Concrete Mathematics Exercises from 4 October 2016

Silvio Capobianco

Warmups

Exercise 2.12

Show that the function $p(k)=k+(-1)^{k} c$ is a permutation of the set of all integers, whenever c is an integer.
Solution. A way to solve the exercise is to prove that $p(k)$ has an inverse function $q(n)$, defined for every integer n, such that $p(k)=n$ if and only if $q(n)=k$.

So let $p(k)=k+(-1)^{k} c=n$. Then $n+c=k+\left(1+(-1)^{k}\right) c$. But $1+(-1)^{k}$ is 2 if k is even and 0 if k is odd, which means that k and $n+c$ are either both even or both odd: hence, $(-1)^{k}=(-1)^{n+c}$. We can thus rewrite $k=n+c-\left(1+(-1)^{k}\right) c=n-(-1)^{n+c} c$: this is the inverse function $q(n)$ we were looking for.

Exercise 2.13

Use the repertoire method to find a closed form for $\sum_{k=0}^{n}(-1)^{k} k^{2}$. Solution.

The sequence $S_{n}=\sum_{k=0}^{n}(-1)^{k} k^{2}$ is a special solution of the recurrence equation

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{n}=R_{n-1}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \text { for } n \geq 1
\end{aligned}
$$

for the special values $\alpha=\beta=\gamma=0, \delta=1$. As we know that we can express $R_{n}=\alpha A(n)+\beta B(n)+\gamma C(n)+\delta D(n)$ for special functions $A(n), B(n)$,
$C(n)$ and $D(n)$, if we manage to find $D(n)$ in closed form, then that will be the closed form of S_{n}.

Let us use the repertoire method. First of all, for $\alpha=1, \beta=\gamma=\delta=0$ we find $A(n)=1$ for every $n \geq 0$. The next step should not be to put $R_{n}=1$ for every $n \geq 0$, as we already know that this is associate to the special values $\alpha=1, \beta=\gamma=\delta=0$. Instead, we put $R_{n}=(-1)^{n}$, which corresponds to $\alpha=1, \beta=2, \gamma=\delta=0$, and tackles with the issue of the $(-1)^{n}$ factor in the summand: from this we get $A(n)+2 B(n)=(-1)^{n}$. As we know that $A(n)=1$ for every $n \geq 0$, this means $2 B(n)=(-1)^{n}-1$, thus $B(n)=\left((-1)^{n}-1\right) / 2=-[n$ is odd $]$. This is a rather ugly function, and we would be very happy not to have to deal with it.

The third step will be to put $R_{n}=(-1)^{n} \cdot n$. This corresponds to $\alpha=0$ and the recurrence equation

$$
\begin{aligned}
(-1)^{n} n & =(-1)^{n-1}(n-1)+(-1)^{n} \beta+(-1)^{n} \gamma n \\
& =(-1)^{n-1} n-(-1)^{n-1}+(-1)^{n} \beta+(-1)^{n} \gamma n+(-1)^{n} \delta n^{2},
\end{aligned}
$$

which is satisfied for every $n \geq 1$ if and only if $\delta=0, \beta=-1$, and $\gamma=2$. We thus get the equation $-B(n)+2 C(n)=(-1)^{n} n$.

The fourth step will be to put $R_{n}=(-1)^{n} n^{2}$. This corresponds to $\alpha=0$ and the recurrence equation

$$
\begin{aligned}
(-1)^{n} n^{2}= & (-1)^{n-1}(n-1)^{2}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
= & (-1)^{n-1}\left(n^{2}-2 n+1\right)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
= & \left((-1)^{n-1}+(-1)^{n} \beta\right) \\
& +\left((-1)^{n-1} \cdot(-2)+(-1)^{n} \gamma\right) n \\
& +\left((-1)^{n-1}+(-1)^{n} \delta\right) n^{2},
\end{aligned}
$$

which is satisfied for every $n \geq 1$ if and only if $\beta=1, \gamma=-2$, and $\delta=2$. We thus get $B(n)-2 C(n)+D(n)=(-1)^{n} n^{2}$.

At this point, we have a full system of equations:

$$
\begin{array}{rll}
A(n) & & =1 \\
A(n)+2 B(n) & & =(-1)^{n} \\
-B(n) & +2 C(n) & \\
B(n) & -2 C(n)+2 D(n) & =(-1)^{n} n \\
B(-1)^{n} n^{2}
\end{array}
$$

from which we want to find $D(n)$. But by adding together the third and fourth equation we immediately find $2 D(n)=(-1)^{n} \cdot\left(n+n^{2}\right)$. Then $S_{n}=$ $D(n)=(-1)^{n}\left(n^{2}+n\right) / 2=(-1)^{n} T_{n}$, where T_{n} is the nth triangular number.

Exercise 2.20

Try to evaluate $\sum_{k=0}^{n} k H_{k}$ by the perturbation method, but deduce the value of $\sum_{k=0}^{n} H_{k}$ instead.
Solution. Call $\sum_{k=0}^{n} k H_{k}=S_{n}$. Let's try the perturbation method:

$$
\begin{aligned}
S_{n}+(n+1) H_{n+1} & =\sum_{0 \leq k \leq n+1} k H_{k} \\
& =\sum_{0 \leq k \leq n}(k+1) H_{k+1} \\
& =\sum_{0 \leq k \leq n}(k+1)\left(H_{k}+\frac{1}{k+1}\right) \\
& =\sum_{0 \leq k \leq n}\left((k+1) \cdot H_{k}+1\right) \\
& =S_{n}+\sum_{0 \leq k \leq n} H_{k}+(n+1) .
\end{aligned}
$$

We have S_{n} on both sides, so our attempt to evaluate $\sum_{k=0}^{n} k H_{k}$ has failed. However, $\sum_{k=0}^{n} H_{k}$ has popped out, and we can work on that one instead! A simple rearrangement of the summands yields

$$
\begin{aligned}
\sum_{0 \leq k \leq n} H_{k} & =(n+1) \cdot H_{n+1}-(n+1) \\
& =(n+1) \cdot\left(H_{n}+\frac{1}{n+1}\right)-(n+1) \\
& =(n+1) \cdot H_{n}+1-(n+1) \\
& =(n+1) \cdot H_{n}-n
\end{aligned}
$$

