Concrete Mathematics Exercises from 4 October 2016

Silvio Capobianco

Warmups

Exercise 2.12

Show that the function $p(k) = k + (-1)^k c$ is a permutation of the set of all integers, whenever c is an integer.

Solution. A way to solve the exercise is to prove that p(k) has an *inverse* function q(n), defined for every integer n, such that p(k) = n if and only if q(n) = k.

So let $p(k) = k + (-1)^k c = n$. Then $n + c = k + (1 + (-1)^k)c$. But $1 + (-1)^k$ is 2 if k is even and 0 if k is odd, which means that k and n + c are either both even or both odd: hence, $(-1)^k = (-1)^{n+c}$. We can thus rewrite $k = n + c - (1 + (-1)^k)c = n - (-1)^{n+c}c$: this is the inverse function q(n) we were looking for.

Exercise 2.13

Use the repertoire method to find a closed form for $\sum_{k=0}^{n} (-1)^{k} k^{2}$. Solution.

The sequence $S_n = \sum_{k=0}^n (-1)^k k^2$ is a special solution of the recurrence equation

$$\begin{array}{rcl} R_0 &=& \alpha \ , \\ R_n &=& R_{n-1} + (-1)^n (\beta + \gamma n + \delta n^2) & \mbox{for} \ n \geq 1 \end{array}$$

for the special values $\alpha = \beta = \gamma = 0, \delta = 1$. As we know that we can express $R_n = \alpha A(n) + \beta B(n) + \gamma C(n) + \delta D(n)$ for special functions $A(n), B(n), \beta B(n)$

C(n) and D(n), if we manage to find D(n) in closed form, then that will be the closed form of S_n .

Let us use the repertoire method. First of all, for $\alpha = 1, \beta = \gamma = \delta = 0$ we find A(n) = 1 for every $n \ge 0$. The next step should not be to put $R_n = 1$ for every $n \ge 0$, as we already know that this is associate to the special values $\alpha = 1, \beta = \gamma = \delta = 0$. Instead, we put $R_n = (-1)^n$, which corresponds to $\alpha = 1, \beta = 2, \gamma = \delta = 0$, and tackles with the issue of the $(-1)^n$ factor in the summand: from this we get $A(n) + 2B(n) = (-1)^n$. As we know that A(n) = 1 for every $n \ge 0$, this means $2B(n) = (-1)^n - 1$, thus $B(n) = ((-1)^n - 1)/2 = -[n \text{ is odd}]$. This is a rather ugly function, and we would be very happy not to have to deal with it.

The third step will be to put $R_n = (-1)^n \cdot n$. This corresponds to $\alpha = 0$ and the recurrence equation

$$(-1)^{n}n = (-1)^{n-1}(n-1) + (-1)^{n}\beta + (-1)^{n}\gamma n$$

= $(-1)^{n-1}n - (-1)^{n-1} + (-1)^{n}\beta + (-1)^{n}\gamma n + (-1)^{n}\delta n^{2}$,

which is satisfied for every $n \ge 1$ if and only if $\delta = 0$, $\beta = -1$, and $\gamma = 2$. We thus get the equation $-B(n) + 2C(n) = (-1)^n n$.

The fourth step will be to put $R_n = (-1)^n n^2$. This corresponds to $\alpha = 0$ and the recurrence equation

$$(-1)^{n}n^{2} = (-1)^{n-1}(n-1)^{2} + (-1)^{n}(\beta + \gamma n + \delta n^{2})$$

= $(-1)^{n-1}(n^{2} - 2n + 1) + (-1)^{n}(\beta + \gamma n + \delta n^{2})$
= $((-1)^{n-1} + (-1)^{n}\beta)$
 $+ ((-1)^{n-1} \cdot (-2) + (-1)^{n}\gamma)n$
 $+ ((-1)^{n-1} + (-1)^{n}\delta)n^{2},$

which is satisfied for every $n \ge 1$ if and only if $\beta = 1$, $\gamma = -2$, and $\delta = 2$. We thus get $B(n) - 2C(n) + D(n) = (-1)^n n^2$.

At this point, we have a full system of equations:

$$\begin{array}{rcl}
A(n) & = 1 \\
A(n) & +2B(n) & = (-1)^n \\
& -B(n) & +2C(n) & = (-1)^n n \\
& B(n) & -2C(n) & +2D(n) & = (-1)^n n^2
\end{array}$$

from which we want to find D(n). But by adding together the third and fourth equation we immediately find $2D(n) = (-1)^n \cdot (n+n^2)$. Then $S_n = D(n) = (-1)^n (n^2+n)/2 = (-1)^n T_n$, where T_n is the *n*th triangular number.

Exercise 2.20

Try to evaluate $\sum_{k=0}^{n} kH_k$ by the perturbation method, but deduce the value of $\sum_{k=0}^{n} H_k$ instead. Solution. Call $\sum_{k=0}^{n} kH_k = S_n$. Let's try the perturbation method:

$$S_n + (n+1)H_{n+1} = \sum_{0 \le k \le n+1} kH_k$$

= $\sum_{0 \le k \le n} (k+1)H_{k+1}$
= $\sum_{0 \le k \le n} (k+1)\left(H_k + \frac{1}{k+1}\right)$
= $\sum_{0 \le k \le n} ((k+1) \cdot H_k + 1)$
= $S_n + \sum_{0 \le k \le n} H_k + (n+1)$.

We have S_n on both sides, so our attempt to evaluate $\sum_{k=0}^{n} kH_k$ has failed. However, $\sum_{k=0}^{n} H_k$ has popped out, and we can work on that one instead! A simple rearrangement of the summands yields

$$\sum_{0 \le k \le n} H_k = (n+1) \cdot H_{n+1} - (n+1)$$

= $(n+1) \cdot \left(H_n + \frac{1}{n+1}\right) - (n+1)$
= $(n+1) \cdot H_n + 1 - (n+1)$
= $(n+1) \cdot H_n - n$.