Concrete Mathematics Exercises from 25 October 2016

Silvio Capobianco

Revision: 27 October 2016

Exercise 4.16

The *Euclid numbers* are defined for $n \ge 1$ by the relation:

$$\begin{array}{rcl} e_1 &=& 2\\ e_n &=& e_1 \cdots e_{n-1} + 1 \quad \forall n \geq 2 \end{array}$$

What is the sum of the reciprocals of the first n Euclid numbers? Solution.

Let us start counting: $1/e_1 = 1/2$; $1/e_1 + 1/e_2 = 1/2 + 1/3 = 5/6$; $1/e_1 + 1/e_2 + 1/e_3 = 5/6 + 1/7 = 41/42$; and so on.

Do we recognize any pattern? These seem to have the form $1 - 1/d_n$ where d_n is a *product* of Euclid numbers: this number is $d_1 = 2 = e_1 = e_2 - 1$ for $1/e_1$, $d_2 = 6 = e_1e_2 = e_3 - 1$ for $1/e_1 + 1/e_2$, and so on.

Let us check it by induction. Suppose $1/e_1 + \ldots + 1/e_{n-1} = 1 - 1/(e_n - 1)$: then

$$\sum_{k=1}^{n} \frac{1}{e_k} = \sum_{k=1}^{n-1} \frac{1}{e_k} + \frac{1}{e_k}$$
$$= 1 - \frac{1}{e_n - 1} + \frac{1}{e_n}$$
$$= 1 - \frac{e_n - (e_n - 1)}{(e_n - 1)e_n}$$
$$= 1 - \frac{1}{e_1 \cdots e_{n-1} \cdot e_n}$$
$$= 1 - \frac{1}{e_{n+1} - 1}.$$

Esercise 4.17

Let f_n be the "Fermat number" $2^{2^n} + 1$. Prove that $gcd(f_m, f_n) = 1$ if m < n. Solution. Let us construct the first Fermat numbers: $f_0 = 3$, $f_1 = 5$, $f_2 = 17$, $f_3 = 257$, $f_4 = 65537$. We observe that $f_0 = 3$ divides $f_1 - 2 = 3$, $f_2 - 2 = 15$, $f_3 - 2 = 255$, $f_4 - 2 = 65535$; and so on. We also observe that $f_1 = 5$ divides $f_2 - 2$, $f_3 - 2$, and $f_4 - 2$. We thus formulate the following conjecture: if m < n then $f_m \mid f_n - 2$.

Is this conjecture of any utility for our objective? Yes, it is: if $f_m | f_n - 2$, then $gcd(f_m, f_n) = gcd(f_n \mod f_m, f_m) = gcd(2, f_m) = 1$ as f_m is odd.

Let us now prove the conjecture. If m < n then 2^{n-m} is even: but $a^{2r} - 1 = (a+1)(a^{2r-1} - a^{2r-2} + \ldots + a - 1)$. Put then $a = 2^{2^m}$ and $2^{n-m} = 2r$: then $f_m = a + 1$ and $f_n - 2 = a^{2r} - 1$.

Exercise 4.18

Show that if $2^n + 1$ is prime then *n* is a power of 2. *Solution.*

We reformulate the problem as follows: if n has an odd factor m > 1, then $2^n + 1$ has a nontrivial factor. So suppose n = qm with m > 1 odd: then

$$2^{n} + 1 = 2^{qm} + 1 = (2^{q} + 1)(2^{(m-1)q} - 2^{(m-2)q} + \dots + 2^{2q} - 2^{q} + 1),$$

and the factor $2^q + 1$ surely is nontrivial.

Exercise 4.20

For every positive integer n there's a prime p such that n . (This is essentially "Bertrand's postulate", which Joseph Bertrand verified for <math>n < 3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand's postulate to prove that there's a constant $b \approx 1.25$ such that the numbers

$$\lfloor 2^b \rfloor \cdot \lfloor 2^{2^b} \rfloor , \lfloor 2^{2^{2^b}} \rfloor , \dots$$
 (1)

are all prime.

