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Exercise 1.7

Let H(n) = J(n + 1) − J(n). Equation (1.8) tells us that H(2n) = 2, and
H(2n+1) = J(2n+2)−J(2n+1) = (2J(n+1)−1)−(2J(n)+1) = 2H(n)−2
for every n ≥ 1. Therefore it seems possible to prove that H(n) = 2 for all
n, by induction on n. What’s wrong here?
Solution. To correctly prove by induction that H(n) = 2 for every n ≥ 1, we
need to check the induction base for n = 1. However, H(1) = J(2)− J(1) =
1− 1 = 0

Exercise 1.8

Solve the recurrence:

Q0 = α ; Q1 = β;
Qn = (1 +Qn−1)/Qn−2 , for n > 1 .

Assume that Qn 6= 0 for all n ≥ 0.
Hint: Q4 = (1 + α)/β.

Solution. Let us just start computing. We get Q2 = (1 + β)/α and Q3 =
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(1 + ((1 + β)/α))/β = (1 + α + β)/αβ. Then,

Q4 =
1 + 1+α+β

αβ

1+β
α

=

αβ+1+α+β
αβ

1+β
α

=

(1+α)(1+β)
αβ

1+β
α

=
1 + α

β
,

and

Q5 =
1 + 1+α

β

1+α+β
αβ

=

β+1+α
β

1+α+β
αβ

= = α .

Thus, Q6 = (1 + α)/((1 + α)/β) = β, and the sequence is periodic.
Important note: The exercise asks us to solve a second order recurrence

with two initial conditions, corresponding to two consecutive indices. To be
sure that the solution is a periodic sequence, we must then make sure that
two consecutive values are repeated.

A note on the repertoire method

Suppose that we have a recursion scheme of the form:

g(0) = α ,
g(n+ 1) = Φ(g(n)) + Ψ(n; β, γ, . . .) for n ≥ 0 .

(1)

Suppose now that:

1. Φ is linear in g, i.e., if g(n) = λ1g1(n) + λ2g2(n) then Φ(g(n)) =
λ1Φ(g1(n)) + λ2Φ(g2(n)).
No hypotheses are made on the dependence of g on n.
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2. Ψ is a linear function of the m− 1 parameters β, γ, . . .
No hypotheses are made on the dependence of Ψ on n.

Then the whole system (1) is linear in the parameters α, β, γ, . . ., i.e., if
gi(n) is the solution corresponding to the values α = αi, β = βi, γ = γi, . . . ,
then g(n) = λ1g1(n) + λ2g2(n) is the solution corresponding to α = λ1α1 +
λ2α2, β = λ1β1 + λ2β2, γ = λ1γ1 + λ2γ2, . . .

We can then look for a general solution of the form

g(n) = αA(n) + βB(n) + γC(n) + . . . (2)

i.e., think of g(n) as a linear combination of m functions A(n), B(n), C(n), . . .
according to the coefficients α, β, γ, . . .

To find these functions, we can reason as follows. Suppose we have a
repertoire ofm pairs of the form ((αi, βi, γi, . . .), gi(n)) satisfying the following
conditions:

1. For every i = 1, 2, . . . ,m, gi(n) is the solution of the system corre-
sponding to the values α = αi, β = βi, γ = γi, . . .

2. The m m-tuples (αi, βi, γi, . . .) are linearly independent.

Then the functions A(n), B(n), C(n), . . . are uniquely determined. The rea-
son is that, for every fixed n,

α1A(n) +β1B(n) +γ1C(n) + . . . = g1(n)
... =

...
αmA(n) +βmB(n) +γmC(n) + . . . = gm(n)

is a system of m linear equations in the m unknowns A(n), B(n), C(n), . . .
whose coefficients matrix is invertible.

This general idea can be applied to several different cases. For instance,
if the recurrence is second-order:

g(0) = α0 ,
g(1) = α1 ,

g(n+ 1) = Φ0(g(n)) + Φ1(g(n− 1)) + Ψ(n; β, γ, . . .) for n ≥ 1 ,
(3)

then we will require that Φ0 and Φ1 are linear in g, and that Ψ is a linear
function of the m− 2 parameters β, γ, . . ..
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The same can be said of systems of the form:

g(1) = α ,
g(kn+ j) = Φ(g(n)) + Ψ(n; βj, γj, . . .) for n ≥ 1 , 0 ≤ j < k .

