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Wilson’s theorem

Prove that an integer n ≥ 2 is prime if and only if (n− 1)! ≡ −1 modn.
Solution. If n is composite, let p < n be a prime that divides n. Then p is
one of the factors of (n− 1)!, and cannot be a factor of (n− 1)! + 1: neither
can n, which is a multiple of p.

If n is prime, we can suppose it is odd, as 1! = 1 ≡ −1 mod 2. The evenly
many numbers 1, 2, . . . , n−1 all have a multiplicative inverse modulo n: some
coincide with their own multiplicative inverse, and some don’t. But i is its
own inverse modulo n if and only if i2−1 ≡ 0 modn, that is, n | (i+1)(i−1):
and as n is an odd prime, it must divide either i − 1 or i + 1, but cannot
divide both, or it would also divide their difference, which is 2. Then the
only integers modulo n that are their own inverses modulo n are i = 1 and
i = n−1: and by pairing multiplicative inverses with each other, the product
of the numbers from 2 to n− 2 can be seen to be congruent to 1 modulo n.
Then

(n− 1)! = 1 · (n− 1) ·
n−2∏
i=2

i ≡ (n− 1) · 1 ≡ −1 modn .

Exercise 4.19

Prove the following identities when n is a positive integer:
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Hint: This is a trick question and the answer is pretty easy.
Solution. First of all, the summands in the left-hand side of (1) are 1 if k+ 1
is prime, and 0 otherwise: thus, that left-hand-side itself is π(n), the number
of primes not greater than n. Next, in the inner sum of the right-hand side
of (1), the summand b(m/k)/ dm/kec is 1 if k |m and 0 otherwise: the sum
itself, where k ranges from 0 to m − 1, is greater than 1 if and only if m is
composite, so the summand am in the outer sum is 1 if m is prime and 0
otherwise: the sum itself is again π(n). Finally, by Wilson’s theorem, the
summands in the right-hand side of (2) are 1 if k is greater than 1 and not
prime, and 0 otherwise: the sum itself is the number of composite numbers
from 1 to n, so it yields n− 1 when added to π(n) (remember that 1 itself is
neither prime nor composite).

Exercise 4.25

We say that m exactly divides n, written m ‖n, if m |n and gcd(m,n/m) = 1.
Prove or disprove the following:

1. If gcd(k,m) = 1, then km ‖n if and only if k ‖n and m ‖n.

2. For all m,n > 0, either gcd(m,n) ‖m or gcd(m,n) ‖n.

Solution. To say that m ‖n is the same as saying that for every prime p, if
p |n, then the maximum power of p that divides n is the same that divides
m; to say that gcd(k,m) = 1, is the same as saying that for every prime p,
either p | k or p |m, but not both. All this means that point 1 is true.

Point 2, however, is false. To construct a counterexample, suppose that
k = pq is the product of two primes: then m = p2q and n = pq2 satisfy
gcd(m,n) = k, but also gcd(k,m/k) = p > 1 and gcd(k, n/k) = q > 1).
The smallest such counterexample is for p = 2 and q = 3, thus m = 12 and
n = 18.

Exercise 4.33

Show that if f(m) and g(m) are multiplicative functions, then so is h(m) =∑
d |m f(d)g(m/d).

Solution.
Recall that a function f , defined on the positive integers, is said to be

multiplicative if gcd(m,n) = 1 implies f(m · n) = f(m) · f(n). In this case,
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d |mn if and only if there exist two integers a, b such that d = ab, a |m,
gcd(a, n) = 1, b |n, and gcd(b,m) = 1: then gcd(a, b) = 1 as well, and

h(mn) =
∑
d |mn

f(d)g
(mn
d

)
=

∑
a |m,b |n
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∑
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)
= h(m) · h(n) .
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