Solution. Call lg the binary (base-2) logarithm. Let us define a "simple" sequence of primes by putting $p_1 = 2$, and p_n as the smallest prime larger

than $2^{p_{n-1}}$. By Bertrand's postulate, $2^{p_{n-1}} < p_n < 2^{p_{n-1}+1}$ for every $n \ge 2$: we can switch to strict inequality because such p_n are odd. Hence,

$$p_{n-1} < \lg p_n < p_{n-1} + 1 \tag{2}$$

for every $n \ge 2$. The left-hand inequality of (2) tells us that the sequence

$$b_n = \lg^{(n)} p_n \,, \tag{3}$$

where $\lg^{(n)}$ is the *n*th iteration of lg, is nondecreasing. To prove that it is bounded from above, we set $a_1 = 2$ and $a_n = 2^{a_{n-1}}$ for every $n \ge 2$, so that $a_2 = 4, a_3 = 16$, and so on: we prove by induction that $p_n < a_{n+1}$ for every $n \ge 1$, from which follows $b_n < 2$ for every $n \ge 1$ as $\lg^{(n)} a_{n+1} = 2$. This is true for n = 1 and n = 2 as $p_2 = 5$; for $n \ge 3$, if $p_{n-1} < a_n$, then, as p_{n-1} and a_n are both integers, $p_{n-1} + 1 \le a_n$, and the right-hand inequality of (2) tells us that $p_n < 2^{p_{n-1}+1} \le 2^{a_n} = a_{n+1}$. We then set:

$$b = \lim_{n \to \infty} b_n = \sup_{n \ge 1} \lg^{(n)} p_n \,. \tag{4}$$

To prove that this is the *b* we were looking for, we set $u_1 = 2^b$ and $u_n = 2^{u_{n-1}}$ for every $n \ge 2$: we will show that $\lfloor u_n \rfloor = p_n$ for every $n \ge 1$, which will solve the exercise. Clearly $\lfloor u_n \rfloor \ge p_n$ as $b_n < b$; also, as b = 1.25164...and $2^{1.26} < 2.4$, $\lfloor u_1 \rfloor = p_1$. If for some n > 1 it is $\lfloor u_n \rfloor > p_n$, let *n* be the minimum value for which this happens: then $u_n \ge p_n + 1$, and

$$u_{n-1} = \lg u_n \ge \lg (p_n + 1) > \lg p_n > p_{n-1},$$

against minimality of n.

Exercise 4.21

Let P_n be the *n*-th prime number. Find a constant K such that

$$\left\lfloor (10^{n^2} K) \mod 10^n \right\rfloor = P_n \,. \tag{5}$$

Solution. We use again Bertrand's postulate to make the basic observation that $P_n < 10^n$. Then the series $\sum_{k\geq 1} 10^{-k^2} P_k$ converges: let K be its sum. Then

$$10^{n^2} K = \left(\sum_{1 \le k < n} 10^{n^2 - k^2} P_k\right) + P_n + \sum_{k > n} 10^{n^2 - k^2} P_k :$$

we want to show that the first sum is divisible by 10^n , and the second one is smaller than 1.

First, for $1 \le k < n$ it is $n^2 - k^2 \ge n^2 - (n-1)^2 = 2n - 1 \ge n$ as $n \ge 1$: therefore, each summand in the first sum is divisible by 10^n . Next, for k > nit is k = n + t with $t \ge 1$, and

$$k^{2} - n^{2} - k = 2nt + t^{2} - n - t = (2t - 1)n + t(t - 1) \ge t$$
:

then, as $P_k < 10^k$, $\sum_{k>n} 10^{n^2 - k^2} P_k \le \sum_{t \ge 1} 10^{-t} = 1/9$.