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Exercise 4.16

The Euclid numbers are defined for n ≥ 1 by the relation:

e1 = 2
en = e1 · · · en−1 + 1 ∀n ≥ 2

What is the sum of the reciprocals of the first n Euclid numbers?
Solution.

Let us start counting: 1/e1 = 1/2; 1/e1 + 1/e2 = 1/2 + 1/3 = 5/6;
1/e1 + 1/e2 + 1/e3 = 5/6 + 1/7 = 41/42; and so on.

Do we recognize any pattern? These seem to have the form 1 − 1/dn
where dn is a product of Euclid numbers: this number is d1 = 2 = e1 = e2−1
for 1/e1, d2 = 6 = e1e2 = e3 − 1 for 1/e1 + 1/e2, and so on.

Let us check it by induction. Suppose 1/e1+ . . .+1/en−1 = 1−1/(en−1):
then

n∑
k=1

1

ek
=

n−1∑
k=1

1

ek
+

1

ek

= 1− 1

en − 1
+

1

en

= 1− en − (en − 1)

(en − 1)en

= 1− 1

e1 · · · en−1 · en

= 1− 1

en+1 − 1
.
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Esercise 4.17

Let fn be the “Fermat number” 22n +1. Prove that gcd(fm, fn) = 1 if m < n.
Solution. Let us construct the firs t Fermat numbers: f0 = 3, f1 = 5, f2 = 17,
f3 = 257, f4 = 65537. We observe that f0 = 3 divides f1−2 = 3, f2−2 = 15,
f3− 2 = 255, f4− 2 = 65535; and so on. We also observe that f1 = 5 divides
f2 − 2, f3 − 2, and f4 − 2. We thus formulate the following conjecture: if
m < n then fm | fn − 2.

Is this conjecture of any utility for our objective? Yes, it is: if fm | fn− 2,
then gcd(fm, fn) = gcd(fn mod fm, fm) = gcd(2, fm) = 1 as fm is odd.

Let us now prove the conjecture. If m < n then 2n−m is even: but
a2r − 1 = (a + 1)(a2r−1 − a2r−2 + . . . + a − 1). Put then a = 22m and
2n−m = 2r: then fm = a + 1 and fn − 2 = a2r − 1.

Exercise 4.18

Show that if 2n + 1 is prime then n is a power of 2.
Solution.

We reformulate the problem as follows: if n has an odd factor m > 1,
then 2n + 1 has a nontrivial factor. So suppose n = qm with m > 1 odd:
then

2n + 1 = 2qm + 1 = (2q + 1)(2(m−1)q − 2(m−2)q + . . . + 22q − 2q + 1) ,

and the factor 2q + 1 surely is nontrivial.

Exercise 4.20

For every positive integer n there’s a prime p such that n < p ≤ 2n. (This
is essentially “Bertrand’s postulate”, which Joseph Bertrand verified for n <
3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand’s
postulate to prove that there’s a constant b ≈ 1.25 such that the numbers⌊

2b
⌋
.
⌊
22b
⌋
,
⌊
222

b
⌋
, . . . (1)

are all prime.
Solution. Call lg the binary (base-2) logarithm. Let us define a “simple”
sequence of primes by putting p1 = 2, and pn as the smallest prime larger
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than 2pn−1 . By Bertrand’s postulate, 2pn−1 < pn < 2pn−1+1 for every n ≥ 2:
we can switch to strict inequality because such pn are odd. Hence,

pn−1 < lg pn < pn−1 + 1 (2)

for every n ≥ 2. The left-hand inequality of (2) tells us that the sequence

bn = lg(n) pn , (3)

where lg(n) is the nth iteration of lg, is nondecreasing. To prove that it is
bounded from above, we set a1 = 2 and an = 2an−1 for every n ≥ 2, so that
a2 = 4, a3 = 16, and so on: we prove by induction that pn < an+1 for every
n ≥ 1, from which follows bn < 2 for every n ≥ 1 as lg(n) an+1 = 2. This is
true for n = 1 and n = 2 as p2 = 5; for n ≥ 3, if pn−1 < an, then, as pn−1
and an are both integers, pn−1 + 1 ≤ an, and the right-hand inequality of (2)
tells us that pn < 2pn−1+1 ≤ 2an = an+1. We then set:

b = lim
n→∞

bn = sup
n≥1

lg(n) pn . (4)

To prove that this is the b we were looking for, we set u1 = 2b and un = 2un−1

for every n ≥ 2: we will show that bunc = pn for every n ≥ 1, which will
solve the exercise. Clearly bunc ≥ pn as bn < b; also, as b = 1.25164 . . .
and 21.26 < 2.4, bu1c = p1. If for some n > 1 it is bunc > pn, let n be the
minimum value for which this happens: then un ≥ pn + 1, and

un−1 = lg un ≥ lg(pn + 1) > lg pn > pn−1 ,

against minimality of n.

Exercise 4.21

Let Pn be the n-th prime number. Find a constant K such that⌊
(10n2

K) mod 10n
⌋

= Pn . (5)

Solution. We use again Bertrand’s postulate to make the basic observation
that Pn < 10n. Then the series

∑
k≥1 10−k

2
Pk converges: let K be its sum.

Then

10n2

K =

( ∑
1≤k<n

10n2−k2Pk

)
+ Pn +

∑
k>n

10n2−k2Pk :
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we want to show that the first sum is divisible by 10n, and the second one is
smaller than 1.

First, for 1 ≤ k < n it is n2 − k2 ≥ n2 − (n− 1)2 = 2n− 1 ≥ n as n ≥ 1:
therefore, each summand in the first sum is divisible by 10n. Next, for k > n
it is k = n + t with t ≥ 1, and

k2 − n2 − k = 2nt + t2 − n− t = (2t− 1)n + t(t− 1) ≥ t :

then, as Pk < 10k,
∑

k>n 10n2−k2Pk ≤
∑

t≥1 10−t = 1/9.
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