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Multiple sums

De�nition

∑
i ,j

aij = ∑
i

(
∑
j

aij [P(i , j)]

)

where P is a predicate P(i , j) = (i ∈ K1)∧ (j ∈ K2) for sets for indexes K1 and
K2.
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aij [P(i , j)]

)

where P is a predicate P(i , j) = (i ∈ K1)∧ (j ∈ K2) for sets for indexes K1 and
K2.

Generalisation of the law of associativity (law of interchanging the order of

summation):

∑
j

∑
k

aj ,k [P(j ,k)] = ∑
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k

∑
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Multiple sums

De�nition

∑
i ,j

aij = ∑
i

(
∑
j

aij [P(i , j)]

)

where P is a predicate P(i , j) = (i ∈ K1)∧ (j ∈ K2) for sets for indexes K1 and
K2.

If ajk = ajak , then

∑
j ∈ J
k ∈ K

ajbk =

(
∑
j∈J

aj

)(
∑
k∈K

bk

)



Multiple sums with independent indices

If P(j ,k) = Q(j)∧R(k), where Q and R are properties and ∧ indicates the logical
conjunction (AND), then the indices j and k are independent and the double sum can
be rewritten:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k ([Q(j)∧R(k)])

= ∑
j ,k

aj ,k [Q(j)][R(k)]

= ∑
j

[Q(j)]∑
k

aj ,kR(k) = ∑
j

∑
k

aj ,k

= ∑
k

aj ,k [R(k)]∑
j

[Q(j)] = ∑
k

∑
j

aj ,k



Multiple sums with dependent indices

In general, the indices are not independent, but we can write:

P(j ,k) = Q(j)∧R ′(j ,k) = R(k)∧Q ′(j ,k)

In this case, we can proceed as follows:

∑
j ,k

aj ,k = ∑
j ,k

aj ,k [Q(j)][R ′(j ,k)]

= ∑
j

[Q(j)]∑
k

aj ,k [R ′(j ,k)] = ∑
j∈J

∑
k∈K ′

aj ,k

= ∑
k

[R(k)]∑
j

aj ,k [Q ′(j ,k)] = ∑
k∈K

∑
j∈J ′

aj ,k

where:

J = {j |Q(j)},K ′ = {k | R ′(j ,k)}
K = {k | R(k)},J ′ = {j |Q ′(j ,k)}



Warmup: what's wrong with this sum?

(
n

∑
j=1

aj

)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2



Warmup: what's wrong with this sum?

(
n

∑
j=1
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)
·

(
n

∑
k=1

1

ak

)
=

n

∑
j=1

n

∑
k=1

aj
ak

=
n

∑
k=1

n

∑
k=1

ak
ak

=
n

∑
k=1

n

∑
k=1

1

= n2

Solution

The second passage is seriously wrong:
It is not licit to turn two independent variables into two dependent ones.



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1 ∑

n
k=j ajak = ∑1≤j≤n ∑j≤k≤n ajak .



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1 ∑

n
k=j ajak = ∑1≤j≤n ∑j≤k≤n ajak .

A crucial observation

[1≤ j ≤ n][j ≤ k ≤ n] = [1≤ j ≤ k ≤ n] = [1≤ k ≤ n][1≤ j ≤ k]

Hence,
n

∑
j=1

n

∑
k=j

ajak =
n

∑
k=1

k

∑
j=1

ajak

Also,
[1≤ j ≤ k ≤ n] + [1≤ k ≤ j ≤ n] = [1≤ j ,k ≤ n] + [1≤ j = k ≤ n]



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1 ∑

n
k=j ajak = ∑1≤j≤n ∑j≤k≤n ajak .

A crucial observation (cont.)

This can also be understood by considering the following matrix:


a1a1 a1a2 a1a3 . . . a1an
a2a1 a2a2 a2a3 . . . a2an
a3a1 a3a2 a3a3 . . . a2an
...

...
...

. . .
...

ana1 ana2 ana3 . . . anan


and observing that ∑

n
j=1 ∑

n
k=j ajak = SU is the sum of the elements of the upper

triangular part of the matrix.



