Concrete Mathematics Exercises from 30 September 2016

Silvio Capobianco

Exercise 1.7

Let H(n) = J(n+1) - J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) - J(2n+1) = (2J(n+1)-1) - (2J(n)+1) = 2H(n)-2 for every $n \ge 1$. Therefore it seems possible to prove that H(n) = 2 for all n, by induction on n. What's wrong here?

Solution. To correctly prove by induction that H(n) = 2 for every $n \ge 1$, we need to check the induction base for n = 1. However, H(1) = J(2) - J(1) = 1 - 1 = 0

Exercise 1.8

Solve the recurrence:

$$Q_0 = \alpha \; ; \; Q_1 = \beta;$$

 $Q_n = (1 + Q_{n-1})/Q_{n-2} \; , \; \text{for } n > 1 \; .$

Assume that $Q_n \neq 0$ for all $n \geq 0$.

Hint: $Q_4 = (1 + \alpha)/\beta$. Solution. Let us just start computing. We get $Q_2 = (1 + \beta)/\alpha$ and $Q_3 =$ $(1 + ((1 + \beta)/\alpha))/\beta = (1 + \alpha + \beta)/\alpha\beta$. Then,

$$Q_4 = \frac{1 + \frac{1 + \alpha + \beta}{\alpha\beta}}{\frac{1 + \beta}{\alpha}}$$
$$= \frac{\frac{\alpha\beta + 1 + \alpha + \beta}{\alpha\beta}}{\frac{1 + \beta}{\alpha}}$$
$$= \frac{\frac{(1 + \alpha)(1 + \beta)}{\alpha\beta}}{\frac{1 + \beta}{\alpha}}$$
$$= \frac{1 + \alpha}{\beta},$$

and

$$Q_5 = \frac{1 + \frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha\beta}}$$
$$= \frac{\frac{\beta+1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha\beta}}$$
$$= -\alpha.$$

Thus, $Q_6 = (1 + \alpha)/((1 + \alpha)/\beta) = \beta$, and the sequence is periodic.

Important note: The exercise asks us to solve a *second order* recurrence with *two* initial conditions, corresponding to two consecutive indices. To be sure that the solution is a periodic sequence, we must then make sure that *two consecutive values* are repeated.

A note on the repertoire method

Suppose that we have a recursion scheme of the form:

$$g(0) = \alpha ,$$

$$g(n+1) = \Phi(g(n)) + \Psi(n; \beta, \gamma, \ldots) \text{ for } n \ge 0 .$$
(1)

Suppose now that:

1. Φ is linear in g, i.e., if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$. No hypotheses are made on the dependence of g on n. 2. Ψ is a linear function of the m-1 parameters β, γ, \ldots No hypotheses are made on the dependence of Ψ on n.

Then the whole system (1) is linear in the parameters $\alpha, \beta, \gamma, \ldots, i.e.$, if $g_i(n)$ is the solution corresponding to the values $\alpha = \alpha_i, \beta = \beta_i, \gamma = \gamma_i, \ldots$, then $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ is the solution corresponding to $\alpha = \lambda_1 \alpha_1 + \lambda_2 \alpha_2, \beta = \lambda_1 \beta_1 + \lambda_2 \beta_2, \gamma = \lambda_1 \gamma_1 + \lambda_2 \gamma_2, \ldots$

We can then look for a general solution of the form

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \dots$$
(2)

i.e., think of g(n) as a linear combination of m functions $A(n), B(n), C(n), \ldots$ according to the coefficients $\alpha, \beta, \gamma, \ldots$

To find these functions, we can reason as follows. Suppose we have a *repertoire* of *m* pairs of the form $((\alpha_i, \beta_i, \gamma_i, \ldots), g_i(n))$ satisfying the following conditions:

- 1. For every i = 1, 2, ..., m, $g_i(n)$ is the solution of the system corresponding to the values $\alpha = \alpha_i, \beta = \beta_i, \gamma = \gamma_i, ...$
- 2. The *m m*-tuples $(\alpha_i, \beta_i, \gamma_i, \ldots)$ are linearly independent.

Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined. The reason is that, for every fixed n,

$$\begin{array}{rcl} \alpha_1 A(n) & +\beta_1 B(n) & +\gamma_1 C(n) & + \dots & = & g_1(n) \\ \vdots & & & = & \vdots \\ \alpha_m A(n) & +\beta_m B(n) & +\gamma_m C(n) & + \dots & = & g_m(n) \end{array}$$

is a system of m linear equations in the m unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

This general idea can be applied to several different cases. For instance, if the recurrence is second-order:

$$\begin{array}{rcl}
g(0) &=& \alpha_0 , \\
g(1) &=& \alpha_1 , \\
g(n+1) &=& \Phi_0(g(n)) + \Phi_1(g(n-1)) + \Psi(n; \beta, \gamma, \ldots) & \text{for } n \ge 1 ,
\end{array}$$
(3)

then we will require that Φ_0 and Φ_1 are linear in g, and that Ψ is a linear function of the m-2 parameters β, γ, \ldots .

The same can be said of systems of the form:

$$g(1) = \alpha ,$$

$$g(kn+j) = \Phi(g(n)) + \Psi(n; \beta_j, \gamma_j, \ldots) \text{ for } n \ge 1 , \quad 0 \le j < k .$$
(4)

The previous argument is easily adapted to the new case: this time, the number of tuple-function pairs to determine will be $1 + k \cdot (m - 1)$.

