ITT9131 Concrete Mathematics Exercises from 22 November

Revision: 22 November 2016

Exercise 6.2

There are m^n functions from a set of n elements to a set of m elements. How many of them range over exactly k different function values? Solution.

Suppose A has n elements, B has m, and $f : A \to B$ takes exactly k values b_1, \ldots, b_k . Then $P = \{f^{-1}(b_i) \mid 1 \leq i \leq k\}$ is a partition of A in k nonempty subsets; moreover, f is completely determined by P and the b_i 's.

We have $\left\{\begin{array}{c}n\\k\end{array}\right\}$ ways of choosing P. We have $m^{\underline{k}}$ ways of choosing the b_i 's. Therefore, we have

$$\left\{\begin{array}{c}n\\k\end{array}\right\}\cdot m^{\underline{k}}$$

ways of constructing f.

Exercise 6.11

Compute $\sum_{k} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix}$. Solution. We know from the textbook that

$$\sum_{k} \left[\begin{array}{c} n \\ k \end{array} \right] x^k = x^{\overline{n}}$$

For x = -1 we get

$$\sum_{k} (-1)^{k} \left[\begin{array}{c} n\\ k \end{array} \right] = (-1)^{\overline{n}}$$

This is 1 for n = 0, -1 for n = 1, and 0 otherwise. A one-liner is:

$$\sum_{k} (-1)^{k} \begin{bmatrix} n\\k \end{bmatrix} = [n=0] - [n=1]$$

Exercise 6.13

The differential operators $D = \frac{d}{dz}$ and $\vartheta = zD$ are mentioned in Chapters 2 and 5. We have

$$\vartheta^2 = z^2 D^2 + z D$$

because $\vartheta^2 f(z) = \vartheta z f'(z) = z(f'(z) + z f''(z)) = z^2 f''(z) + z f'(z)$, which is $(z^2 D^2 + z D) f(z)$. Similarly it can be shown that $\vartheta^3 = z^3 D^3 + 3z^2 D^2 + z D$. Prove the general formulas

$$\vartheta^n = \sum_k \left\{ \begin{array}{c} n\\ k \end{array} \right\} z^k D^k \tag{1}$$

and

$$z^{n}D^{n} = \sum_{k} \begin{bmatrix} n\\k \end{bmatrix} (-1)^{n-k} \vartheta^{k} \,. \tag{2}$$

Solution. For (1) we can proceed by induction. Suppose $\vartheta^n = \sum_k \begin{Bmatrix} n \\ k \end{Bmatrix} z^k D^k$ for a given value of $n \ge 0$: then for every function f which is differentiable

at least n+1 times,

$$\begin{split} \vartheta^{n+1} f(z) &= \vartheta(\vartheta^n f(z)) \\ &= z \frac{d}{dz} \sum_k \left\{ \begin{array}{c} n \\ k \end{array} \right\} z^k f^{(k)}(z) \\ &= z \sum_k \left\{ \begin{array}{c} n \\ k \end{array} \right\} (k z^{k-1} f^{(k)}(z) + z^k f^{(k+1)}(z)) \\ &= \sum_k \left\{ \begin{array}{c} n \\ k \end{array} \right\} (k z^k f^{(k)}(z) + z^{k+1} f^{(k+1)}(z)) \\ &= \sum_k \left\{ \begin{array}{c} n \\ k \end{array} \right\} k z^k f^{(k)}(z) + \sum_k \left\{ \begin{array}{c} n \\ k - 1 \end{array} \right\} z^k f^{(k)}(z) \\ &= \sum_k \left\{ \begin{array}{c} k \\ k \end{array} \right\} + \left\{ \begin{array}{c} n \\ k - 1 \end{array} \right\} z^k f^{(k)}(z) \\ &= \sum_k \left\{ \begin{array}{c} n + 1 \\ k \end{array} \right\} z^k f^{(k)}(z) : \end{split}$$

as f is arbitrary, the equality $\vartheta^{n+1} = \sum_k \left\{ \begin{array}{c} n+1\\ k \end{array} \right\} z^k D^k$ follows.

For (2) we use Stirling's inversion formula in a clever way. Let h be a function differentiable at least n times: for $n \in \mathbb{N}$ define $f(n; z) = (-1)^n z^n D^n h(z)$ and $g(n; z) = \vartheta^n h(z)$. Then (1) can be rewritten

$$g(n;z) = \sum_{k} \left\{ \begin{array}{c} n \\ k \end{array} \right\} (-1)^{k} f(k;z) \,,$$

with the usual convention that an undefined quantity multiplied by zero equals zero. By Stirling's inversion formula,

$$f(n;z) = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{k} g(k;z) ,$$

which in our case means

$$(-1)^n z^n D^n h(z) = \sum_k \begin{bmatrix} n \\ k \end{bmatrix} (-1)^k \vartheta^k h(z) :$$

by multiplying both sides by $(-1)^n$ and recalling that n + k and n - k are either both odd or both even,

$$z^{n}D^{n}h(z) = \sum_{k} \begin{bmatrix} n\\k \end{bmatrix} (-1)^{n-k}\vartheta^{k}h(z).$$

From the arbitrariness of h(z) we deduce (2).

Exercise 6.16

What is the general solution of the double recurrence

$$A_{n,0} = a_n [n \ge 0]; \qquad A_{0,k} = 0, \quad \text{if } k > 0; A_{n,k} = k A_{n-1,k} + A_{n-1,k-1}, \qquad k, n \in \mathbb{Z},$$
(3)

when k and n range over the set of *all* integers? *Solution.*

The double recurrence (3) is linear: if $A_{n,k} = U_{n,k}$ is the solution for $a_n = u_n$ and $A_{n,k} = W_{n,k}$ is the solution for $a_n = w_n$, then $A_{n,k} = \lambda U_{n,k} + \mu W_{n,k}$ is the solution for $a_n = \lambda u_n + \mu w_n$. We also know that $A_{n,k} = \begin{cases} n \\ k \end{cases}$ is the solution for $a_n = [n = 0]$.

Let us search for the solution of (3) in the more general case $a_n = [n = m]$, where m is an arbitrary integer. This seems difficult, but we observe that (3) is invariant by translations on n: as a consequence, if $A_{n,k}$ is the solution associated to the initial conditions a_n , then $A_{n-m,k}$ is the solution associated to the initial condition a_{n-m} . It follows that $A_{n,k} = \begin{cases} n-m \\ k \end{cases}$ is the solution for $a_n = [n = m]$.

By linearity, if $a_n \neq 0$ only for finitely many values of n, then

$$A_{n,k} = \sum_{m \ge 0} a_m \left\{ \begin{array}{c} n-m\\k \end{array} \right\} \tag{4}$$

is the solution to (3). Can we conclude that (4) is the solution to (3) also when infinitely many of the values a_n are nonzero? Yes, because $\begin{cases} n-m \\ k \end{cases}$ is zero if m > n or k > n-m, thus only the values a_m with $0 \le m \le n-k$ contribute to the sum.