Examples of multiple summing: Mutual upper bounds

Compute: ∑
n
j=1 ∑

n
k=j ajak = ∑1≤j≤n ∑j≤k≤n ajak .

A crucial observation (end)

If we add to SU the sum SL = ∑
n
k=1 ∑

k
j=1

ajak of the elements of the lower triangular
part of the matrix, we count each element of the matrix once, except those on the
main diagonal, which we count twice.
But the matrix is symmetric, so SU = SL, and

SU =
1

2

( n

∑
k=1

ak

)2

+
n

∑
k=1

a2k





Examples of multiple summing

Example 1

Sn = ∑
16k6n

∑
16j<k

1

k− j

= ∑
16k6n

∑
16k−j<k

1

j

= ∑
16k6n

∑
0<j6k−1

1

j

= ∑
16k6n

Hk−1

= ∑
16k+16n

Hk

= ∑
06k<n

Hk



Examples of multiple summing

Example 2

Sn = ∑
16j6n

∑
j<k6n

1

k− j

= ∑
16j6n

∑
j<k+j6n

1

k

= ∑
16j6n

∑
0<k6n−j

1

k

= ∑
16j6n

Hn−j

= ∑
16n−j6n

Hj

= ∑
06j<n

Hj



Examples of multiple summing

Example 3

Sn = ∑
16j<k6n

1

k− j

= ∑
16j<k+j6n

1

k

= ∑
16k6n

∑
16j6n−k

1

k

= ∑
16k6n

n−k

k

= ∑
16k6n

n

k
− ∑

16k6n

1

= n

(
∑

16k6n

1

k

)
−n = nHn−n

We have proved: ∑06k<nHk = nHn−n
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General Methods: a Review

Example

�n = ∑
06k6n

k2 for n > 0

n 0 1 2 3 4 5 6 7 8 9 10 11 12

n2 0 1 4 9 16 25 36 49 64 81 100 121 144

�n 0 1 5 14 30 55 91 140 204 285 385 506 650
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Review: Method 0

Example: �n = ∑06k6n k
2 for n > 0

Find solution from a reference books:

"CRC Standard Mathematical Tables"

"Valemeid matemaatikast"

"The On-Line Encyclopedia of Integer Sequences (OEIS)"

(http://oeis.org/)

etc

Possible answer:

�n =
n(n+1)(2n+1)

6
for n > 0

http://oeis.org/
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Review: Method 1

Example; �n = ∑06k6n k
2 for n > 0

Guess the answer, prove it by induction.

Let's compute
n 0 1 2 3 4 5 6 7 8 9
n2 0 1 4 9 16 25 36 49 64 81
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Review: Method 1

Example; �n = ∑06k6n k
2 for n > 0

Guess the answer, prove it by induction.

Let's compute
n 0 1 2 3 4 5 6 7 8 9
n2 0 1 4 9 16 25 36 49 64 81
�n 0 1 5 14 30 55 91 140 204 285
�n/n

2 � 1 1.25 1.56 1.88 2.2 2.53 2.86 3.19 3.52
3�n/n

2 � 3 3.75 4.67 5.63 6.6 7.58 8.57 9.56 10.56
n(n+1) 0 2 6 12 20 30 42 56 72 90

3�n/n(n+1) � 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Hypothesis:

3�n

n(n+1)
= n+

1

2
=⇒

�n =
n(n+1/2)(n+1

3
=

n(n+1)(2n+1)

6



Review: Method 1

Proof. 3�n = n(n+ 1

2
)(n+1)

Assume that the formula is true for n−1
We know that �n =�n−1 +n2

We have

3�n = (n−1)(n− 1

2
)n+3n2

= (n3− 3

2
n2 +

1

2
n) +3n2

= n3 +
3

2
n2 +

1

2
n

= n(n+
1

2
)(n+1)
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Review: Method 1

Proof. 3�n = n(n+ 1

2
)(n+1)

Assume that the formula is true for n−1
We know that �n =�n−1 +n2

We have

3�n = (n−1)(n− 1

2
)n+3n2

= (n3− 3

2
n2 +

1

2
n) +3n2

= n3 +
3

2
n2 +

1

2
n

= n(n+
1

2
)(n+1)

Q.E.D.
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Review: Method 2

Example; �n = ∑06k6n k
2 for n > 0

Perturb the sum.

