Concrete Mathematics Exercises from 25 October 2016

Silvio Capobianco

Revision: 27 October 2016

Exercise 4.16

The Euclid numbers are defined for $n \geq 1$ by the relation:

$$
\begin{aligned}
& e_{1}=2 \\
& e_{n}=e_{1} \cdots e_{n-1}+1 \quad \forall n \geq 2
\end{aligned}
$$

What is the sum of the reciprocals of the first n Euclid numbers?
Solution.
Let us start counting: $1 / e_{1}=1 / 2 ; 1 / e_{1}+1 / e_{2}=1 / 2+1 / 3=5 / 6$; $1 / e_{1}+1 / e_{2}+1 / e_{3}=5 / 6+1 / 7=41 / 42$; and so on.

Do we recognize any pattern? These seem to have the form $1-1 / d_{n}$ where d_{n} is a product of Euclid numbers: this number is $d_{1}=2=e_{1}=e_{2}-1$ for $1 / e_{1}, d_{2}=6=e_{1} e_{2}=e_{3}-1$ for $1 / e_{1}+1 / e_{2}$, and so on.

Let us check it by induction. Suppose $1 / e_{1}+\ldots+1 / e_{n-1}=1-1 /\left(e_{n}-1\right)$: then

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{e_{k}} & =\sum_{k=1}^{n-1} \frac{1}{e_{k}}+\frac{1}{e_{k}} \\
& =1-\frac{1}{e_{n}-1}+\frac{1}{e_{n}} \\
& =1-\frac{e_{n}-\left(e_{n}-1\right)}{\left(e_{n}-1\right) e_{n}} \\
& =1-\frac{1}{e_{1} \cdots e_{n-1} \cdot e_{n}} \\
& =1-\frac{1}{e_{n+1}-1} .
\end{aligned}
$$

Esercise 4.17

Let f_{n} be the "Fermat number" $2^{2^{n}}+1$. Prove that $\operatorname{gcd}\left(f_{m}, f_{n}\right)=1$ if $m<n$. Solution. Let us construct the firs t Fermat numbers: $f_{0}=3, f_{1}=5, f_{2}=17$, $f_{3}=257, f_{4}=65537$. We observe that $f_{0}=3$ divides $f_{1}-2=3, f_{2}-2=15$, $f_{3}-2=255, f_{4}-2=65535$; and so on. We also observe that $f_{1}=5$ divides $f_{2}-2, f_{3}-2$, and $f_{4}-2$. We thus formulate the following conjecture: if $m<n$ then $f_{m} \mid f_{n}-2$.

Is this conjecture of any utility for our objective? Yes, it is: if $f_{m} \mid f_{n}-2$, then $\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{n} \bmod f_{m}, f_{m}\right)=\operatorname{gcd}\left(2, f_{m}\right)=1$ as f_{m} is odd.

Let us now prove the conjecture. If $m<n$ then 2^{n-m} is even: but $a^{2 r}-1=(a+1)\left(a^{2 r-1}-a^{2 r-2}+\ldots+a-1\right)$. Put then $a=2^{2^{m}}$ and $2^{n-m}=2 r$: then $f_{m}=a+1$ and $f_{n}-2=a^{2 r}-1$.

Exercise 4.18

Show that if $2^{n}+1$ is prime then n is a power of 2 .

Solution.

We reformulate the problem as follows: if n has an odd factor $m>1$, then $2^{n}+1$ has a nontrivial factor. So suppose $n=q m$ with $m>1$ odd: then

$$
2^{n}+1=2^{q m}+1=\left(2^{q}+1\right)\left(2^{(m-1) q}-2^{(m-2) q}+\ldots+2^{2 q}-2^{q}+1\right),
$$

and the factor $2^{q}+1$ surely is nontrivial.

