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Exercise 6.2

There are mn functions from a set of n elements to a set of m elements. How
many of them range over exactly k different function values?
Solution.

Suppose A has n elements, B has m, and f : A → B takes exactly k
values b1, . . . , bk. Then P = {f−1(bi) | 1 ≤ i ≤ k} is a partition of A in k
nonempty subsets; moreover, f is completely determined by P and the bi’s.

We have

{
n
k

}
ways of choosing P . We have mk ways of choosing the

bi’s. Therefore, we have {
n
k

}
·mk

ways of constructing f .

Exercise 6.11

Compute
∑

k(−1)k
[
n
k

]
.

Solution. We know from the textbook that∑
k

[
n
k

]
xk = xn

For x = −1 we get ∑
k

(−1)k
[
n
k

]
= (−1)n
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This is 1 for n = 0, −1 for n = 1, and 0 otherwise. A one-liner is:∑
k

(−1)k
[
n
k

]
= [n = 0]− [n = 1]

Exercise 6.13

The differential operators D = d
dz

and ϑ = zD are mentioned in Chapters 2
and 5. We have

ϑ2 = z2D2 + zD ,

because ϑ2f(z) = ϑzf ′(z) = z(f ′(z) + zf ′′(z)) = z2f ′′(z) + zf ′(z), which is
(z2D2 + zD)f(z). Similarly it can be shown that ϑ3 = z3D3 + 3z2D2 + zD.
Prove the general formulas

ϑn =
∑
k

{
n
k

}
zkDk (1)

and

znDn =
∑
k

[
n
k

]
(−1)n−kϑk . (2)

Solution. For (1) we can proceed by induction. Suppose ϑn =
∑

k

{
n
k

}
zkDk

for a given value of n ≥ 0: then for every function f which is differentiable
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at least n+ 1 times,

ϑn+1f(z) = ϑ(ϑnf(z))

= z
d

dz

∑
k

{
n
k

}
zkf (k)(z)

= z
∑
k

{
n
k

}
(kzk−1f (k)(z) + zkf (k+1)(z))

=
∑
k

{
n
k

}
(kzkf (k)(z) + zk+1f (k+1)(z))

=
∑
k

{
n
k

}
kzkf (k)(z) +

∑
k

{
n

k − 1

}
zkf (k)(z)

=
∑
k

(
k

{
n
k

}
+

{
n

k − 1

})
zkf (k)(z)

=
∑
k

{
n+ 1
k

}
zkf (k)(z) :

as f is arbitrary, the equality ϑn+1 =
∑

k

{
n+ 1
k

}
zkDk follows.

For (2) we use Stirling’s inversion formula in a clever way. Let h be a func-
tion differentiable at least n times: for n ∈ N define f(n; z) = (−1)nznDnh(z)
and g(n; z) = ϑnh(z). Then (1) can be rewritten

g(n; z) =
∑
k

{
n
k

}
(−1)kf(k; z) ,

with the usual convention that an undefined quantity multiplied by zero
equals zero. By Stirling’s inversion formula,

f(n; z) =
∑
k

[
n
k

]
(−1)kg(k; z) ,

which in our case means

(−1)nznDnh(z) =
∑
k

[
n
k

]
(−1)kϑkh(z) :
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by multiplying both sides by (−1)n and recalling that n + k and n − k are
either both odd or both even,

znDnh(z) =
∑
k

[
n
k

]
(−1)n−kϑkh(z) .

From the arbitrariness of h(z) we deduce (2).

Exercise 6.16

What is the general solution of the double recurrence

An,0 = an[n ≥ 0] ; A0,k = 0 , if k > 0 ;
An,k = kAn−1,k + An−1,k−1 , k, n ∈ Z , (3)

when k and n range over the set of all integers?
Solution.

The double recurrence (3) is linear: if An,k = Un,k is the solution for an =
un and An,k = Wn,k is the solution for an = wn, then An,k = λUn,k + µWn,k

is the solution for an = λun + µwn. We also know that An,k =

{
n
k

}
is the

solution for an = [n = 0].
Let us search for the solution of (3) in the more general case an = [n = m],

where m is an arbitrary integer. This seems difficult, but we observe that
(3) is invariant by translations on n: as a consequence, if An,k is the solution
associated to the initial conditions an, then An−m,k is the solution associated

to the initial condition an−m. It follows that An,k =

{
n−m
k

}
is the

solution for an = [n = m].
By linearity, if an 6= 0 only for finitely many values of n, then

An,k =
∑
m≥0

am

{
n−m
k

}
(4)

is the solution to (3). Can we conclude that (4) is the solution to (3) also

when infinitely many of the values an are nonzero? Yes, because

{
n−m
k

}
is zero if m > n or k > n−m, thus only the values am with 0 ≤ m ≤ n− k
contribute to the sum.
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