De�ne a sum �n = 03 +13 +23 + . . .+n3.

Then we have

�n + (n+1)3 = ∑
06k6n

(k +1)3 = ∑
06k6n

(k3 +3k2 +3k +1)

= �n +3�n +3
(n+1)n

2
+ (n+1).

Delete �n and extract �n

3�n = (n+1)3−3(n+1)n/2− (n+1)

= (n+1)(n2 +2n+1− 3

2
n−1)

= (n+1)(n+
1

2
)n.
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Review: Method 3

Example; �n = ∑06k6n k
2 for n > 0
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Recurrence:
R0 = 0

Rn = Rn−1 + α + βn+ γn2

We look a solution in the form Rn = A(n)α +B(n)β +C(n)γ



Review: Method 3

Example; �n = ∑06k6n k
2 for n > 0

Build a repertoire.

Recurrence:
R0 = 0

Rn = Rn−1 + α + βn+ γn2

We look a solution in the form Rn = A(n)α +B(n)β +C(n)γ

Case: Rn = n

Equation: n = n−1+ α + βn+ γn2

That is α = 1;β = γ = 0,

and the solution has a form n = A(n).



Review: Method 3

Example; �n = ∑06k6n k
2 for n > 0

Build a repertoire.

Recurrence:
R0 = 0

Rn = Rn−1 + α + βn+ γn2

We look a solution in the form Rn = A(n)α +B(n)β +C(n)γ

Case: Rn = n2

Equation: n2 = (n−1)2 + α + βn+ γn2

That is α =−1;β = 2;γ = 0,

and hence, the solution has a form n2 =−A(n) +2B(n) =−n+2B(n).

That gives B(n) = n2+n
2

.



Review: Method 3

Example; �n = ∑06k6n k
2 for n > 0

Build a repertoire.

Recurrence:
R0 = 0

Rn = Rn−1 + α + βn+ γn2

We look a solution in the form Rn = A(n)α +B(n)β +C(n)γ

Case: Rn = n3

Equation: n3 = (n−1)3 + α + βn+ γn2 = n3−3n2 +3n−1+ α + βn+ γn2

That is α = 1;β =−3;γ = 3,

hence, n3 = A(n)−3B(n) +3C(n) = n−3 n2+n
2

+3C(n).

That gives 6C(n) = 2n3−2n+3n2 +3n = 2n3 +3n2 +n = n(2n+1)(n+1).



Review: Method 3

Example; �n = ∑06k6n k
2 for n > 0

Build a repertoire.

Recurrence:
R0 = 0

Rn = Rn−1 + α + βn+ γn2

We look a solution in the form Rn = A(n)α +B(n)β +C(n)γ

To resume

Rn =�n i� α = β = 0;γ = 1

The solution is

�n =
n(n+1)(2n+1)

6
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Review: Method 4

Example; �n = ∑06k6n k
2 for n > 0

Replace sums by integrals.

∫ n

0

x2dx =
n3

3
(1)

�n =
∫ n

0

x2dx +En (2)

En =
n

∑
k=1

(
k2−

∫ k

k−1
x2dx

)
(3)



Review: Method 4

Example; �n = ∑06k6n k
2 for n > 0

Replace sums by integrals.

Evaluate (3):

En =
n

∑
k=1

(
k2−

∫ k

k−1
x2dx

)
=

n

∑
k=1

(
k2− k3− (k−1)3

3

)
=

n

∑
k=1

(
k− 1

3

)
=

(n+1)n

2
− n

3
=

3n2 +n

6
.

Finally, from (2) and (1) we get :

�n =
n3

3
+

3n2 +n

6
=

n(n+1)(2n+1)

6
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Review: Method 5

Example; �n = ∑06k6n k
2 for n > 0

Expand and Contract.

