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Exercise 6.4

Express 1 + 1/3 + . . .+ 1/(2n+ 1) in terms of harmonic numbers.
Solution. If the summands 1/2, 1/4, . . . , 1/2n were present, that would be
H2n+1. But they are not there, thus their amount—which is Hn/2—has been
subtracted. In conclusion, 1 + 1/3 + . . .+ 1/(2n+ 1) = H2n+1 − 1

2
Hn.

Exercise 6.26

Use summation by parts to evaluate Sn =
∑n

k=1Hk/k. Hint: Consider also
the related sum

∑n
k=1Hk−1/k.

Solution. As Hk = Hk−1 + 1/k and H0 = 0, we have Sn =
∑n

k=1Hk−1/k +∑n
k=1 1/k2 = Tn +H

(2)
n . We can thus compute Sn by computing Tn.

To use summation by parts, we must write Tn =
∑n+1

1 u(x)∆v(x)δx,
where u and v are suitable functions. But if we just put u(k) = Hk−1 and
∆v(k) = 1/k, then ∆u(k) = 1/k as well, and we can set v(k) = Hk−1 too,
so that Ev(k) = Hk and we may hope to recover Sn on the right-hand side
with its sign changed! And indeed,

n+1∑
1

u(x)∆v(x)δx = u(x)v(x)|x=n+1
x=1 −

n+1∑
1

Ev(x)∆u(x)δx

= (Hx−1)
2
∣∣x=n+1

x=1
−

n∑
k=1

Hk/k

= H2
n − Sn :

then Sn = Tn +H
(2)
n = H2

n − Sn +H
(2)
n , which yields Sn = (H2

n +H
(2)
n )/2.
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Exercise 6.27

Prove the gcd law (6.111) for the Fibonacci numbers.
Solution. We are required to prove that, for positive m and n,

gcd(fm, fn) = fgcd(m,n) . (1)

We first prove (1) for m = n + 1. As fn+1 = fn + fn−1, a common divisor
d of fn+1 and fn should also divide fn−1: then it would also divide fn−2 =
fn − fn−1, and fn−3 as well, and so on up to f1 = 1. Thus, gcd(fn+1, fn) =
1 = f1 = fgcd(n+1,n).

To prove the general case, we have two different approaches, both exploit-
ing the case m = n+1 and the generalized Cassini’s identity. We will explore
them both, as they both have merits. To fix ideas, we set m > n ≥ 1.

1. We prove an additional lemma: for every n, k ∈ Z, fkn is a multiple
of fn. As fm and f−m differ at most for their sign, it will be sufficient
to prove the thesis when k and n are positive integers: we proceed by
induction on k, for fixed n. The thesis is surely true for k = 1; if it is
true for k, then by the generalized Cassini’s identity,

f(k+1)n = fkn+n = fnfkn+1 + fn−1fkn

is a multiple of fn by inductive hypothesis. As a corollary, for d =
gcd(m,n) we have that both fm and fn are multiples of fd. To complete
our proof, we must show that, if q|fm and q|fn, then q|fd too: but if
we write d = sm+ tn as a linear combination with integer coefficients,
then

fd = fsm+tn = fsmftn+1 + fsm−1ftn

is also divisible by q because of the lemma.

2. By the generalized Cassini identity with m − n in the role of n and n
in the role of k,

gcd(fm, fn) = gcd (fnfm−n+1 + fn−1fm−n, fn)

= gcd (fn−1fm−n, fn)

= gcd(fm−n, fn) ,

because gcd(fn−1, fn) = 1 as we had proved before. But we can continue
subtracting n until the remainder becomes smaller than n: this happens
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after bm/nc iterations, yielding

gcd(fm, fn) = gcd(fn, fm−bm/ncn) = gcd(fn, fmmodn) .

But the equality above means precisely that we can run the Euclidean
algorithm on the indices of the Fibonacci numbers, instead of the Fi-
bonacci numbers themselves! The thesis clearly follows.

Exercise 6.28

For n integer, define the nth Lucas number as Ln = fn+1 + fn−1:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
Ln 2 1 3 4 7 11 18 29 47 76 123 199 322 521 . . .

1. Use the repertoire method to find the general solution to the recurrence:

Q0 = α

Q1 = β

Q2 = Qn−1 +Qn−2 , n > 1

2. Find a closed form for Ln in terms of φ and φ̂.

Solution. Point 1. The Fibonacci numbers satisfy the recurrence with α = 0,
β = 1. The Lucas numbers also satisfy the recurrence:

Ln−1 + Ln−2 = fn + fn−2 + fn−1 + fn−3 = fn+1 + fn−1 = Ln

We thus only need to reconstruct the initial condition through the system

xf0 + yL0 = α

xf1 + yL1 = β

that is,

2y = α

x+ y = β
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which yields y = α/2, x = β − α/2. Therefore,

Qn = xfn + yLn =
α

2
(Ln − fn) + βfn

Point 2. We know that fn = (φn − φ̂n)/
√

5. Then

Ln =
φn+1 − φ̂n+1

√
5

+
φn−1 − φ̂n−1
√

5

=
φn−1(φ2 + 1)− φ̂n−1(φ̂2 + 1)√

5

But

φ2 + 1 =
6 + 2

√
5

4
+ 1 =

5 +
√

5

2
= φ
√

5

and similarly,

φ̂2 + 1 =
6− 2

√
5

4
+ 1 =

5−
√

5

2
= −φ̂

√
5

Consequently,

Ln =
φn−1(φ

√
5)− φ̂n−1(−φ̂

√
5)√

5
= φn + φ̂n .
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