Concrete Mathematics
 Exercises from Chapter 7

Silvio Capobianco

Warmups

Exercise 7.7

Solve the recurrence:

$$
\begin{aligned}
g_{0} & =1 \\
g_{n} & =g_{n-1}+2 g_{n-2}+\ldots+n g_{0}
\end{aligned}
$$

Solution. Let $G(z)$ be the generating function of the sequence $\left\langle g_{0}, g_{1}, g_{2}, \ldots\right\rangle$. The recurrence above tells us that $G(z)$ is the convolution of itself with the generating function of the sequence $\langle 0,1,2, \ldots\rangle$, which is $z /(1-z)^{2}$: except for the first term, which is 1 instead of $0=0 \cdot g_{0}$. Hence,

$$
G(z)=1+\frac{z G(z)}{(1-z)^{2}}
$$

which rewrites as

$$
(1-z)^{2} G(z)=(1-z)^{2}+z G(z)
$$

which yields

$$
\left(1-3 z+z^{2}\right) G(z)=(1-z)^{2}
$$

that is,

$$
G(z)=\frac{1-2 z+z^{2}}{1-3 z+z^{2}}=1+\frac{z}{1-3 z+z^{2}}
$$

The first summand on the right-hand side is clearly the generating function of the sequence $a_{n}=[n=0]$; the second one, is the generating function of $b_{n}=f_{2 n}$, where f_{n} is the nth Fibonacci number. Therefore, $g_{n}=f_{2 n}+[n=$ $0]$.

An exercise by Albert R. Meyer and Ronitt Rubinfeld

Let a_{n} be the number of string on a ternary alphabet that contain a double character, i.e., a sequence $x x$ with x a letter.

1. Find a recurrence for a_{n}.
2. Let $G(z)$ be the generating function of the sequence $\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$. Prove that

$$
\begin{equation*}
G(z)=\frac{-z}{1-2 z}+\frac{z}{(1-2 z)(1-3 z)} \tag{1}
\end{equation*}
$$

3. Find r and s such that

$$
\begin{equation*}
\frac{1}{(1-2 z)(1-3 z)}=\frac{r}{1-2 z}+\frac{s}{1-3 z} \tag{2}
\end{equation*}
$$

4. Find a closed form for a_{n}.

Solution.

Point 1. Call "good" a sequence with a double letter, "bad" a sequence without. Then a_{n} is the number of good sequences of n letters.

There are no good sequences of length 0 or 1 , so $a_{0}=a_{1}=0$. For $n \geq 2$, a good sequence of length n can be obtained from a sequence of length $n-1$ in two ways: Either we add any letter at the end of a good sequence, or we duplicate the last letter of a bad sequence. No string allows applying both methods, so the number of good strings of length n is three times the number of good strings of length $n-1$, plus the number of bad strings of length $n-1$. Thus,

$$
\begin{equation*}
a_{n}=3 a_{n-1}+\left(3^{n-1}-a_{n-1}\right)=2 a_{n-1}+3^{n-1} \tag{3}
\end{equation*}
$$

for every $n \geq 2$.
Point 2. We want to rewrite (3) in terms of generating functions. Since the recurrence only holds for $n \geq 2$, we must consider formal power series whose constant and linear term are zero. Recall that $1 /(1-\alpha z)$ is the generating function of the sequence of the powers of α.

Let $G(z)$ be the generating function of $\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$. Then $z G(z)$ is the generating function of $\left\langle 0, a_{0}, a_{1}, a_{2}, \ldots\right\rangle$, while that of $\langle 0,1,3,9,27, \ldots\rangle$ is $z /(1-3 z)$. Therefore, in terms of generating functions, (3) is rewritten as

$$
G(z)-a_{0}-a_{1} z=2 z\left(G(z)-a_{0}\right)+z\left(\frac{1}{1-3 z}-1\right):
$$

which, since $a_{0}=a_{1}=0$, gives

$$
(1-2 z) G(z)=\frac{z}{1-3 z}-z
$$

which yields (1).
Point 3. Equation (2) is satisfied if and only if $r \cdot(1-3 z)+s \cdot(1-2 z)=1$ whatever z is. For $z=1 / 2$ we find $r \cdot(1-3 / 2)=1$, so $r=-2$. For $z=1 / 3$ we find $s \cdot(1-2 / 3)=1$, so $s=3$. In conclusion,

$$
\frac{1}{(1-2 z)(1-3 z)}=\frac{3}{1-3 z}-\frac{2}{1-2 z} .
$$

Point 4. We can rewrite (1) as follows:

$$
\begin{aligned}
G(z) & =\frac{-z(1-3 z)+z}{(1-2 z)(1-3 z)} \\
& =\frac{-z+3 z^{2}+z}{(1-2 z)(1-3 z)} \\
& =3 z^{2} \cdot\left(\frac{3}{1-3 z}-\frac{2}{1-2 z}\right)
\end{aligned}
$$

For $n \geq 2$ it must then be:

$$
\begin{aligned}
a_{n} & =\left[z^{n}\right] G(z) \\
& =3 \cdot\left(\left[z^{n-2}\right]\left(\frac{3}{1-3 z}\right)-\left[z^{n-2}\right]\left(\frac{2}{1-2 z}\right)\right) \\
& =9 \cdot 3^{n-2}-6 \cdot 2^{n-2} \\
& =3 \cdot\left(3^{n-1}-2^{n-1}\right)
\end{aligned}
$$

Exercise 7.11

Let $a_{n}=b_{n}=c_{n}=0$ for $n<0$, and

$$
A(z)=\sum_{n} a_{n} z^{n} ; B(z)=\sum_{n} b_{n} z^{n} ; C(z)=\sum_{n} c_{n} z^{n}
$$

1. Express C in terms of A and B when $c_{n}=\sum_{j+2 k \leq n} a_{j} b_{k}$.
2. Express A in terms of B when $n b_{n}=\sum_{k=0}^{n} 2^{k} a_{k} /(n-k)$!
3. Express A in terms of B when $a_{n}=\sum_{k=0}^{n}\binom{r+k}{k} b_{n-k}$. Then, construct $\left\{f_{n}(r)\right\}_{n \geq 0}$ such that $b_{n}=\sum_{k=0}^{n} f_{k}(r) a_{n-k}$.

Solution.
Point 1. We know that, if $a_{n}=\left[z^{n}\right] G(z)$, then $\sum_{k \leq n} a_{k}=\left[z^{n}\right] \frac{G(z)}{1-z}$. Then we can solve point 1 as soon as we find $G(z)$ such that $\left[z^{n}\right] G(z)=\sum_{j+2 k=n}^{1-z} a_{j} b_{k}$. But the latter is the coefficient of index n of the convolution of A with a power series whose odd-indexed coefficients are 0 , and whose coefficient of index $2 k$ is b_{k} : such function is precisely $B\left(z^{2}\right)$. Therefore,

$$
C(z)=\frac{A(z) B\left(z^{2}\right)}{1-z}
$$

We will leave the next points for the next lecture.