�n = ∑
06k6n

k2 = ∑
06j6k6n

k

= ∑
06j6n

∑
j6k6n

k

= ∑
06j6n

(j +n)(n− j +1)

2

=
1

2 ∑
06j6n

(
j− j2 +n(n+1)

)
=

1

4
n(n+1)− 1

2
�n +

1

2
n2(n+1)

Hence 3

2
�n =

n+1

4
·
(
2n2 +n

)
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Review: Other methods

Example; �n = ∑06k6n k
2 for n > 0

Finite calculus

Generating functions



Next section

1 Multiple sums

2 General Methods

Looking up

Guessing the answer

Perturbation

Build a repertoire

Integrals

Expansion

More methods

3 Finite and In�nite Calculus

Derivative and Di�erence Operators

Integrals and Sums

Summation by Parts

4 Table of Di�erences

5 In�nite Sums



Next subsection

1 Multiple sums

2 General Methods

Looking up

Guessing the answer

Perturbation

Build a repertoire

Integrals

Expansion

More methods

3 Finite and In�nite Calculus

Derivative and Di�erence Operators

Integrals and Sums

Summation by Parts

4 Table of Di�erences

5 In�nite Sums



Derivative and Di�erence Operators

In�nite calculus: derivative

Euler's notation

Df (x) = lim
h→0

f (x +h)− f (x)

h

Lagrange's notation
f ′(x) = Df (x)

Leibnitz's notation If y = f (x), then
dy
dx = df

dx (x) = df (x)
dx = Df (x)

Newton's notation
ẏ = f ′(x)

Finite calculus: di�erence

∆f (x) = f (x +1)− f (x)
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Euler's notation
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f ′(x) = Df (x)
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Derivative and Di�erence Operators

In�nite calculus: derivative

Euler's notation

Df (x) = lim
h→0

f (x +h)− f (x)

h

Lagrange's notation
f ′(x) = Df (x)

Leibnitz's notation If y = f (x), then
dy
dx = df

dx (x) = df (x)
dx = Df (x)

Newton's notation
ẏ = f ′(x)

Finite calculus: di�erence

∆f (x) = f (x +1)− f (x)

In general, if h ∈ R (or h ∈ C), then
Forward di�erence

∆h [f ] (x) = f (x +h)− f (x)

Backward di�erence
Oh [f ] (x) = f (x)− f (x−h)

Central di�erence
δh [f ] (x) =

f (x + 1

2
h)− f (x− 1

2
h)



Derivative and Di�erence Operators

In�nite calculus: derivative

Euler's notation

Df (x) = lim
h→0

f (x +h)− f (x)

h

Lagrange's notation
f ′(x) = Df (x)

Leibnitz's notation If y = f (x), then
dy
dx = df

dx (x) = df (x)
dx = Df (x)

Newton's notation
ẏ = f ′(x)

Finite calculus: di�erence

∆f (x) = f (x +1)− f (x)

In general, if h ∈ R (or h ∈ C), then
Forward di�erence

∆h [f ] (x) = f (x +h)− f (x)

Backward di�erence
Oh [f ] (x) = f (x)− f (x−h)

Central di�erence
δh [f ] (x) =

f (x + 1

2
h)− f (x− 1

2
h)

Df (x) = lim
h→0

∆h [f ] (x)

h



Derivative of Power function

Example: f (x) = x3

In this case

∆h [f ] (x) = f (x +h)− f (x)

= (x +h)3−x3

= x3 +3x2h+3xh2 +h3−x3

= h(3x2 +3xh+h2)

Hence

Df (x) = lim
h→0

h(3x2 +3xh+h2)

h
= lim

h→0

3x2 +3xh+h2 = 3x2



Derivative of Power function

Example: f (x) = x3

In this case

∆h [f ] (x) = f (x +h)− f (x)

= (x +h)3−x3

= x3 +3x2h+3xh2 +h3−x3

= h(3x2 +3xh+h2)