For instance, in the Josephus problem we have k = 2, $\alpha = 1$, $\Phi(g) = 2g$, $\Psi(n;\beta) = \beta$, m = 2, $\beta_0 = -1$, $\beta_1 =:$ and we need $3 = 1 + 2 \cdot (2 - 1)$ tuple-function pairs.

Repertoire method: Exercise 1

Use the repertoire method to solve the following general recurrence:

$$g(0) = \alpha ,$$

$$g(n+1) = 2g(n) + \beta n + \gamma \text{ for } n \ge 0 .$$
(5)

Solution. The recurrence (5) has the form (1) with $\Phi(g) = 2g$ and $\Psi(n; \beta, \gamma) = \beta n + \gamma$, which are linear in g and in β and γ , respectively: therefore we can apply the repertoire method. The special case g(n) = 1 for every $n \ge 0$ corresponds to $(\alpha, \beta, \gamma) = (1, 0, -1)$: thus,

$$A(n) - C(n) = 1.$$

The special case g(n) = n for every $n \ge 0$ corresponds to $(\alpha, \beta, \gamma) = (0, -1, 1)$: thus,

$$-B(n) + C(n) = n .$$

The special case $g(n) = 2^n$ for every $n \ge 0$ corresponds to $(\alpha, \beta, \gamma) = (1, 0, 0)$: thus,

 $A(n) = 2^n$ and consequently, $C(n) = 2^n - 1$ and $B(n) = 2^n - 1 - n$.

The general solution of (5) is

$$g(n) = \alpha \cdot 2^n + \beta \cdot (2^n - 1 - n) + \gamma \cdot (2^n - 1)$$

= $(\alpha + \beta + \gamma) \cdot 2^n - \beta n - (\beta + \gamma).$

Repertoire method: Exercise 2

What if the recurrence (5) had been

$$g(0) = \alpha ,$$

$$g(n+1) = \delta g(n) + \beta n + \gamma \text{ for } n \ge 0 .$$
(6)

instead?

Solution. The recurrence (6), considered as a family of recurrence equations parameterized by $(\alpha, \beta, \gamma, \delta)$, does *not* have the form (1)! Here, the function Φ depends on both the function g and the parameter δ : because of this, in general $g_1(n) + g_2(n)$ is not the solution for $(\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2, \delta_1 + \delta_2)$, because $\delta_1 g_1(n) + \delta_2 g_2(n)$ is not, in general, equal to $(\delta_1 + \delta_2)(g_1(n) + g_2(n))$. We cannot therefore use the repertoire method to express g(n) as $g(n) = \alpha \cdot A(n) + \beta \cdot B(n) + \gamma \cdot C(n) + \delta \cdot D(n)$.

However, for every fixed δ , (6) does have the form (1) with $\Phi(g) = \delta g$ and $\Psi(n; \beta, \gamma) = \beta n + \gamma$: thus, for every fixed δ , we can use the repertoire method to find three functions $A_{\delta}(n), B_{\delta}(n), C_{\delta}(n)$ such that

$$g_{\delta}(n) = \alpha \cdot A_{\delta}(n) + \beta \cdot B_{\delta}(n) + \gamma \cdot C_{\delta}(n)$$

for every $n \ge 0$. By reasoning as before, the choice $g_{\delta}(n) = 1$ corresponds to $(\alpha, \beta, \gamma) = (1, 0, 1 - \delta)$, thus

$$A_{\delta}(n) + (1-\delta)C_{\delta}(n) = 1 \quad : \tag{7}$$

the factor $1 - \delta$ in front of $C_{\delta}(n)$ rings a bell, and suggests we might have to be careful about the cases $\delta = 1$ and $\delta \neq 1$. Choosing $g_{\delta}(n) = n$ corresponds to $(\alpha, \beta, \gamma) = (0, 1 - \delta, 1)$, thus

$$(1-\delta)B_{\delta}(n) + C_{\delta}(n) = n.$$
(8)

We are left with one triple of values to choose. As we had put $g(n) = 2^n$ when $\delta = 2$, we are tempted to just put $g(n) = \delta^n$: but if $\delta = 1$ this would be the same as g(n) = 1, which we have already considered. We will then deal separately with the cases $\delta = 1$ and $\delta \neq 1$.

Let us start with the latter. For $\delta \neq 1$ the choice $g_{\delta}(n) = \delta^n$ corresponds to $(\alpha, \beta, \gamma) = (1, 0, 0)$, thus

$$A_{\delta}(n) = \delta^n \quad : \tag{9}$$

by combining this with (7) and (8) we find

$$C_{\delta}(n) = \frac{1 - A_{\delta}(n)}{1 - \delta} = \frac{1 - \delta^n}{1 - \delta} = 1 + \delta + \dots + \delta^{n-1}$$

and

$$B(n) = \frac{n - C_{\delta}(n)}{1 - \delta} = \frac{n - 1 - \delta - \ldots - \delta^{n-1}}{1 - \delta}.$$

Let us now consider the case $\delta = 1$. Then (7) becomes $A_1(n) = 1$ and (8) becomes $C_1(n) = n$: for the last case, we set $g_1(n) = n^2$, which corresponds to $(\alpha, \beta, \gamma) = (0, 2, 1)$, and find

$$2B_1(n) + C_1(n) = n^2 , (10)$$

which yields $B_1(n) = (n^2 - n)/2$.