Concrete Mathematics Exercises from Chapter 4

Silvio Capobianco

Wilson's theorem

Prove that an integer $n \geq 2$ is prime if and only if $(n-1)!\equiv-1 \bmod n$.
Solution. If n is composite, let $p<n$ be a prime that divides n. Then p is one of the factors of $(n-1)$!, and cannot be a factor of $(n-1)$! +1 : neither can n, which is a multiple of p.

If n is prime, we can suppose it is odd, as $1!=1 \equiv-1 \bmod 2$. The evenly many numbers $1,2, \ldots, n-1$ all have a multiplicative inverse modulo n : some coincide with their own multiplicative inverse, and some don't. But i is its own inverse modulo n if and only if $i^{2}-1 \equiv 0 \bmod n$, that is, $n \mid(i+1)(i-1)$: and as n is an odd prime, it must divide either $i-1$ or $i+1$, but cannot divide both, or it would also divide their difference, which is 2 . Then the only integers modulo n that are their own inverses modulo n are $i=1$ and $i=n-1$: and by pairing multiplicative inverses with each other, the product of the numbers from 2 to $n-2$ can be seen to be congruent to 1 modulo n. Then

$$
(n-1)!=1 \cdot(n-1) \cdot \prod_{i=2}^{n-2} i \equiv(n-1) \cdot 1 \equiv-1 \bmod n
$$

Exercise 4.19

Prove the following identities when n is a positive integer:

$$
\begin{align*}
\sum_{1 \leq k<n}\left\lfloor\frac{\phi(k+1)}{k}\right\rfloor & =\sum_{1<m \leq n}\left\lfloor\left(\sum_{1 \leq k<m}\left\lfloor\frac{\frac{m}{k}}{\left\lceil\frac{m}{k}\right\rceil}\right\rfloor\right)^{-1}\right\rfloor \tag{1}\\
& =n-1-\sum_{k=1}^{n}\left[\left\{\frac{(k-1)!+1}{k}\right\}\right\rceil \tag{2}
\end{align*}
$$

Hint: This is a trick question and the answer is pretty easy.
Solution. First of all, the summands in the left-hand side of (1) are 1 if $k+1$ is prime, and 0 otherwise: thus, that left-hand-side itself is $\pi(n)$, the number of primes not greater than n. Next, in the inner sum of the right-hand side of (1), the summand $\lfloor(m / k) /\lceil m / k\rceil\rfloor$ is 1 if $k \mid m$ and 0 otherwise: the sum itself, where k ranges from 0 to $m-1$, is greater than 1 if and only if m is composite, so the summand a_{m} in the outer sum is 1 if m is prime and 0 otherwise: the sum itself is again $\pi(n)$. Finally, by Wilson's theorem, the summands in the right-hand side of (2) are 1 if k is greater than 1 and not prime, and 0 otherwise: the sum itself is the number of composite numbers from 1 to n, so it yields $n-1$ when added to $\pi(n)$ (remember that 1 itself is neither prime nor composite).

Exercise 4.25

We say that m exactly divides n, written $m \| n$, if $m \mid n$ and $\operatorname{gcd}(m, n / m)=1$. Prove or disprove the following:

1. If $\operatorname{gcd}(k, m)=1$, then $k m \| n$ if and only if $k \| n$ and $m \| n$.
2. For all $m, n>0$, either $\operatorname{gcd}(m, n) \| m$ or $\operatorname{gcd}(m, n) \| n$.

Solution. To say that $m \| n$ is the same as saying that for every prime p, if $p \mid n$, then the maximum power of p that divides n is the same that divides m; to say that $\operatorname{gcd}(k, m)=1$, is the same as saying that for every prime p, either $p \mid k$ or $p \mid m$, but not both. All this means that point 1 is true.

Point 2, however, is false. To construct a counterexample, suppose that $k=p q$ is the product of two primes: then $m=p^{2} q$ and $n=p q^{2}$ satisfy $\operatorname{gcd}(m, n)=k$, but also $\operatorname{gcd}(k, m / k)=p>1$ and $\operatorname{gcd}(k, n / k)=q>1)$. The smallest such counterexample is for $p=2$ and $q=3$, thus $m=12$ and $n=18$.

Exercise 4.33

Show that if $f(m)$ and $g(m)$ are multiplicative functions, then so is $h(m)=$ $\sum_{d \mid m} f(d) g(m / d)$. Solution.

Recall that a function f, defined on the positive integers, is said to be multiplicative if $\operatorname{gcd}(m, n)=1$ implies $f(m \cdot n)=f(m) \cdot f(n)$. In this case,
$d \mid m n$ if and only if there exist two integers a, b such that $d=a b, a \mid m$, $\operatorname{gcd}(a, n)=1, b \mid n$, and $\operatorname{gcd}(b, m)=1$: then $\operatorname{gcd}(a, b)=1$ as well, and

$$
\begin{aligned}
h(m n) & =\sum_{d \mid m n} f(d) g\left(\frac{m n}{d}\right) \\
& =\sum_{a|m, b| n} f(a b) g\left(\frac{m n}{a b}\right) \\
& =\sum_{a|m, b| n} f(a) f(b) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right) \\
& =\left(\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right)\right) \cdot\left(\sum_{b \mid n} f(b) g\left(\frac{n}{b}\right)\right) \\
& =h(m) \cdot h(n) .
\end{aligned}
$$

