ITT9131 Concrete Mathematics Exercises from November 15

Revision: November 16, 2016

Exercise 5.2

Find the values of k for which $\binom{n}{k}$ is a maximum. Prove the answer. Solution. Write $\binom{n}{k}=\frac{n!}{k!(n-k)!}$: as k varies between 0 and n, the numerator is constant, which means that $\binom{n}{k}$ is maximum when the denominator is minimum. The symmetry rule $\binom{n}{k}=\binom{n}{n-k}$ and the equality $\left(\begin{array}{c}n\end{array}\right)=\binom{n}{n}=1$ prompts us to conjecture that $\binom{n}{k}$ is maximum for $k=\lfloor n / 2\rfloor$ and $k=\lceil n / 2\rceil$. We can verify our conjecture for $n \geq 2$ as it is clearly true for $n=0$ and $n=1$. By symmetry, we only need to prove it for $k \leq n / 2$.

First, suppose $n=2 m$ is even: then $m=n / 2=\lfloor n / 2\rfloor=\lceil n / 2\rceil$. For $k \leq m$ the denominator of $\binom{n}{m}$ is $(m!)^{2}=\left(m^{m-k} k!\right)^{2}$, while that of $\binom{n}{k}$ is:

$$
k!(2 m-k)!=k!(2 m-k)^{\underline{2 m-2 k}} k!=(k!)^{2}(2 m-k)^{\frac{m-k}{}} m^{\frac{m-k}{}} .
$$

Our thesis is then equivalent to

$$
\left(m^{\underline{m-k}}\right)^{2} \leq(2 m-k)^{\underline{m-k}} m^{\frac{m-k}{}}:
$$

which is clearly true as $2 m-k \geq m$.
Next, suppose $n=2 m+1$ is even: then $m=(n-1) / 2=\lfloor n / 2\rfloor$ and $m+1=(n+1) / 2=\lceil n / 2\rceil$, while $\binom{n}{m}=\binom{n}{m+1}$. For $k \leq m$ the denominator of $\binom{n}{m}$ is $m!(m+1)!=\left(m^{\underline{m-k}} k!\right)^{2}(m+1)$, while that of $\binom{n}{k}$ is:

$$
\begin{aligned}
k!(2 m+1-k)! & =k!(2 m+1-k)^{\frac{2 m+1-2 k}{}} k! \\
& =(k!)^{2}(2 m+1-k)^{\frac{m-k}{}}(m+1) m^{\frac{m-k}{}} .
\end{aligned}
$$

Our thesis is then equivalent to

$$
\left(m^{\frac{m-k}{}}\right)^{2}(m+1) \leq(2 m+1-k)^{\frac{m-k}{}}(m+1) m^{\frac{m-k}{}}:
$$

which is true because $2 m+1-k \geq m$.
Other methods involve putting $f(k)=\binom{n}{k}$ for $0 \leq k \leq n$, and verify either that Δf is nonnegative for $k \leq\lfloor n\rfloor$ and negative for $k>\lceil n\rceil$, or that $f(k+1) / f(k)$ is greater or equal to 1 for $k \leq\lfloor n\rfloor$ and smaller than 1 for $k \leq\lfloor n\rfloor$.

Exercise 5.5

Let p be a prime. Prove that $\binom{p}{k} \equiv 0 \bmod p$ for $0<k<p$. Find a consequence about $\binom{p-1}{k}$.
Solution. Recall that $a \equiv b \bmod m$ means that $a-b$ is a multiple of m. By definition,

$$
\binom{p}{k}=\frac{p(p-1) \cdots(p-k+1)}{k!}
$$

If p is prime and k is neither 0 nor p, there is no way to make the p at numerator disappear by dividing by k !.

Now, $\binom{p}{k}=\binom{p-1}{k}+\binom{p-1}{k-1}$: since the left-hand side is 0 modulo p, going from $\binom{p-1}{k-1}$ to $\binom{p-1}{k}$ only involves a change of sign modulo p. Since $\binom{p-1}{0}=1$, we get:

$$
\binom{p-1}{k} \equiv(-1)^{k} \quad \bmod p
$$

Exercise 5.15

Equation (5.29) in the book states that, for every a, b, c nonnegative integers,

$$
\sum_{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}(-1)^{k}=\frac{(a+b+c)!}{a!b!c!}
$$

Use (5.29) to compute $\sum_{k}\binom{n}{k}^{3}(-1)^{k}$.
Solution. Set $\sum_{k}\binom{n}{k}^{3}(-1)^{k}=S(n)$. We preliminarly observe that $S(n)=0$
if $n=2 m+1$ is odd, because in this case, as the sum is on every k integer,

$$
\begin{aligned}
\sum_{k}\binom{2 m+1}{k}^{3}(-1)^{k} & =\sum_{k}\binom{2 m+1}{2 m+1-k}^{3}(-1)^{2 m+1-k} \\
& =-\sum_{k}\binom{2 m+1}{k}^{3}(-1)^{k}
\end{aligned}
$$

as k and $2 m+1-k$ have opposite parity. So let $n=2 m$ be even: in this case,

$$
S(n)=\sum_{k}\binom{2 m}{k}\binom{2 m}{k}\binom{2 m}{k}(-1)^{k}
$$

looks dangerously similar to (5.29) with $a=b=c=m$, except that the lower summation index is k instead of $m+k$. Is this a real problem? No, because the sum is on every integer, and does not change by translation of the index, so we can safely do:

$$
\begin{aligned}
\sum_{k}\binom{2 m}{k}\binom{2 m}{k}\binom{2 m}{k}(-1)^{k} & =\sum_{k}\binom{2 m}{m+k}\binom{2 m}{m+k}\binom{2 m}{m+k}(-1)^{m+k} \\
& =(-1)^{m} \sum_{k}\binom{2 m}{m+k}\binom{2 m}{m+k}\binom{2 m}{m+k}(-1)^{k} \\
& =(-1)^{m} \cdot \frac{(3 m)!}{(m!)^{3}}
\end{aligned}
$$

