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Warmups

Exercise 2.12

Show that the function p(k) = k + (−1)kc is a permutation of the set of all
integers, whenever c is an integer.
Solution. A way to solve the exercise is to prove that p(k) has an inverse
function q(n), defined for every integer n, such that p(k) = n if and only if
q(n) = k.

So let p(k) = k + (−1)kc = n. Then n + c = k + (1 + (−1)k)c. But
1 + (−1)k is 2 if k is even and 0 if k is odd, which means that k and n+ c are
either both even or both odd: hence, (−1)k = (−1)n+c. We can thus rewrite
k = n+ c− (1 + (−1)k)c = n− (−1)n+cc: this is the inverse function q(n) we
were looking for.

Exercise 2.13

Use the repertoire method to find a closed form for
∑n

k=0(−1)kk2.
Solution.

The sequence Sn =
∑n

k=0(−1)kk2 is a special solution of the recurrence
equation

R0 = α ,
Rn = Rn−1 + (−1)n(β + γn+ δn2) for n ≥ 1

for the special values α = β = γ = 0, δ = 1. As we know that we can express
Rn = αA(n) + βB(n) + γC(n) + δD(n) for special functions A(n), B(n),
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C(n) and D(n), if we manage to find D(n) in closed form, then that will be
the closed form of Sn.

Let us use the repertoire method. First of all, for α = 1, β = γ = δ = 0
we find A(n) = 1 for every n ≥ 0. The next step should not be to put
Rn = 1 for every n ≥ 0, as we already know that this is associate to the
special values α = 1, β = γ = δ = 0. Instead, we put Rn = (−1)n, which
corresponds to α = 1, β = 2, γ = δ = 0, and tackles with the issue of the
(−1)n factor in the summand: from this we get A(n) + 2B(n) = (−1)n. As
we know that A(n) = 1 for every n ≥ 0, this means 2B(n) = (−1)n− 1, thus
B(n) = ((−1)n − 1)/2 = −[n is odd]. This is a rather ugly function, and we
would be very happy not to have to deal with it.

The third step will be to put Rn = (−1)n · n. This corresponds to α = 0
and the recurrence equation

(−1)nn = (−1)n−1(n− 1) + (−1)nβ + (−1)nγn

= (−1)n−1n− (−1)n−1 + (−1)nβ + (−1)nγn+ (−1)nδn2 ,

which is satisfied for every n ≥ 1 if and only if δ = 0, β = −1, and γ = 2.
We thus get the equation −B(n) + 2C(n) = (−1)nn.

The fourth step will be to put Rn = (−1)nn2. This corresponds to α = 0
and the recurrence equation

(−1)nn2 = (−1)n−1(n− 1)2 + (−1)n(β + γn+ δn2)

= (−1)n−1(n2 − 2n+ 1) + (−1)n(β + γn+ δn2)

= ((−1)n−1 + (−1)nβ)

+((−1)n−1 · (−2) + (−1)nγ)n

+((−1)n−1 + (−1)nδ)n2 ,

which is satisfied for every n ≥ 1 if and only if β = 1, γ = −2, and δ = 2.
We thus get B(n) − 2C(n) +D(n) = (−1)nn2.

At this point, we have a full system of equations:

A(n) = 1
A(n) +2B(n) = (−1)n

−B(n) +2C(n) = (−1)nn
B(n) −2C(n) +2D(n) = (−1)nn2

from which we want to find D(n). But by adding together the third and
fourth equation we immediately find 2D(n) = (−1)n · (n + n2). Then Sn =
D(n) = (−1)n(n2 +n)/2 = (−1)nTn, where Tn is the nth triangular number.
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Exercise 2.20

Try to evaluate
∑n

k=0 kHk by the perturbation method, but deduce the value
of
∑n

k=0Hk instead.
Solution. Call

∑n
k=0 kHk = Sn. Let’s try the perturbation method:

Sn + (n+ 1)Hn+1 =
∑

0≤k≤n+1

kHk

=
∑

0≤k≤n

(k + 1)Hk+1

=
∑

0≤k≤n

(k + 1)

(
Hk +

1

k + 1

)
=

∑
0≤k≤n

((k + 1) ·Hk + 1)

= Sn +
∑

0≤k≤n

Hk + (n+ 1) .

We have Sn on both sides, so our attempt to evaluate
∑n

k=0 kHk has failed.
However,

∑n
k=0Hk has popped out, and we can work on that one instead! A

simple rearrangement of the summands yields∑
0≤k≤n

Hk = (n+ 1) ·Hn+1 − (n+ 1)

= (n+ 1) ·
(
Hn +

1

n+ 1

)
− (n+ 1)

= (n+ 1) ·Hn + 1 − (n+ 1)

= (n+ 1) ·Hn − n .
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