Hence

Df (x) = lim
h→0

h(3x2 +3xh+h2)

h
= lim

h→0

3x2 +3xh+h2 = 3x2

In general:
D(xm) = mxm−1



(Forward) Di�erence of Power Function

Example: f (x) = x3

In this case
∆f (x) = ∆1 [f ] (x) = 3x2 +3x +1



(Forward) Di�erence of Power Function

Example: f (x) = x3

In this case
∆f (x) = ∆1 [f ] (x) = 3x2 +3x +1

In general:

∆(xm) =
m

∑
k=1

(
m

k

)
xm−k



Falling and Rising Factorials

De�nition

The falling factorial power (or simply falling factorial) is de�ned for m > 0 by

xm = x(x−1)(x−2) · · ·(x−m+1)

The rising factorial power (or simply rising factorial) is de�ned for m > 0 by

xm = x(x +1)(x +2) · · ·(x +m−1)

Properties

xm = (−1)m(−x)m

n! = nn

n! = 1n(
n

k

)
=

nk

k!

xm ·xn = xn ·xm = (xm)2(x−m)n−m, for n >m

xm+n = xm(x−m)n

xm =
xm+1

x−m

x−m =
x

xm+1
=

1

(x +1)(x +2) · · ·(x +m)



Falling and Rising Factorials

De�nition

The falling factorial power (or simply falling factorial) is de�ned for m > 0 by

xm = x(x−1)(x−2) · · ·(x−m+1)

The rising factorial power (or simply rising factorial) is de�ned for m > 0 by

xm = x(x +1)(x +2) · · ·(x +m−1)

Properties

xm = (−1)m(−x)m

n! = nn

n! = 1n(
n

k

)
=

nk

k!

xm ·xn = xn ·xm = (xm)2(x−m)n−m, for n >m

xm+n = xm(x−m)n

xm =
xm+1

x−m

x−m =
x

xm+1
=

1

(x +1)(x +2) · · ·(x +m)



Warmup: what is 0m?

Case 1: m > 0

Then 0m = 0 · (−1)m−1 = 0.

Case 2: m = 0

Then 0m = 1 because it is de�ned as an empty product.

Case 3: m < 0

Then we want 1 = 00 = 0m · (0−m)−m.
But as m < 0, (−m)−m = |m|!, and

0m = 1/|m|!
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Warmup: what is 0m?

Case 1: m > 0

Then 0m = 0 · (−1)m−1 = 0.

Case 2: m = 0

Then 0m = 1 because it is de�ned as an empty product.

Case 3: m < 0

Then we want 1 = 00 = 0m · (0−m)−m.
But as m < 0, (−m)−m = |m|!, and

0m = 1/|m|!



Di�erence of Falling Power Function

∆(xm) = (x +1)m−xm

= (x +1)x(x−1) · · ·(x−m+2)−x(x−1) · · ·(x−m+2)(x−m+1)

= x(x−1) · · ·(x−m+2)((x +1)− (x−m+1))

= mx(x−1) · · ·(x−m+2)

= mxm-1



Di�erence of Falling Power Function

∆(xm) = (x +1)m−xm

= (x +1)x(x−1) · · ·(x−m+2)−x(x−1) · · ·(x−m+2)(x−m+1)

= x(x−1) · · ·(x−m+2)((x +1)− (x−m+1))

= mx(x−1) · · ·(x−m+2)

= mxm-1

Hence
∆(xm) = mxm-1



Di�erence of Falling Power Function (2)

Let's check this formula for negative power:

∆x−2 = (x +1)−2−x−2

=
1

(x +2)(x +3)
− 1

(x +1)(x +2)

=
(x +1)− (x +3)

(x +1)(x +2)(x +3)

=− 2

(x +1)(x +2)(x +3)

=−2x−3
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Inde�nite Integrals and Sums

Fundamental Theorem of Calculus

Df (x) = g(x) i�
∫

g(x)dx = f (x) + C

De�nition

The inde�nite sum of function g(x) is a class of functions those di�erence
is g(x):

∆f (x) = g(x) i� ∑g(x)δx = f (x) +C(x),

where C(x) is a "periodic function" such that C(x +1) = C(x) for any
integer value of x .



