Concrete Mathematics Exercises from 30 September 2016

Silvio Capobianco

Exercise 1.7

Let $H(n)=J(n+1)-J(n)$. Equation (1.8) tells us that $H(2 n)=2$, and $H(2 n+1)=J(2 n+2)-J(2 n+1)=(2 J(n+1)-1)-(2 J(n)+1)=2 H(n)-2$ for every $n \geq 1$. Therefore it seems possible to prove that $H(n)=2$ for all n, by induction on n. What's wrong here?
Solution. To correctly prove by induction that $H(n)=2$ for every $n \geq 1$, we need to check the induction base for $n=1$. However, $H(1)=J(2)-J(1)=$ $1-1=0$

Exercise 1.8

Solve the recurrence:

$$
\begin{aligned}
& Q_{0}=\alpha ; Q_{1}=\beta ; \\
& Q_{n}=\left(1+Q_{n-1}\right) / Q_{n-2}, \text { for } n>1
\end{aligned}
$$

Assume that $Q_{n} \neq 0$ for all $n \geq 0$.
Hint: $Q_{4}=(1+\alpha) / \beta$.
Solution. Let us just start computing. We get $Q_{2}=(1+\beta) / \alpha$ and $Q_{3}=$

$$
\begin{aligned}
&(1+((1+\beta) / \alpha)) / \beta=(1+\alpha+\beta) / \alpha \beta \text {. Then, } \\
& Q_{4}=\frac{1+\frac{1+\alpha+\beta}{\alpha \beta}}{\frac{1+\beta}{\alpha}} \\
&=\frac{\frac{\alpha \beta+1+\alpha+\beta}{\alpha \beta}}{\frac{1+\beta}{\alpha}} \\
&=\frac{\frac{(1+\alpha)(1+\beta)}{\alpha \beta}}{\frac{1+\beta}{\alpha}} \\
&=\frac{1+\alpha}{\beta}
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{5} & =\frac{1+\frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha \beta}} \\
& =\frac{\frac{\beta+1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha \beta}} \\
& ==\alpha .
\end{aligned}
$$

Thus, $Q_{6}=(1+\alpha) /((1+\alpha) / \beta)=\beta$, and the sequence is periodic.
Important note: The exercise asks us to solve a second order recurrence with two initial conditions, corresponding to two consecutive indices. To be sure that the solution is a periodic sequence, we must then make sure that two consecutive values are repeated.

A note on the repertoire method

Suppose that we have a recursion scheme of the form:

$$
\begin{align*}
g(0) & =\alpha \tag{1}\\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0
\end{align*}
$$

Suppose now that:

1. Φ is linear in g, i.e., if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=$ $\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2. Ψ is a linear function of the $m-1$ parameters β, γ, \ldots

No hypotheses are made on the dependence of Ψ on n.
Then the whole system (1) is linear in the parameters $\alpha, \beta, \gamma, \ldots$, i.e., if $g_{i}(n)$ is the solution corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$, then $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ is the solution corresponding to $\alpha=\lambda_{1} \alpha_{1}+$ $\lambda_{2} \alpha_{2}, \beta=\lambda_{1} \beta_{1}+\lambda_{2} \beta_{2}, \gamma=\lambda_{1} \gamma_{1}+\lambda_{2} \gamma_{2}, \ldots$

We can then look for a general solution of the form

$$
\begin{equation*}
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\ldots \tag{2}
\end{equation*}
$$

i.e., think of $g(n)$ as a linear combination of m functions $A(n), B(n), C(n), \ldots$ according to the coefficients $\alpha, \beta, \gamma, \ldots$

To find these functions, we can reason as follows. Suppose we have a repertoire of m pairs of the form $\left(\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right), g_{i}(n)\right)$ satisfying the following conditions:

1. For every $i=1,2, \ldots, m, g_{i}(n)$ is the solution of the system corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$
2. The m m-tuples $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right)$ are linearly independent.

Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined. The reason is that, for every fixed n,

$$
\begin{array}{lll}
\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\ldots & =g_{1}(n) \\
\vdots & & =\vdots \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\ldots & =g_{m}(n)
\end{array}
$$

is a system of m linear equations in the m unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

This general idea can be applied to several different cases. For instance, if the recurrence is second-order:

$$
\begin{array}{rlr}
g(0) & =\alpha_{0} \\
g(1) & =\alpha_{1} \tag{3}\\
g(n+1) & =\Phi_{0}(g(n))+\Phi_{1}(g(n-1))+\Psi(n ; \beta, \gamma, \ldots) & \text { for } n \geq 1
\end{array}
$$

then we will require that Φ_{0} and Φ_{1} are linear in g, and that Ψ is a linear function of the $m-2$ parameters β, γ, \ldots.

The same can be said of systems of the form:

$$
\begin{align*}
g(1) & =\alpha \tag{4}\\
g(k n+j) & =\Phi(g(n))+\Psi\left(n ; \beta_{j}, \gamma_{j}, \ldots\right) \quad \text { for } n \geq 1, \quad 0 \leq j<k
\end{align*}
$$

The previous argument is easily adapted to the new case: this time, the number of tuple-function pairs to determine will be $1+k \cdot(m-1)$.

For instance, in the Josephus problem we have $k=2, \alpha=1, \Phi(g)=2 g$, $\Psi(n ; \beta)=\beta, m=2, \beta_{0}=-1, \beta_{1}=$: and we need $3=1+2 \cdot(2-1)$ tuple-function pairs.

