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Silvio Capobianco

Exercise 6.4

Express 1 +1/3+...+1/(2n+ 1) in terms of harmonic numbers.

Solution. If the summands 1/2,1/4,...,1/2n were present, that would be
Hj, 1. But they are not there, thus their amount—which is H,,/2—has been
subtracted. In conclusion, 1+1/3+...+1/(2n+ 1) = Hypy1 — s H,.

Exercise 6.26

Use summation by parts to evaluate S, = > ,_, Hx/k. Hint: Consider also
the related sum ,_, Hy_1/k.
Solution. As H;, = Hk 1+ 1/k and Hy = 0, we have S, = >} | Hy_1/k +

S 1k =T, + HP. We can thus compute S, by computlng T,.

To use summation by parts, we must write T, ;LH (x)Av(z)ox,

where u and v are suitable functions. But if we just put u(k) = Hi—y and
Av(k) = 1/k, then Au(k) = 1/k as well, and we can set v(k) = Hy_1 too,
so that Ev(k) = Hy and we may hope to recover S,, on the right-hand side
with its sign changed! And indeed,
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then S, = T, + H\Y = H2 — 8, + HY?, which yields S, = (H2 + H\?)/2.



Exercise 6.27

Prove the ged law (6.111) for the Fibonacci numbers.
Solution. We are required to prove that, for positive m and n,

ng(fma fn) = fgcd(m,n) . (1)

We first prove (1) for m = n+ 1. As f,o1 = fu + fu_1, a common divisor
d of f,y1 and f, should also divide f,_1: then it would also divide f,, o =
fn — fn-1, and f,_3 as well, and so on up to f; = 1. Thus, ged(fri1, fu) =
1= fl = fgcd(n+1,n)-

To prove the general case, we have two different approaches, both exploit-
ing the case m = n+1 and the generalized Cassini’s identity. We will explore
them both, as they both have merits. To fix ideas, we set m >n > 1.

1. We prove an additional lemma: for every n,k € Z, fy, is a multiple
of f,. As f,, and f_,, differ at most for their sign, it will be sufficient
to prove the thesis when k and n are positive integers: we proceed by
induction on k, for fixed n. The thesis is surely true for k = 1; if it is
true for k, then by the generalized Cassini’s identity,

f(k+1)n = fknJrn = fnfknJrl + fnflfkn

is a multiple of f,, by inductive hypothesis. As a corollary, for d =
ged(m, n) we have that both f,,, and f,, are multiples of f;. To complete
our proof, we must show that, if ¢|f,, and q|f,, then ¢|f; too: but if
we write d = sm 4+ tn as a linear combination with integer coefficients,
then

fd = fstrtn = fsmfthrl + fsmflftn

is also divisible by ¢ because of the lemma.

2. By the generalized Cassini identity with m — n in the role of n and n
in the role of k,

ng(me fn) = ng (fnfmfnJrl + fnflfmfn; fn)
= ng (fn—lfm—na fn)
= ng(fm—na fn) )

because ged(f,,—1, fn) = 1 as we had proved before. But we can continue
subtracting n until the remainder becomes smaller than n: this happens
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after |m/n| iterations, yielding

ng(frm fn) = ng(fna fmem/an) = ng(fna fmmodn) .

But the equality above means precisely that we can run the Euclidean
algorithm on the indices of the Fibonacci numbers, instead of the Fi-
bonacci numbers themselves! The thesis clearly follows.

Exercise 6.28

For n integer, define the nth Lucas number as L, = f,4+1 + fa_1:

n|0|1]2]3[4]5|6|7[8]9]10|11|12]|13]...
Ly [2[1]3]4]7[11]18]29|47[76]123]199 |322 521 ...

1. Use the repertoire method to find the general solution to the recurrence:

Qo = «
Q=7
QQ = Qn—l + Qn—Q ,n>1

2. Find a closed form for L,, in terms of ¢ and gg

Solution. Point 1. The Fibonacci numbers satisfy the recurrence with o = 0,
£ = 1. The Lucas numbers also satisfy the recurrence:

Ln—l + Ln—2 = fn + fn—2 + fn—l + fn—3 = fn+1 + fn—l = Ln
We thus only need to reconstruct the initial condition through the system

$f0+yL0 = «
rf+yl, = B

that is,



which yields y = /2, © = § — /2. Therefore,
a
Point 2. We know that f, = (¢" — ¢")/+/5. Then

n+l _ In+1 n—1 _ In—1
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But
o +1= 6+42‘/g+1= 5+2\/5:¢\/5
and similarly,
Fa1=020 B G
Consequently,
n—1 _ In—1(_ 1 .
= 9HOVE) = oVE)
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