+2)
_ (x+1)—(x+3)
(x+1)(x+2)(x+3)
2
T (x+1)(x+2)(x+3)
=_2x=3




Next subsection

Finite and Infinite Calculus

m Integrals and Sums



Indefinite Integrals and Sums

Fundamental Theorem of Calculus

Df(x) =g(x) iff /g(x)dx =f(x)+C




Indefinite Integrals and Sums

Fundamental Theorem of Calculus

Df(x) =g(x) iff /g(x)dx =f(x)+C

Definition

The indefinite sum of function g(x) is a class of functions those difference
is g(x):

Af(x)=g(x) iff Y g(x)éx=F(x)+ C(x),

where C(x) is a "periodic function" such that C(x+1)= C(x) for any
integer value of x.




Definite Integrals and Sums

If g(x) =Df(x), then

[ stax= 9]} = ()~ 7(2)




Definite Integrals and Sums

If g(x) =Df(x), then

[ stax= 9]} = ()~ 7(2)

Analogously:

If g(x) = Af(x), then

b b
Y g(x)dx = f(x)‘a = f(b) - f(a)




Definite sums

m Y3g(x)ox=1f(a)—f(a) =0




Definite sums

m Y2g(x)6x="f(a)—f(a)=0
m Yot g(x)8x = f(a+1)—f(a) = g(a)




Definite sums

m Y2g(x)6x="f(a)—f(a)=0
m Yot g(x)8x = f(a+1)—f(a) = g(a)

Yo g(x)8x ~Y2g(x)dx =
(f(b+1) f(a)) = (f(b) - f(a)) = f(b+1) —f(b) = g(b)




Definite sums

m Yig(x)ox=1f(a)—f(a)=0
m Y3 e(x)0x = f(a+1)—f(a) = g(a)

m Yo g(x)8x — Y5 g(x)8x =
(f(b+1)—f(a)) — (f(b)—f(a)) =f(b+1)—f(b)=g(b)

Hence
b b—1
Y g(x)éx= kZ, gk)="Y &k

a<k<b

= ¥ (Fk+1)—F(k)) =

a<k<b
=(f(a+1)—f(a))+(f(a+2)—f(a+1))+---
+(f(b—1)—f(b—2))+(f(b)—f(b—1))

= f(b)—f(a) @



Integrals and Sums of Powers

If m=# —1, then




Integrals and Sums of Powers

If m# —1, then

Analogous finite case:

If m# —1, then




Sums of Powers: applications

Case m=1
n®  n(n—-1)
k= —=
0<k<n 2 2
Case m=2 Due to k? = k% + k¥ we get
K2 = f+t2
0<k<n 3 2

1 1
= 5n(n—1)(n—2)+§n(n—1)
- %n(2(n—1)(n—2)+3(n—1))
= %n(n—l)(Zn—4+3)

1
= gn(nfl)(2n71)



Sums of Powers: applications

Case m=1
n®  n(n—-1)
k= —=
0<k<n 2 2
Case m=2 Due to k? = k% + k¥ we get
K2 = f+t2
0<k<n 3 2

1 1
= 5n(n—1)(n—2)+§n(n—1)
- %n(2(n—1)(n—2)+3(n—1))
= %n(n—l)(Zn—4+3)

1
= gn(nfl)(2n71)

Taking n+1 instead of n gives

_ (n+1)n(2n+1)
Op=—"F—— @



Sums of Powers (case m = —1)

Note
AH, = x+1_Hx
—1+1+1+ +1+ ! 1 L1 1
23 x  x+1 2 3 x
1
T x+1
and

b b
Zx;lcsx = H,
a a



Sums of Discrete Exponential Functions

m We have
De* = e*.

Finite analogue should have Af(x) = f(x). That means:
f(x+1)—f(x)=1f(x) iff f(x+1)=2f(x) iff f(x)=2%
m The difference of c* is
A(X) = X =(c—1)"

and anti-difference is then ¢*/(c—1), if ¢ # 1 that gives the the sum of
geometric progression

b X b b a

c cb—c

z G :z c6x = 11, = 1
a<k<b a e=dla E=



Next subsection

Finite and Infinite Calculus

m Summation by Parts



Summation by Parts

Infinite analogue: integration by parts:
/u(x)v'(x)dx = u(x)v(x) —/u’(x)v(x)dx J

Difference of product:

A(u(x)v(x)) = u(x+1)v(x+1) — u(x)v(x)
=u(x+1)v(x+1)—u(x)v(x+1) 4+ u(x)v(x+1) — u(x)v(x)
= u(x)Av(x)+ v(x+1)Au(x)
= u(x)Av(x)+ Ev(x)Au(x)

where E is the shift operator Ef(x) = f(x+1).



Summation by Parts

Infinite analogue: integration by parts:
/u(x)v'(x)dx = u(x)v(x) —/u’(x)v(x)dx J

Difference of product:

A(u(x)v(x)) = u(x+1)v(x+1) — u(x)v(x)
=u(x+1)v(x+1)—u(x)v(x+1) 4+ u(x)v(x+1) — u(x)v(x)

u(x)Av(x)+v(x+1)Au(x)

= u(x)Av(x)+ Ev(x)Au(x)

where E is the shift operator Ef(x) = f(x+1). Taking the indefinite sum from both
sides yields

Rule for summation by parts:
ZuAv:uv—ZEvAu J




Warmup: why the asymmetry?

How is it that, in the rule for summation by parts:
A(uv) =ulAv+ EvAu

the left-hand side is symmetric in u and v, but the right-hand side is not?




