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Exercise 5.2

Find the values of k for which
(
n
k

)
is a maximum. Prove the answer.

Solution. Write
(
n
k

)
= n!

k!(n−k)! : as k varies between 0 and n, the numerator

is constant, which means that
(
n
k

)
is maximum when the denominator is

minimum. The symmetry rule
(
n
k

)
=
(

n
n−k

)
and the equality

(
n
)

=
(
n
n

)
= 1

prompts us to conjecture that
(
n
k

)
is maximum for k = bn/2c and k = dn/2e.

We can verify our conjecture for n ≥ 2 as it is clearly true for n = 0 and
n = 1. By symmetry, we only need to prove it for k ≤ n/2.

First, suppose n = 2m is even: then m = n/2 = bn/2c = dn/2e. For

k ≤ m the denominator of
(
n
m

)
is (m!)2 =

(
mm−k k!

)2
, while that of

(
n
k

)
is:

k!(2m− k)! = k! (2m− k)2m−2k k! = (k!)2 (2m− k)m−k mm−k .

Our thesis is then equivalent to(
mm−k)2 ≤ (2m− k)m−k mm−k :

which is clearly true as 2m− k ≥ m.
Next, suppose n = 2m + 1 is even: then m = (n − 1)/2 = bn/2c and

m+ 1 = (n+ 1)/2 = dn/2e, while
(
n
m

)
=
(

n
m+1

)
. For k ≤ m the denominator

of
(
n
m

)
is m! (m + 1)! =

(
mm−k k!

)2
(m + 1), while that of

(
n
k

)
is:

k!(2m + 1− k)! = k! (2m + 1− k)2m+1−2k k!

= (k!)2 (2m + 1− k)m−k (m + 1)mm−k .
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Our thesis is then equivalent to(
mm−k)2 (m + 1) ≤ (2m + 1− k)m−k (m + 1)mm−k :

which is true because 2m + 1− k ≥ m.
Other methods involve putting f(k) =

(
n
k

)
for 0 ≤ k ≤ n, and verify

either that ∆f is nonnegative for k ≤ bnc and negative for k > dne, or that
f(k + 1)/f(k) is greater or equal to 1 for k ≤ bnc and smaller than 1 for
k ≤ bnc.

Exercise 5.5

Let p be a prime. Prove that
(
p
k

)
≡ 0 mod p for 0 < k < p. Find a

consequence about
(
p−1
k

)
.

Solution. Recall that a ≡ b mod m means that a− b is a multiple of m. By
definition, (

p

k

)
=

p(p− 1) · · · (p− k + 1)

k!

If p is prime and k is neither 0 nor p, there is no way to make the p at
numerator disappear by dividing by k!.

Now,
(
p
k

)
=
(
p−1
k

)
+
(
p−1
k−1

)
: since the left-hand side is 0 modulo p, going

from
(
p−1
k−1

)
to
(
p−1
k

)
only involves a change of sign modulo p. Since

(
p−1
0

)
= 1,

we get: (
p− 1

k

)
≡ (−1)k mod p .

Exercise 5.15

Equation (5.29) in the book states that, for every a, b, c nonnegative integers,∑
k

(
a + b

a + k

)(
b + c

b + k

)(
c + a

c + k

)
(−1)k =

(a + b + c)!

a!b!c!
.

Use (5.29) to compute
∑

k

(
n
k

)3
(−1)k.

