ITT9131 Concrete Mathematics Exercises from November 15

Revision: November 16, 2016

Exercise 5.2

Find the values of k for which $\binom{n}{k}$ is a maximum. Prove the answer. Solution. Write $\binom{n}{k} = \frac{n!}{k!(n-k)!}$: as k varies between 0 and n, the numerator is constant, which means that $\binom{n}{k}$ is maximum when the denominator is minimum. The symmetry rule $\binom{n}{k} = \binom{n}{n-k}$ and the equality $\binom{n}{0} = \binom{n}{n} = 1$ prompts us to conjecture that $\binom{n}{k}$ is maximum for $k = \lfloor n/2 \rfloor$ and $k = \lceil n/2 \rceil$. We can verify our conjecture for $n \geq 2$ as it is clearly true for n = 0 and n = 1. By symmetry, we only need to prove it for $k \leq n/2$.

First, suppose n=2m is even: then $m=n/2=\lfloor n/2\rfloor=\lceil n/2\rceil$. For $k\leq m$ the denominator of $\binom{n}{m}$ is $(m!)^2=\left(m^{m-k}\,k!\right)^2$, while that of $\binom{n}{k}$ is:

$$k!(2m-k)! = k!(2m-k)^{2m-2k}k! = (k!)^2(2m-k)^{m-k}m^{m-k}$$
.

Our thesis is then equivalent to

$$(m^{m-k})^2 \le (2m-k)^{m-k} m^{m-k}$$
:

which is clearly true as $2m - k \ge m$.

Next, suppose n=2m+1 is even: then $m=(n-1)/2=\lfloor n/2\rfloor$ and $m+1=(n+1)/2=\lceil n/2\rceil$, while $\binom{n}{m}=\binom{n}{m+1}$. For $k\leq m$ the denominator of $\binom{n}{m}$ is m! $(m+1)!=\left(m^{m-k}\,k!\right)^2$ (m+1), while that of $\binom{n}{k}$ is:

$$\begin{array}{rcl} k!(2m+1-k)! & = & k! \, (2m+1-k)^{\underline{2m+1-2k}} \, k! \\ & = & (k!)^2 \, (2m+1-k)^{\underline{m-k}} \, (m+1) \, m^{\underline{m-k}} \, . \end{array}$$

Our thesis is then equivalent to

$$(m^{m-k})^2 (m+1) \le (2m+1-k)^{m-k} (m+1) m^{m-k}$$
:

which is true because $2m + 1 - k \ge m$.

Other methods involve putting $f(k) = \binom{n}{k}$ for $0 \le k \le n$, and verify either that Δf is nonnegative for $k \le \lfloor n \rfloor$ and negative for $k > \lceil n \rceil$, or that f(k+1)/f(k) is greater or equal to 1 for $k \le \lfloor n \rfloor$ and smaller than 1 for $k \le \lfloor n \rfloor$.

Exercise 5.5

Let p be a prime. Prove that $\binom{p}{k} \equiv 0 \mod p$ for 0 < k < p. Find a consequence about $\binom{p-1}{k}$.

Solution. Recall that $a \equiv b \mod m$ means that a - b is a multiple of m. By definition,

$$\binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{k!}$$

If p is prime and k is neither 0 nor p, there is no way to make the p at numerator disappear by dividing by k!.

Now, $\binom{p}{k} = \binom{p-1}{k} + \binom{p-1}{k-1}$: since the left-hand side is 0 modulo p, going from $\binom{p-1}{k-1}$ to $\binom{p-1}{k}$ only involves a change of sign modulo p. Since $\binom{p-1}{0} = 1$, we get:

$$\binom{p-1}{k} \equiv (-1)^k \mod p.$$

Exercise 5.15

Equation (5.29) in the book states that, for every a, b, c nonnegative integers,

$$\sum_{b} {a+b \choose a+k} {b+c \choose b+k} {c+a \choose c+k} (-1)^k = \frac{(a+b+c)!}{a!b!c!}.$$

Use (5.29) to compute $\sum_{k} {n \choose k}^3 (-1)^k$.

Solution. Set $\sum_{k} {n \choose k}^3 (-1)^k = S(n)$. We preliminarly observe that S(n) = 0

if n = 2m + 1 is odd, because in this case, as the sum is on every k integer,

$$\sum_{k} {2m+1 \choose k}^{3} (-1)^{k} = \sum_{k} {2m+1 \choose 2m+1-k}^{3} (-1)^{2m+1-k}$$
$$= -\sum_{k} {2m+1 \choose k}^{3} (-1)^{k},$$

as k and 2m + 1 - k have opposite parity. So let n = 2m be even: in this case,

$$S(n) = \sum_{k} {2m \choose k} {2m \choose k} {2m \choose k} (-1)^k$$

looks dangerously similar to (5.29) with a = b = c = m, except that the lower summation index is k instead of m + k. Is this a real problem? No, because the sum is on *every* integer, and does not change by translation of the index, so we can safely do:

$$\sum_{k} {2m \choose k} {2m \choose k} {2m \choose k} (-1)^{k} = \sum_{k} {2m \choose m+k} {2m \choose m+k} {2m \choose m+k} (-1)^{m+k}
= (-1)^{m} \sum_{k} {2m \choose m+k} {2m \choose m+k} {2m \choose m+k} (-1)^{k}
= (-1)^{m} \cdot \frac{(3m)!}{(m!)^{3}}.$$