Warmup: why the asymmetry?

How is it that, in the rule for summation by parts:
A(uv) =ulAv+EvAu

the left-hand side is symmetric in u and v, but the right-hand side is not?

Because the symmetry is elsewhere!

We can also write:

A(u(x)v(x)) u(x+1)v(x+1)—u(x)v(x)
u(x+1)v(x+1)—u(x+1)v(x)+ u(x+1)v(x) — u(x)v(x)

Eu(x)Av(x)+ v(x)Au(x)

So there actually is a symmetry—just not the one we thought:

ulAv+ EvAu=vAu+ EulAv



Summation by Parts (2)

Example: S=Y]_, k2k

m Taking u(x) = x,v(x) =2% and Ev(x)=2**1:
Y x2¥8x =x2% = Y 2T 5x = x2¥ —2XT1 4 C
This yields

n n+1
Z k2k = Z x2%X6x
k=0 0
_ X _ ox+1 ot
= (x2* -2 )(0
= ((n+1)2" —2"2) _(0.2° —2)
=(n—1)2"t1 42



Summation by Parts (3)

Continuous analogue:

Example: S = ZZ;}) kH,

2 1
/xlnxdx:—l X— X—-fd
2 X
2 1
:X?Inx—E/xdx
—len 1 x?
2" T2 2
2
1
—%(Inx—i)
V.




Summation by Parts (3)

Example: S = Zﬂ;é kHy

m Taking u(x) = Hy, v(x) = )‘2—3 Au(x) = AH, =x=1= ﬁ Av(x) =x=x% and

Ev(x) = % we get

n—1 n n 1
Y kH =Y xH.8x= uv‘ +Y EvAubx
k=0 0 °

_ X;HX :—Z:‘,(X“Zl)g~xiax
= X?;HX Z—%éxéx

2 2
Y
=2 (H- )



Next section

Table of Differences



Instead of Conclusion: Table of Differences

f=Xg Af=g f=Xg Af=g
x2=1 0 2x 2x

xt = x 1 c* (c—1)c"
x2=x(x—1) 2x /(c—1) cX

xm mxm=1 cf cAf
xMtL/(m41) X f+g Af+Ag

H xL=1/(x+1) fg fAg+ EgAf




Next section

Infinite Sums @



How to sum infinite number sequences?

Example 1

Let 1
5_1+2+ +8+E+§+a+m+
Then 1 1 1 1 1 1
25:2+1+§+Z+§+E+372+674+“.:2+57
and

S=2.



How to sum infinite number sequences?

Example 2

Let
T=1+24+4+8+16+32+64+---.
Then
2T =24+4+8+16+324+64+128---=T —1,
and

T=-1.




How to sum infinite number sequences?

Example 3

Let
Y (1) =1-141-141-1+1-1+=?
k=0

Different ways to sum
1-1)+@1-1)+(1-1)+(Q-1)4---=0+0+04+0+---=0
and

1-(1-1)-(1-1)-(1-1)—=(1-1)—+-=1-0-0-0-0-0—---=1




Defining Infinite Sums: Nonnegative values

If ax > 0 for every k > 0, then

n
Zak:IimZak: sup Zak
k>0 n=er=0 KCN finite ke




Defining Infinite Sums: Nonnegative values

If ax > 0 for every k > 0, then

Zak_ lim Zak_ sup Zak
k>0 =2 KCN finite ke

Commutative property for infinite sums of nonnegative values

If a >0 for every k>0 and o : N — N is a permutation of the set of natural numbers,

then
Y a= Z 3o (k)

k=0



Defining Infinite Sums: Arbitrary values

Every real number x can be written in the form x = x* —x—, where:
m xT =x-[x>0] = max(0,x) is the positive part of x.
B X = —x-[x < 0] =max(0,—x) is the negative part of x.
Observe that x| = xT +x".



Defining Infinite Sums: Arbitrary values

Every real number x can be written in the form x = x* —x—, where:
m xT =x-[x>0] = max(0,x) is the positive part of x.
B X = —x-[x < 0] =max(0,—x) is the negative part of x.
Observe that x| = xT +x".

Let K be a set and aj a real number for every k € K, then:

Yo=Y a - ) a

kek kekK keK




Convergent and divergent series

The sum Y, ai is:

m absolutely convergent if both ):a: and Y a, are finite.
In this case, Y en at —Ykena, =limy Y §_qak, and the infinite sum has the
commutative property.

m positively divergent if ):a: =oo and Y a, is finite.
In this case, it is licit to put Y, ax = +oo.

m negatively divergent if Y a, = and ):aﬁ is finite.
In this case, it is licit to put Y, ay = —oo.



Convergent and divergent series

The sum Y, ai is:
m absolutely convergent if both ):ak and Y a, are finite.
In this case, ZkeNak Yiena, = limy Y i_¢ak, and the infinite sum has the
commutative property.
m positively divergent if ):a: =oo and Y a, is finite.
In this case, it is licit to put Y, ax = +oo.
m negatively divergent if Y a, = and ):aﬁ is finite.
In this case, it is licit to put Y, ay = —oo.
If both ¥ af = and Y a, =, then “all bets are off":

Riemann series theorem

Let {ak}k>0 a sequence of real numbers such that:

Zak_ I|m Zak_SER but Z |ak| = Foo
k>0 k>0

For every M € R there exists a permutation ¢ of N such that:

Z ag(k) = I|m Z ag(k) =

k=0
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