Solution. Set
∑

k

(
n
k

)3
(−1)k = S(n). We preliminarly observe that S(n) = 0
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if n = 2m + 1 is odd, because in this case, as the sum is on every k integer,∑
k

(
2m + 1

k

)3

(−1)k =
∑
k

(
2m + 1

2m + 1− k

)3

(−1)2m+1−k

= −
∑
k

(
2m + 1

k

)3

(−1)k ,

as k and 2m + 1 − k have opposite parity. So let n = 2m be even: in this
case,

S(n) =
∑
k

(
2m

k

)(
2m

k

)(
2m

k

)
(−1)k

looks dangerously similar to (5.29) with a = b = c = m, except that the
lower summation index is k instead of m + k. Is this a real problem? No,
because the sum is on every integer, and does not change by translation of
the index, so we can safely do:∑
k

(
2m

k

)(
2m

k

)(
2m

k

)
(−1)k =

∑
k

(
2m

m + k

)(
2m

m + k

)(
2m

m + k

)
(−1)m+k

= (−1)m
∑
k

(
2m

m + k

)(
2m

m + k

)(
2m

m + k

)
(−1)k

= (−1)m · (3m)!

(m!)3
.

In conclusion,∑
k

(
n

k

)3

(−1)k = (−1)bn/2c
(3 bn/2c)!
(bn/2c!)3

[n is even] .

Exercise 5.37

Show that an analog of the binomial theorem holds for factorial powers. That
is, prove the identities

(x + y)n =
∑
k

(
n

k

)
xkyn−k ,

(x + y)n =
∑
k

(
n

k

)
xkyn−k ,
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for all nonnegative integers n.
Solution. Let’s prove the statement for falling powers. The case with rising
powers would then follow easily, because it is true in general that xn =
(−1)n−xn, so that if the relation for falling powers is true, then

(x + y)n = (−1)n(−x− y)n

= (−1)n
∑
k

(
n

k

)
(−x)k(−y)n−k

=
∑
k

(
n

k

)
(−1)kxk(−1)n−kyn−k ,

and the corresponding relation for rising powers is also true.
The thesis can be proved by induction on n, as it is true for n = 0, and

if it is true for n, then

(x + y)n+1 = (x + y)n(x + y − n)

=

(∑
k

(
n

k

)
xkyn−k

)
(x− k + y − (n− k))

=
∑
k

(
n

k

)
xk(x− k)yn−k +

∑
k

(
n

k

)
xkyn−k(y − (n− k))

=
∑
k

(
n

k

)
xk+1yn−k +

∑
k

(
n

k

)
xkyn+1−k

=
∑
k

(
n

k − 1

)
xkyn+1−k +

∑
k

(
n

k

)
xkyn+1−k

=
∑
k

(
n + 1

k

)
xkyn+1−k ,

as it was claimed. Observe that we have used the trick of summing for every
k integer.

But there is another, more interesting way to get to that result! By
writing

(
n
k

)
= n!

k!(n−k)! , the first equation becomes

(x + y)n = n!
∑
k

xk

k!

yn−k

(n− k)!
= n!

∑
k

(
x

k

)(
y

n− k

)
,

4



which is equivalent to (
x + y

n

)
=
∑
k

(
x

k

)(
y

n− k

)
:

that is, the binomial theorem for falling powers is simply a rewriting of the
Vandermonde convolution (5.22)!

Exercise 5.35

The writing
∑

k≤n
(
n
k

)
2k−n is ambiguous without context. Evaluate it

1. as a sum on k,

2. as a sum on n.

Solution. First, let us interpret the formula as a sum on k. Such sum vanishes
if n < 0, otherwise

∑
k≤n

(
n

k

)
2k−n = 2−n

n∑
k=0

(
n

k

)
2k1n−k = 2−n · (2 + 1)n =

(
3

2

)n

.

In conclusion,
∑

k≤n 2k−n = (3/2)n [n ≥ 0] as a sum on k.
Next, let us interpret the formula as a sum over n. If k < 0 the sum

clearly vanishes; otherwise,

∑
k≤n

(
n

k

)
2k−n =

∞∑
n=k

(
n

k

)(
1

2

)n−k

=
∞∑
n=0

(
k + n

k

)(
1

2

)n

=
1

(1− 1/2)k+1

= 2k+1

In conclusion,
∑

k≤n
(
n
k

)
2k−n = 2k+1 [k ≥ 0] as a sum on n.
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