Inde�nite Integrals and Sums

Fundamental Theorem of Calculus

Df (x) = g(x) i�
∫

g(x)dx = f (x) + C

De�nition

The inde�nite sum of function g(x) is a class of functions those di�erence
is g(x):

∆f (x) = g(x) i� ∑g(x)δx = f (x) +C(x),

where C(x) is a "periodic function" such that C(x +1) = C(x) for any
integer value of x .



De�nite Integrals and Sums

If g(x) = Df (x), then

∫ b

a
g(x)dx = f (x)

∣∣∣b
a

= f (b)− f (a)

Analogously:

If g(x) = ∆f (x), then

b

∑
a

g(x)δx = f (x)
∣∣∣b
a

= f (b)− f (a)



De�nite Integrals and Sums

If g(x) = Df (x), then

∫ b

a
g(x)dx = f (x)

∣∣∣b
a

= f (b)− f (a)

Analogously:

If g(x) = ∆f (x), then

b

∑
a

g(x)δx = f (x)
∣∣∣b
a

= f (b)− f (a)



De�nite sums

Observations

∑
a
a g(x)δx = f (a)− f (a) = 0

∑
a+1
a g(x)δx = f (a+1)− f (a) = g(a)

∑
b+1
a g(x)δx−∑

b
a g(x)δx =

(f (b+1)− f (a))− (f (b)− f (a)) = f (b+1)− f (b) = g(b)



De�nite sums

Observations

∑
a
a g(x)δx = f (a)− f (a) = 0

∑
a+1
a g(x)δx = f (a+1)− f (a) = g(a)

∑
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b
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De�nite sums

Observations

∑
a
a g(x)δx = f (a)− f (a) = 0

∑
a+1
a g(x)δx = f (a+1)− f (a) = g(a)

∑
b+1
a g(x)δx−∑

b
a g(x)δx =

(f (b+1)− f (a))− (f (b)− f (a)) = f (b+1)− f (b) = g(b)



De�nite sums

Observations

∑
a
a g(x)δx = f (a)− f (a) = 0

∑
a+1
a g(x)δx = f (a+1)− f (a) = g(a)

∑
b+1
a g(x)δx−∑

b
a g(x)δx =

(f (b+1)− f (a))− (f (b)− f (a)) = f (b+1)− f (b) = g(b)

Hence

b

∑
a

g(x)δx =
b−1

∑
k=a

g(k) = ∑
a6k<b

g(k)

= ∑
a6k<b

(f (k +1)− f (k)) =

= (f (a+1)− f (a)) + (f (a+2)− f (a+1)) + · · ·
+ (f (b−1)− f (b−2)) + (f (b)− f (b−1))

= f (b)− f (a)



Integrals and Sums of Powers

If m 6=−1, then

∫ n

0

xmdx =
xm+1

m+1

∣∣∣n
0

=
nm+1

m+1

Analogous �nite case:

If m 6=−1, then

n

∑
0

km
δx = ∑

06k<n

km =
km+1

m+1

∣∣∣n
0

=
nm+1

m+1



Integrals and Sums of Powers

If m 6=−1, then

∫ n

0

xmdx =
xm+1

m+1

∣∣∣n
0

=
nm+1

m+1

Analogous �nite case:

If m 6=−1, then

n

∑
0

km
δx = ∑

06k<n

km =
km+1

m+1

∣∣∣n
0

=
nm+1

m+1



Sums of Powers: applications

Case m = 1

∑
06k<n

k =
n2

2
=

n(n−1)

2

Case m = 2 Due to k2 = k2 +k1 we get

∑
06k<n

k2 =
n3

3
+

n2

2

=
1

3
n(n−1)(n−2) +

1

2
n(n−1)

=
1

6
n (2(n−1)(n−2) +3(n−1))

=
1

6
n(n−1)(2n−4+3)

=
1

6
n(n−1)(2n−1)

Taking n+1 instead of n gives

�n =
(n+1)n(2n+1)

6



Sums of Powers: applications
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=
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3
+
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1

3
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1

2
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1

6
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1

6
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1

6
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Taking n+1 instead of n gives

�n =
(n+1)n(2n+1)
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Sums of Powers (case m =−1)

Note

∆Hx = Hx+1−Hx

= 1+
1

2
+

1

3
+ · · ·+ 1

x
+

1

x +1
−1− 1

2
− 1

3
−·· ·− 1

x

=
1

x +1

and
b

∑
a

x−1δx = Hx

∣∣∣b
a



Sums of Discrete Exponential Functions

We have
Dex = ex .