Exercise 4.20

For every positive integer n there's a prime p such that $n<p \leq 2 n$. (This is essentially "Bertrand's postulate", which Joseph Bertrand verified for $n<$ 3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand's postulate to prove that there's a constant $b \approx 1.25$ such that the numbers

$$
\begin{equation*}
\left\lfloor 2^{b}\right\rfloor \cdot\left\lfloor 2^{2^{b}}\right\rfloor,\left\lfloor 2^{2^{2^{b}}}\right\rfloor, \ldots \tag{1}
\end{equation*}
$$

are all prime
Solution. Call lg the binary (base-2) logarithm. Let us define a "simple" sequence of primes by putting $p_{1}=2$, and p_{n} as the smallest prime larger
than $2^{p_{n-1}}$. By Bertrand's postulate, $2^{p_{n-1}}<p_{n}<2^{p_{n-1}+1}$ for every $n \geq 2$: we can switch to strict inequality because such p_{n} are odd. Hence,

$$
\begin{equation*}
p_{n-1}<\lg p_{n}<p_{n-1}+1 \tag{2}
\end{equation*}
$$

for every $n \geq 2$. The left-hand inequality of (2) tells us that the sequence

$$
\begin{equation*}
b_{n}=\lg ^{(n)} p_{n} \tag{3}
\end{equation*}
$$

where $\lg ^{(n)}$ is the nth iteration of \lg, is nondecreasing. To prove that it is bounded from above, we set $a_{1}=2$ and $a_{n}=2^{a_{n-1}}$ for every $n \geq 2$, so that $a_{2}=4, a_{3}=16$, and so on: we prove by induction that $p_{n}<a_{n+1}$ for every $n \geq 1$, from which follows $b_{n}<2$ for every $n \geq 1$ as $\lg ^{(n)} a_{n+1}=2$. This is true for $n=1$ and $n=2$ as $p_{2}=5$; for $n \geq 3$, if $p_{n-1}<a_{n}$, then, as p_{n-1} and a_{n} are both integers, $p_{n-1}+1 \leq a_{n}$, and the right-hand inequality of (2) tells us that $p_{n}<2^{p_{n-1}+1} \leq 2^{a_{n}}=a_{n+1}$. We then set:

$$
\begin{equation*}
b=\lim _{n \rightarrow \infty} b_{n}=\sup _{n \geq 1} \lg ^{(n)} p_{n} \tag{4}
\end{equation*}
$$

To prove that this is the b we were looking for, we set $u_{1}=2^{b}$ and $u_{n}=2^{u_{n-1}}$ for every $n \geq 2$: we will show that $\left\lfloor u_{n}\right\rfloor=p_{n}$ for every $n \geq 1$, which will solve the exercise. Clearly $\left\lfloor u_{n}\right\rfloor \geq p_{n}$ as $b_{n}<b$; also, as $b=1.25164 \ldots$ and $2^{1.26}<2.4,\left\lfloor u_{1}\right\rfloor=p_{1}$. If for some $n>1$ it is $\left\lfloor u_{n}\right\rfloor>p_{n}$, let n be the minimum value for which this happens: then $u_{n} \geq p_{n}+1$, and

$$
u_{n-1}=\lg u_{n} \geq \lg \left(p_{n}+1\right)>\lg p_{n}>p_{n-1}
$$

against minimality of n.

Exercise 4.21

Let P_{n} be the n-th prime number. Find a constant K such that

$$
\begin{equation*}
\left\lfloor\left(10^{n^{2}} K\right) \bmod 10^{n}\right\rfloor=P_{n} \tag{5}
\end{equation*}
$$

Solution. We use again Bertrand's postulate to make the basic observation that $P_{n}<10^{n}$. Then the series $\sum_{k \geq 1} 10^{-k^{2}} P_{k}$ converges: let K be its sum. Then

$$
10^{n^{2}} K=\left(\sum_{1 \leq k<n} 10^{n^{2}-k^{2}} P_{k}\right)+P_{n}+\sum_{k>n} 10^{n^{2}-k^{2}} P_{k}:
$$

we want to show that the first sum is divisible by 10^{n}, and the second one is smaller than 1 .

First, for $1 \leq k<n$ it is $n^{2}-k^{2} \geq n^{2}-(n-1)^{2}=2 n-1 \geq n$ as $n \geq 1$: therefore, each summand in the first sum is divisible by 10^{n}. Next, for $k>n$ it is $k=n+t$ with $t \geq 1$, and

$$
k^{2}-n^{2}-k=2 n t+t^{2}-n-t=(2 t-1) n+t(t-1) \geq t
$$

then, as $P_{k}<10^{k}, \sum_{k>n} 10^{n^{2}-k^{2}} P_{k} \leq \sum_{t \geq 1} 10^{-t}=1 / 9$.

