Concrete Mathematics
 Exercises from Chapter 3

Silvio Capobianco

Exercise 3.10

Show that the expression

$$
\begin{equation*}
\left\lceil\frac{2 x+1}{2}\right\rceil-\left\lceil\frac{2 x+1}{4}\right\rceil+\left\lfloor\frac{2 x+1}{4}\right\rfloor \tag{1}
\end{equation*}
$$

is always either $\lfloor x\rfloor$ or $\lceil x\rceil$. In what circumstances does each case arise?
Solution. We observe that

$$
\begin{aligned}
\left\lceil\frac{2 x+1}{2}\right\rceil-\left\lceil\frac{2 x+1}{4}\right\rceil+\left\lfloor\frac{2 x+1}{4}\right\rfloor & =\left\lceil\frac{2 x+1}{2}\right\rceil-\left(\left\lceil\frac{2 x+1}{4}\right\rceil-\left\lfloor\frac{2 x+1}{4}\right\rfloor\right) \\
& =\left\lceil x+\frac{1}{2}\right\rceil-\left[\frac{2 x+1}{4} \text { is not an integer }\right] .
\end{aligned}
$$

(Do not forget that x is a real number.) But $(2 x+1) / 4=k$ is an integer if and only if $x=(4 k-1) / 2=2 k-1 / 2$: in this case, $\lceil x+1 / 2\rceil=2 k=\lceil x\rceil$. Otherwise, we have to distinguish the two cases $0 \leq\{x\}<1 / 2,1 / 2 \leq\{x\}-1$. In the second case, $\lceil(2 x+1) / 2\rceil=\lceil x+1 / 2\rceil=\lceil x\rceil+1$, and the expression (1) equals $\lceil x\rceil$. In the first case, if $\{x\}=0$ (i.e., x is an integer) then $\lceil x+1 / 2\rceil=x+1=\lceil x\rceil+1$ and the expression (1) equals $\lceil x\rceil$; while if $0<x<1 / 2$, then $\lceil x+1 / 2\rceil=\lceil\lfloor x\rfloor+\{x\}+1\rceil=\lfloor x\rfloor+1$ and the expression (1) equals $\lfloor x\rfloor$. In conclusion,

$$
\left\lceil\frac{2 x+1}{2}\right\rceil-\left\lceil\frac{2 x+1}{4}\right\rceil+\left\lfloor\frac{2 x+1}{4}\right\rfloor=\lfloor x\rfloor \text { if } 0<\{x\}<\frac{1}{2} \text { else }\lceil x\rceil .
$$

Exercise 3.12

Prove that

$$
\begin{equation*}
\left\lceil\frac{n}{m}\right\rceil=\left\lfloor\frac{n+m-1}{m}\right\rfloor \tag{2}
\end{equation*}
$$

for all integers n and all positive integers m. (This identity gives us another way to convert ceilings to floors and vice versa, instead of using the reflective law (3.4).)

Solution.

The closed interval $[n / m,(n+m-1) / m]$ has size $1-1 / m$, and can thus contain at most one integer: in this case, such integer must coincide with both $\lceil n / m\rceil$ and $\lfloor(n+m-1) / m\rfloor$. However, of the m consecutive integers
$n, n+1, \ldots, n+m-1$, exactly one is divisible by m : if x is this number, then $x / m \in[n / m,(n+m-1) / m]$ is the common value of $\lceil n / m\rceil$ and $\lfloor(n+m-1) / m\rfloor$.

Exercise 3.13

Let α and β be positive reals. Prove that the following are equivalent:

1. $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ partition the positive integers, i.e., every positive integer n belongs to exactly one between $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$.
2. α and β are irrational and $1 / \alpha+1 / \beta=1$.

Solution. We recall that, for a positive real x, the number $N(x, n)$ of elements in Spec (x) not greater than n satisfies

$$
N(x, n)=\left\lceil\frac{n+1}{x}\right\rceil-1
$$

Suppose that point 2 is satisfied. Then α and β, being irrational, must be different (otherwise $\alpha=\beta=2$). Also, $(n+1) / \alpha$ is not an integer (because α is irrational) and

$$
N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1=\left\lfloor\frac{n+1}{\alpha}\right\rfloor=\frac{n+1}{\alpha}-\left\{\frac{n+1}{\alpha}\right\},
$$

and similarly for $(n+1) / \beta$. Hence,

$$
N(\alpha, n)+N(\beta, n)=\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)(n+1)-\left(\left\{\frac{n+1}{\alpha}\right\}+\left\{\frac{n+1}{\beta}\right\}\right)
$$

By hypothesis, $1 / \alpha+1 / \beta=1$. Then the rightmost term in open parentheses is the sum of the fractional parts of two non-integer numbers whose sum is an integer, and is therefore equal to 1 . Therefore $N(\alpha, n)+N(\beta, n)=$ $n+1-1=n$ for every positive integer n : then also, for every n, either $N(\alpha, n+1)=N(\alpha, n)+1$ and $N(\beta, n+1)=N(\beta, n)$, or $N(\alpha, n+1)=N(\alpha, n)$ and $N(\beta, n+1)=N(\beta, n)+1$: that is, each integer larger than 1 goes into exactly one of the two spectra. As $1 / \alpha+1 / \beta=1$ and $\alpha \neq \beta$, one of them is smaller than 2 and the other is greater, and $n=1$ goes into the spectrum of the former: this allows us to conclude that $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ partition the positive integers.

On the other hand, suppose that point 1 holds. Then the difference between $N(\alpha, n)$ and $(n+1) / \alpha-\{(n+1) / \alpha\}$ is at most 1 , and similar for $N(\beta, n)$: therefore, for every positive integer n, we have:

$$
n=\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)(n+1)-1+\text { a bounded quantity }
$$

that is,

$$
\left(1-\frac{1}{\alpha}-\frac{1}{\beta}\right) n=\frac{1}{\alpha}+\frac{1}{\beta}-1+\text { a bounded quantity }
$$

By hypothesis, this equality must hold whatever n is: since α and β are constant, this is only possible if $1 / \alpha+1 / \beta=1$. In turn, this implies that α and β are either both rational or both irrational.

Suppose, for the sake of contradiction, that they are both rational: then there exist integers a, b, m such that $\alpha=m / a$ and $\beta=m / b$. (We are doing a thing slightly different than usual, reducing α and β to common numerator instead of common denominator. This is not a problem, since it is equivalent to reducing $1 / \alpha$ and $1 / \beta$ to common denominator.) Then $m=\lfloor a \alpha\rfloor=\lfloor b \beta\rfloor$ occurs in both $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$, so that $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ do not form a partition of the positive integers: which goes against the hypothesis of point 1 .

But the actual situation is even worse than that! Since $1 / \alpha+1 / \beta=1$, α and β are both greater than 1: therefore m must be greater than 1 , and $m-1$ is a positive integer. But

$$
\lfloor(a-1) \alpha\rfloor=\lfloor m-\alpha\rfloor=m+\lfloor-\alpha\rfloor=m-\lceil\alpha\rceil \leq m-2
$$

which together with $\lfloor a \alpha\rfloor=m$ implies $m-1 \notin \operatorname{Spec}(\alpha)$. Similarly, $m-1 \notin$ $\operatorname{Spec}(\beta)$. Therefore, if α and β are rational, then $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ don't even cover the positive integers.