Finite analogue should have ∆f (x) = f (x). That means:

f (x +1)− f (x) = f (x) i� f (x +1) = 2f (x) i� f (x) = 2x

The di�erence of cx is

∆(cx ) = cx+1−cx = (c−1)cx

and anti-di�erence is then cx/(c−1), if c 6= 1 that gives the the sum of
geometric progression

∑
a6k<b

ck =
b

∑
a

cxδx =
cx

c−1

∣∣∣b
a

=
cb−ca

c−1
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Summation by Parts

In�nite analogue: integration by parts:∫
u(x)v ′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx

Di�erence of product:

∆(u(x)v(x)) = u(x +1)v(x +1)−u(x)v(x)

= u(x +1)v(x +1)−u(x)v(x +1) +u(x)v(x +1)−u(x)v(x)

= u(x)∆v(x) +v(x +1)∆u(x)

= u(x)∆v(x) +Ev(x)∆u(x)

where E is the shift operator Ef (x) = f (x +1). Taking the inde�nite sum from both
sides yields

Rule for summation by parts:

∑u∆v = uv −∑Ev∆u



Summation by Parts

In�nite analogue: integration by parts:∫
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∆(u(x)v(x)) = u(x +1)v(x +1)−u(x)v(x)

= u(x +1)v(x +1)−u(x)v(x +1) +u(x)v(x +1)−u(x)v(x)

= u(x)∆v(x) +v(x +1)∆u(x)

= u(x)∆v(x) +Ev(x)∆u(x)

where E is the shift operator Ef (x) = f (x +1). Taking the inde�nite sum from both
sides yields

Rule for summation by parts:

∑u∆v = uv −∑Ev∆u



Warmup: why the asymmetry?

How is it that, in the rule for summation by parts:

∆(uv) = u∆v +Ev∆u

the left-hand side is symmetric in u and v , but the right-hand side is not?



Warmup: why the asymmetry?

How is it that, in the rule for summation by parts:

∆(uv) = u∆v +Ev∆u

the left-hand side is symmetric in u and v , but the right-hand side is not?

Because the symmetry is elsewhere!

We can also write:

∆(u(x)v(x)) = u(x +1)v(x +1)−u(x)v(x)

= u(x +1)v(x +1)−u(x +1)v(x) +u(x +1)v(x)−u(x)v(x)

= Eu(x)∆v(x) +v(x)∆u(x)

So there actually is a symmetry�just not the one we thought:

u∆v +Ev∆u = v∆u+Eu∆v



Summation by Parts (2)

Example: S = ∑
n
k=0

k2k

Taking u(x) = x ,v(x) = 2x and Ev(x) = 2x+1:

∑x2xδx = x2x −∑2x+1
δx = x2x −2x+1 +C

This yields

n

∑
k=0

k2k =
n+1

∑
0

x2xδx

= (x2x −2x+1)
∣∣∣n+1

0

=
(
(n+1)2n+1−2n+2

)
− (0 ·20−2)

= (n−1)2n+1 +2



Summation by Parts (3)

Example: S = ∑
n−1
k=0

kHk

Continuous analogue:

∫
x lnx dx =

x2

2
lnx−

∫
x2

2
· 1
x

dx

=
x2

2
lnx− 1

2

∫
x dx

=
x2

2
lnx− 1

2
· x

2

2

=
x2

2
(lnx− 1

2
)



Summation by Parts (3)