In conclusion,

$$\sum_{k} {n \choose k}^3 (-1)^k = (-1)^{\lfloor n/2 \rfloor} \frac{(3 \lfloor n/2 \rfloor)!}{(\lfloor n/2 \rfloor!)^3} [n \text{ is even}].$$

Exercise 5.37

Show that an analog of the binomial theorem holds for factorial powers. That is, prove the identities

$$(x+y)^{\underline{n}} = \sum_{k} \binom{n}{k} x^{\underline{k}} y^{\underline{n-k}},$$
$$(x+y)^{\overline{n}} = \sum_{k} \binom{n}{k} x^{\overline{k}} y^{\overline{n-k}},$$

for all nonnegative integers n.

Solution. Let's prove the statement for falling powers. The case with rising powers would then follow easily, because it is true in general that $x^{\overline{n}} = (-1)^n - x^{\underline{n}}$, so that if the relation for falling powers is true, then

$$(x+y)^{\overline{n}} = (-1)^n (-x-y)^{\underline{n}}$$

$$= (-1)^n \sum_k \binom{n}{k} (-x)^{\underline{k}} (-y)^{\underline{n-k}}$$

$$= \sum_k \binom{n}{k} (-1)^k x^{\overline{k}} (-1)^{n-k} y^{\overline{n-k}},$$

and the corresponding relation for rising powers is also true.

The thesis can be proved by induction on n, as it is true for n = 0, and if it is true for n, then

$$(x+y)^{\frac{n+1}{2}} = (x+y)^{\frac{n}{2}}(x+y-n)$$

$$= \left(\sum_{k} \binom{n}{k} x^{\frac{k}{2}} y^{\frac{n-k}{2}}\right) (x-k+y-(n-k))$$

$$= \sum_{k} \binom{n}{k} x^{\frac{k}{2}} (x-k) y^{\frac{n-k}{2}} + \sum_{k} \binom{n}{k} x^{\frac{k}{2}} y^{\frac{n-k}{2}} (y-(n-k))$$

$$= \sum_{k} \binom{n}{k} x^{\frac{k+1}{2}} y^{\frac{n-k}{2}} + \sum_{k} \binom{n}{k} x^{\frac{k}{2}} y^{\frac{n+1-k}{2}}$$

$$= \sum_{k} \binom{n}{k-1} x^{\frac{k}{2}} y^{\frac{n+1-k}{2}} + \sum_{k} \binom{n}{k} x^{\frac{k}{2}} y^{\frac{n+1-k}{2}}$$

$$= \sum_{k} \binom{n+1}{k} x^{\frac{k}{2}} y^{\frac{n+1-k}{2}},$$

as it was claimed. Observe that we have used the trick of summing for every k integer.

But there is another, more interesting way to get to that result! By writing $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, the first equation becomes

$$(x+y)^{\underline{n}} = n! \sum_{k} \frac{x^{\underline{k}}}{k!} \frac{y^{\underline{n-k}}}{(n-k)!} = n! \sum_{k} {x \choose k} {y \choose n-k},$$

which is equivalent to

$$\binom{x+y}{n} = \sum_{k} \binom{x}{k} \binom{y}{n-k} :$$

that is, the binomial theorem for falling powers is simply a rewriting of the Vandermonde convolution (5.22)!

Exercise 5.35

The writing $\sum_{k\leq n} \binom{n}{k} 2^{k-n}$ is ambiguous without context. Evaluate it

- 1. as a sum on k,
- 2. as a sum on n.

Solution. First, let us interpret the formula as a sum on k. Such sum vanishes if n < 0, otherwise

$$\sum_{k \le n} \binom{n}{k} 2^{k-n} = 2^{-n} \sum_{k=0}^{n} \binom{n}{k} 2^k 1^{n-k} = 2^{-n} \cdot (2+1)^n = \left(\frac{3}{2}\right)^n.$$

In conclusion, $\sum_{k\leq n} 2^{k-n} = (3/2)^n \, [n\geq 0]$ as a sum on k. Next, let us interpret the formula as a sum over n. If k<0 the sum clearly vanishes; otherwise,

$$\sum_{k \le n} \binom{n}{k} 2^{k-n} = \sum_{n=k}^{\infty} \binom{n}{k} \left(\frac{1}{2}\right)^{n-k}$$

$$= \sum_{n=0}^{\infty} \binom{k+n}{k} \left(\frac{1}{2}\right)^n$$

$$= \frac{1}{(1-1/2)^{k+1}}$$

$$= 2^{k+1}$$

In conclusion, $\sum_{k \le n} {n \choose k} 2^{k-n} = 2^{k+1} [k \ge 0]$ as a sum on n.