In conclusion,

$$
\sum_{k}\binom{n}{k}^{3}(-1)^{k}=(-1)^{\lfloor n / 2\rfloor} \frac{(3\lfloor n / 2\rfloor)!}{(\lfloor n / 2\rfloor!)^{3}}[n \text { is even }]
$$

Exercise 5.37

Show that an analog of the binomial theorem holds for factorial powers. That is, prove the identities

$$
\begin{aligned}
& (x+y)^{\underline{n}}=\sum_{k}\binom{n}{k} x^{\underline{k}} y^{\underline{n-k}} \\
& (x+y)^{\bar{n}}=\sum_{k}\binom{n}{k} x^{\bar{k}} y^{\overline{n-k}}
\end{aligned}
$$

for all nonnegative integers n.
Solution. Let's prove the statement for falling powers. The case with rising powers would then follow easily, because it is true in general that $x^{\bar{n}}=$ $(-1)^{n}-x^{\underline{n}}$, so that if the relation for falling powers is true, then

$$
\begin{aligned}
(x+y)^{\bar{n}} & =(-1)^{n}(-x-y)^{\underline{n}} \\
& =(-1)^{n} \sum_{k}\binom{n}{k}(-x)^{\frac{k}{\underline{k}}}(-y)^{\frac{n-k}{}} \\
& =\sum_{k}\binom{n}{k}(-1)^{k} x^{\bar{k}}(-1)^{n-k} y^{\overline{n-k}}
\end{aligned}
$$

and the corresponding relation for rising powers is also true.
The thesis can be proved by induction on n, as it is true for $n=0$, and if it is true for n, then

$$
\begin{aligned}
(x+y)^{\underline{n+1}} & =(x+y)^{\underline{n}}(x+y-n) \\
& =\left(\sum_{k}\binom{n}{k} x^{\underline{\underline{k}}} y^{\underline{n-k}}\right)(x-k+y-(n-k)) \\
& =\sum_{k}\binom{n}{k} x^{\underline{k}}(x-k) y^{\underline{n-k}}+\sum_{k}\binom{n}{k} x^{\underline{k}} y^{\underline{n-k}}(y-(n-k)) \\
& =\sum_{k}\binom{n}{k} x^{\underline{k+1}} y^{\underline{n-k}}+\sum_{k}\binom{n}{k} x^{\underline{k}} y^{\underline{n+1-k}} \\
& =\sum_{k}\binom{n}{k-1} x^{\underline{\underline{k}} y^{\underline{n+1-k}}+\sum_{k}\binom{n}{k} x^{x^{k}} y^{\underline{n+1-k}}} \\
& =\sum_{k}\binom{n+1}{k} x^{\underline{k}} y^{\underline{n+1-k}}
\end{aligned}
$$

as it was claimed. Observe that we have used the trick of summing for every k integer.

But there is another, more interesting way to get to that result! By writing $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, the first equation becomes

$$
(x+y)^{\underline{n}}=n!\sum_{k} \frac{x^{\underline{k}}}{k!} \frac{y^{n-k}}{(n-k)!}=n!\sum_{k}\binom{x}{k}\binom{y}{n-k},
$$

which is equivalent to

$$
\binom{x+y}{n}=\sum_{k}\binom{x}{k}\binom{y}{n-k}:
$$

that is, the binomial theorem for falling powers is simply a rewriting of the Vandermonde convolution (5.22)!

Exercise 5.35

The writing $\sum_{k \leq n}\binom{n}{k} 2^{k-n}$ is ambiguous without context. Evaluate it

1. as a sum on k,
2. as a sum on n.

Solution. First, let us interpret the formula as a sum on k. Such sum vanishes if $n<0$, otherwise

$$
\sum_{k \leq n}\binom{n}{k} 2^{k-n}=2^{-n} \sum_{k=0}^{n}\binom{n}{k} 2^{k} 1^{n-k}=2^{-n} \cdot(2+1)^{n}=\left(\frac{3}{2}\right)^{n}
$$

In conclusion, $\sum_{k \leq n} 2^{k-n}=(3 / 2)^{n}[n \geq 0]$ as a sum on k.
Next, let us interpret the formula as a sum over n. If $k<0$ the sum clearly vanishes; otherwise,

$$
\begin{aligned}
\sum_{k \leq n}\binom{n}{k} 2^{k-n} & =\sum_{n=k}^{\infty}\binom{n}{k}\left(\frac{1}{2}\right)^{n-k} \\
& =\sum_{n=0}^{\infty}\binom{k+n}{k}\left(\frac{1}{2}\right)^{n} \\
& =\frac{1}{(1-1 / 2)^{k+1}} \\
& =2^{k+1}
\end{aligned}
$$

In conclusion, $\sum_{k \leq n}\binom{n}{k} 2^{k-n}=2^{k+1}[k \geq 0]$ as a sum on n.