Example: S = ∑
n−1
k=0

kHk

Taking u(x) = Hx , v(x) = x2

2
, ∆u(x) = ∆Hx = x−1 = 1

x+1
, ∆v(x) = x = x1 and

Ev(x) = (x+1)2

2
, we get

n−1

∑
k=0

kHk =
n

∑
0

xHxδx = uv
∣∣∣n
0

+
n

∑
0

Ev∆u δx

=
x2

2
Hx

∣∣∣n
0

−
n

∑
0

(x +1)2

2
·x−1 δx

=
x2

2
Hx

∣∣∣n
0

− 1

2

n

∑
0

x δx

=

(
x2

2
Hx −

1

2
· x

2

2

)∣∣∣n
0

=
n2

2
(Hn−

1

2
)
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Instead of Conclusion: Table of Di�erences

f = Σg ∆f = g f = Σg ∆f = g

x0 = 1 0 2x 2x

x1 = x 1 cx (c−1)cx

x2 = x(x−1) 2x cx/(c−1) cx

xm mxm−1 cf c∆f

xm+1/(m+1) xm f +g ∆f + ∆g

Hx x−1 = 1/(x +1) fg f ∆g +Eg∆f



Next section

1 Multiple sums

2 General Methods

Looking up

Guessing the answer

Perturbation

Build a repertoire

Integrals

Expansion

More methods

3 Finite and In�nite Calculus

Derivative and Di�erence Operators

Integrals and Sums

Summation by Parts

4 Table of Di�erences

5 In�nite Sums



How to sum in�nite number sequences?

Example 1

Let

S = 1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+

1

128
+ · · · .

`

Then

2S = 2+1+
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
+ · · ·= 2+S ,

and
S = 2.



How to sum in�nite number sequences?

Example 2

Let
T = 1+2+4+8+16+32+64+ · · · .

Then
2T = 2+4+8+16+32+64+128 · · ·= T −1,

and
T =−1.



How to sum in�nite number sequences?

Example 3

Let

∑
k>0

(−1)k = 1−1+1−1+1−1+1−1+ · · ·=?

Di�erent ways to sum

(1−1) + (1−1) + (1−1) + (1−1) + · · ·= 0+0+0+0+ · · ·= 0

and

1−(1−1)−(1−1)−(1−1)−(1−1)−·· ·= 1−0−0−0−0−0−·· ·= 1



De�ning In�nite Sums: Nonnegative values

De�nition 1

If ak > 0 for every k > 0, then

∑
k>0

ak = lim
n→∞

n

∑
k=0

ak = sup
K⊆N finite

∑
k∈K

ak

Commutative property for in�nite sums of nonnegative values

If ak > 0 for every k > 0 and σ : N→ N is a permutation of the set of natural numbers,
then

∑
k>0

ak = ∑
k>0

aσ(k)
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De�ning In�nite Sums: Arbitrary values

Every real number x can be written in the form x = x+−x−, where:

x+ = x · [x > 0] = max(0,x) is the positive part of x .

x− =−x · [x < 0] = max(0,−x) is the negative part of x .

Observe that |x |= x+ +x−.

De�nition 2

Let K be a set and ak a real number for every k ∈ K , then:

∑
k∈K

ak = ∑
k∈K

a+
k − ∑

k∈K
a−k
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Convergent and divergent series

The sum ∑k ak is:

absolutely convergent if both ∑a+
k and ∑a−k are �nite.

In this case, ∑k∈N a
+
k −∑k∈N a

−
k = limn→∞ ∑

n
k=0

ak , and the in�nite sum has the
commutative property.
positively divergent if ∑a+

k = ∞ and ∑a−k is �nite.
In this case, it is licit to put ∑k ak = +∞.
negatively divergent if ∑a−k = ∞ and ∑a+

k is �nite.
In this case, it is licit to put ∑k ak =−∞.

If both ∑a+
k = ∞ and ∑a−k = ∞, then �all bets are o��:

Riemann series theorem

Let {ak}k>0 a sequence of real numbers such that:

∑
k>0

ak = lim
n→∞

n

∑
k=0

ak = S ∈ R but ∑
k>0

|ak |= +∞

For every M ∈ R there exists a permutation σ of N such that:

∑
k>0

aσ(k) = lim
n→∞

n

∑
k=0

aσ(k) = M
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