(4)

The previous argument is easily adapted to the new case: this time, the
number of tuple-function pairs to determine will be 1 + k · (m− 1).

For instance, in the Josephus problem we have k = 2, α = 1, Φ(g) = 2g,
Ψ(n; β) = β, m = 2, β0 = −1, β1 =: and we need 3 = 1 + 2 · (2 − 1)
tuple-function pairs.

Repertoire method: Exercise 1

Use the repertoire method to solve the following general recurrence:

g(0) = α ,
g(n+ 1) = 2g(n) + βn+ γ for n ≥ 0 .

(5)

Solution. The recurrence (5) has the form (1) with Φ(g) = 2g and Ψ(n; β, γ) =
βn+ γ, which are linear in g and in β and γ, respectively: therefore we can
apply the repertoire method. The special case g(n) = 1 for every n ≥ 0
corresponds to (α, β, γ) = (1, 0,−1): thus,

A(n)− C(n) = 1 .

The special case g(n) = n for every n ≥ 0 corresponds to (α, β, γ) =
(0,−1, 1) : thus,

−B(n) + C(n) = n .

The special case g(n) = 2n for every n ≥ 0 corresponds to (α, β, γ) =
(1, 0, 0) : thus,

A(n) = 2n and consequently , C(n) = 2n − 1 and B(n) = 2n − 1− n .

The general solution of (5) is

g(n) = α · 2n + β · (2n − 1− n) + γ · (2n − 1)

= (α + β + γ) · 2n − βn− (β + γ) .
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Repertoire method: Exercise 2

What if the recurrence (5) had been

g(0) = α ,
g(n+ 1) = δg(n) + βn+ γ for n ≥ 0 .

(6)

instead?
Solution. The recurrence (6), considered as a family of recurrence equations
parameterized by (α, β, γ, δ), does not have the form (1)! Here, the function
Φ depends on both the function g and the parameter δ: because of this, in
general g1(n)+g2(n) is not the solution for (α1 +α2, β1 +β2, γ1 +γ2, δ1 +δ2) ,
because δ1g1(n) + δ2g2(n) is not, in general, equal to (δ1 + δ2)(g1(n) + g2(n)).
We cannot therefore use the repertoire method to express g(n) as g(n) =
α · A(n) + β ·B(n) + γ · C(n) + δ ·D(n).

However, for every fixed δ, (6) does have the form (1) with Φ(g) = δg
and Ψ(n; β, γ) = βn + γ: thus, for every fixed δ, we can use the repertoire
method to find three functions Aδ(n), Bδ(n), Cδ(n) such that

gδ(n) = α · Aδ(n) + β ·Bδ(n) + γ · Cδ(n)

for every n ≥ 0. By reasoning as before, the choice gδ(n) = 1 corresponds to
(α, β, γ) = (1, 0, 1− δ), thus

Aδ(n) + (1− δ)Cδ(n) = 1 : (7)

the factor 1− δ in front of Cδ(n) rings a bell, and suggests we might have to
be careful about the cases δ = 1 and δ 6= 1. Choosing gδ(n) = n corresponds
to (α, β, γ) = (0, 1− δ, 1), thus

(1− δ)Bδ(n) + Cδ(n) = n . (8)

We are left with one triple of values to choose. As we had put g(n) = 2n

when δ = 2, we are tempted to just put g(n) = δn: but if δ = 1 this would
be the same as g(n) = 1, which we have already considered. We will then
deal separately with the cases δ = 1 and δ 6= 1.

Let us start with the latter. For δ 6= 1 the choice gδ(n) = δn corresponds
to (α, β, γ) = (1, 0, 0), thus

Aδ(n) = δn : (9)
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by combining this with (7) and (8) we find

Cδ(n) =
1− Aδ(n)

1− δ
=

1− δn

1− δ
= 1 + δ + . . .+ δn−1

and

B(n) =
n− Cδ(n)

1− δ
=
n− 1− δ − . . .− δn−1

1− δ
.

Let us now consider the case δ = 1. Then (7) becomes A1(n) = 1 and (8)
becomes C1(n) = n: for the last case, we set g1(n) = n2, which corresponds
to (α, β, γ) = (0, 2, 1), and find

2B1(n) + C1(n) = n2 , (10)

which yields B1(n) = (n2 − n)/2.
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