Repertoire method: Exercise 1

Use the repertoire method to solve the following general recurrence:

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =2 g(n)+\beta n+\gamma \text { for } n \geq 0 . \tag{5}
\end{align*}
$$

Solution. The recurrence (5) has the form (1) with $\Phi(g)=2 g$ and $\Psi(n ; \beta, \gamma)=$ $\beta n+\gamma$, which are linear in g and in β and γ, respectively: therefore we can apply the repertoire method. The special case $g(n)=1$ for every $n \geq 0$ corresponds to $(\alpha, \beta, \gamma)=(1,0,-1)$: thus,

$$
A(n)-C(n)=1
$$

The special case $g(n)=n$ for every $n \geq 0$ corresponds to $(\alpha, \beta, \gamma)=$ $(0,-1,1)$: thus,

$$
-B(n)+C(n)=n
$$

The special case $g(n)=2^{n}$ for every $n \geq 0$ corresponds to $(\alpha, \beta, \gamma)=$ $(1,0,0)$: thus,

$$
A(n)=2^{n} \text { and consequently, } C(n)=2^{n}-1 \text { and } B(n)=2^{n}-1-n
$$

The general solution of (5) is

$$
\begin{aligned}
g(n) & =\alpha \cdot 2^{n}+\beta \cdot\left(2^{n}-1-n\right)+\gamma \cdot\left(2^{n}-1\right) \\
& =(\alpha+\beta+\gamma) \cdot 2^{n}-\beta n-(\beta+\gamma)
\end{aligned}
$$

Repertoire method: Exercise 2

What if the recurrence (5) had been

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =\delta g(n)+\beta n+\gamma \text { for } n \geq 0 \tag{6}
\end{align*}
$$

instead?
Solution. The recurrence (6), considered as a family of recurrence equations parameterized by $(\alpha, \beta, \gamma, \delta)$, does not have the form (1)! Here, the function Φ depends on both the function g and the parameter δ : because of this, in general $g_{1}(n)+g_{2}(n)$ is not the solution for $\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}, \gamma_{1}+\gamma_{2}, \delta_{1}+\delta_{2}\right)$, because $\delta_{1} g_{1}(n)+\delta_{2} g_{2}(n)$ is not, in general, equal to $\left(\delta_{1}+\delta_{2}\right)\left(g_{1}(n)+g_{2}(n)\right)$. We cannot therefore use the repertoire method to express $g(n)$ as $g(n)=$ $\alpha \cdot A(n)+\beta \cdot B(n)+\gamma \cdot C(n)+\delta \cdot D(n)$.

However, for every fixed $\delta,(6)$ does have the form (1) with $\Phi(g)=\delta g$ and $\Psi(n ; \beta, \gamma)=\beta n+\gamma$: thus, for every fixed δ, we can use the repertoire method to find three functions $A_{\delta}(n), B_{\delta}(n), C_{\delta}(n)$ such that

$$
g_{\delta}(n)=\alpha \cdot A_{\delta}(n)+\beta \cdot B_{\delta}(n)+\gamma \cdot C_{\delta}(n)
$$

for every $n \geq 0$. By reasoning as before, the choice $g_{\delta}(n)=1$ corresponds to $(\alpha, \beta, \gamma)=(1,0,1-\delta)$, thus

$$
\begin{equation*}
A_{\delta}(n)+(1-\delta) C_{\delta}(n)=1: \tag{7}
\end{equation*}
$$

the factor $1-\delta$ in front of $C_{\delta}(n)$ rings a bell, and suggests we might have to be careful about the cases $\delta=1$ and $\delta \neq 1$. Choosing $g_{\delta}(n)=n$ corresponds to $(\alpha, \beta, \gamma)=(0,1-\delta, 1)$, thus

$$
\begin{equation*}
(1-\delta) B_{\delta}(n)+C_{\delta}(n)=n \tag{8}
\end{equation*}
$$

We are left with one triple of values to choose. As we had put $g(n)=2^{n}$ when $\delta=2$, we are tempted to just put $g(n)=\delta^{n}$: but if $\delta=1$ this would be the same as $g(n)=1$, which we have already considered. We will then deal separately with the cases $\delta=1$ and $\delta \neq 1$.

Let us start with the latter. For $\delta \neq 1$ the choice $g_{\delta}(n)=\delta^{n}$ corresponds to $(\alpha, \beta, \gamma)=(1,0,0)$, thus

$$
\begin{equation*}
A_{\delta}(n)=\delta^{n}: \tag{9}
\end{equation*}
$$

by combining this with (7) and (8) we find

$$
C_{\delta}(n)=\frac{1-A_{\delta}(n)}{1-\delta}=\frac{1-\delta^{n}}{1-\delta}=1+\delta+\ldots+\delta^{n-1}
$$

and

$$
B(n)=\frac{n-C_{\delta}(n)}{1-\delta}=\frac{n-1-\delta-\ldots-\delta^{n-1}}{1-\delta}
$$

Let us now consider the case $\delta=1$. Then (7) becomes $A_{1}(n)=1$ and (8) becomes $C_{1}(n)=n$: for the last case, we set $g_{1}(n)=n^{2}$, which corresponds to $(\alpha, \beta, \gamma)=(0,2,1)$, and find

$$
\begin{equation*}
2 B_{1}(n)+C_{1}(n)=n^{2}, \tag{10}
\end{equation*}
$$

which yields $B_{1}(n)=\left(n^{2}-n\right) / 2$.

