ITT9131 Concrete Mathematics
 Exercises from 13 December

Silvio Capobianco

Exercise RET1

Find an explicit formula for the n-th Lucas number, defined by the recurrence $L_{n}=L_{n-1}+L_{n-2}$ for every $n \geq 2$ with the initial conditions $L_{0}=2, L_{1}=1$. Solution. Let $L(z)=\sum_{n \geq 0} L_{n} z^{n}$ be the generating function of the Lucas numbers, with the convention that $L_{n}=0$ if $n<0$. The recurrence $L_{n}=$ $L_{n-1}+L_{n-2}$ holds for every $n<0$ and $n \geq 2$; for $n=0$, we must have $2=L_{0}=L_{-1}+L_{-2}+2$; for $n=1$ we must have $1=L_{1}=L_{0}+L_{-1}-1$. Then,

$$
\sum_{n} L_{n} z^{n}=\sum_{n} L_{n-1} z^{n}+\sum_{n} L_{n-2} z^{n}+2 \sum_{n}[n=0] z^{n}-\sum_{n}[n=1] z^{n},
$$

that is,

$$
L(z)=z L(z)+z^{2} L(z)+2-z:
$$

which yields

$$
L(z)=\frac{2-z}{1-z-z^{2}} .
$$

We know that $1-z-z^{2}=(1-\phi z)(1-\hat{\phi} z)$. In the notation of the Rational Expansion Theorem, we have $\rho_{1}=\phi, \rho_{2}=\hat{\phi}, d_{1}=d_{2}=1$. The derivative of $Q(z)=1-z-z^{2}$ is $Q^{\prime}(z)=-1-2 z$. We can then use the formula for
distinct roots and get

$$
\begin{aligned}
a_{1} & =\frac{-\phi(2-1 / \phi)}{-1-2 / \phi} \\
& =\frac{2 \phi-1}{1+2 / \phi} \\
& =\frac{\sqrt{5}}{1+\frac{4}{1+\sqrt{5}}} \\
& =\frac{\sqrt{5}(1+\sqrt{5})}{1+\sqrt{5}+4} \\
& =\frac{\sqrt{5}+5}{5+\sqrt{5}} \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2} & =\frac{-\hat{\phi}(2-1 / \hat{\phi})}{-1-2 / \hat{\phi}} \\
& =\frac{2 \hat{\phi}-1}{1+2 / \hat{\phi}} \\
& =\frac{-\sqrt{5}}{1+\frac{4}{1-\sqrt{5}}} \\
& =\frac{-\sqrt{5}(1-\sqrt{5})}{1-\sqrt{5}+4} \\
& =\frac{-\sqrt{5}+5}{5-\sqrt{5}} \\
& =1
\end{aligned}
$$

Therefore, $L_{n}=\phi^{n}+\hat{\phi}^{n}$.

Exercise RET2

Solve the recurrence

$$
\begin{equation*}
g_{n}=6 g_{n-1}-9 g_{n-2} \forall n \geq 2 \tag{1}
\end{equation*}
$$

with the initial conditions $g_{0}=1, g_{1}=9$.
Solution. Let $G(z)$ be the generating function of the sequence $\left\langle g_{n}\right\rangle$, with the convention that $g_{n}=0$ if $n<0$. The recurrence $g_{n} z^{n}=6 g_{n-1} z^{n}-9 g_{n-2} z^{n}$ holds for every $n<0$ and $n \geq 2$; for $n=0$ we must have $1=g_{0}=$ $6 g_{-1}-9 g_{n-2}+1$; for $n=1$ we must have $9=g_{1}=6 g_{0}-9 g_{-1}+3$. Then,

$$
\sum_{n} g_{n} z^{n}=6 \sum_{n} g_{n-1} z^{n}-9 \sum_{n} g_{n-2} z^{n}+\sum_{n}[n=0] z^{n}+3 \sum_{n}[n=1] z^{n}
$$

that is,

$$
G(z)=6 z G(z)-9 z^{2} G(z)+1+3 z:
$$

which yields

$$
G(z)=\frac{1+3 z}{1-6 z+9 z^{2}}=\frac{1+3 z}{(1-3 z)^{2}} .
$$

In the notation of the Rational Expansion Theorem, we have $P(z)=1+3 z$, $Q(z)=(1-3 z)^{2}, \rho_{1}=3, d_{1}=2$. Therefore, $Q^{\prime}(z)=-6+18 z, Q^{\prime \prime}(z)=18$, and $g_{n}=\left(a_{1} n+c_{1}\right) \cdot 3^{n}$, where

$$
a_{1}=\frac{(-3)^{2} \cdot(1+3 / 3) \cdot 2}{18}=2
$$

For $n=0$ we find $1=g_{0}=\left(0+c_{1}\right) \cdot 1$, yielding $c_{1}=1$. Therefore,

$$
g_{n}=(2 n+1) \cdot 3^{n} .
$$

Exercise RET3

Solve the recurrence

$$
\begin{equation*}
g_{n}=3 g_{n-1}-4 g_{n-3} \forall n \geq 3 \tag{2}
\end{equation*}
$$

with the initial conditions $g_{0}=0, g_{1}=1, g_{2}=3$.
Solution. Observe that (2) is a recurrence of the third order, since g_{n} depends on g_{n-1} and g_{n-3} : therefore, we need three initial conditions.

Let $G(z)$ be the generating function of the sequence $\left\langle g_{n}\right\rangle$, with the convention that $g_{n}=0$ if $n<0$. The recurrence $g_{n}=3 g_{n-1}-4 g_{n-3}$ holds for every $n<0$ and $n \geq 3$; for $n=0$ we have $0=g_{0}=3 g_{-1}-4 g_{-3}$; for $n=1$ we have $1=g_{1}=3 g_{0}-4 g_{-2}+1$; for $n=2$ we have $3=g_{2}=3 g_{1}-4 g_{-1}$. Then,

$$
\sum_{n} g_{n} z^{n}=3 \sum_{n} g_{n-1} z^{n}-4 \sum_{n} g_{n-3} z^{n}+\sum_{n}[n=1] z^{n},
$$

that is,

$$
G(z)=3 z G(z)-4 z^{3} G(z)+z:
$$

which yields

$$
G(z)=\frac{z}{1-3 z+4 z^{3}}
$$

We observe that $Q(1 / 2)=Q(-1)=0$: and in fact, if we divide $Q(z)$ by $1+z$, we get $1-4 z+4 z^{2}=(1-2 z)^{2}$. Therefore,

$$
G(z)=\frac{z}{(1+z)(1-2 z)^{2}} .
$$

In the notation of the Rational Expansion Theorem, we have $\rho_{1}=-1, d_{1}=1$, $\rho_{2}=2, d_{2}=2$; also, $P(z)=z$ and

$$
Q(z)=1-3 z+4 z^{3}
$$

, from which $Q^{\prime}(z)=-3+12 z^{2}$ and $Q^{\prime \prime}(z)=24 z$. Then $g_{n}=a_{1} \cdot(-1)^{n}+$ $\left(a_{2} n+c_{2}\right) \cdot 2^{n}$ for suitable a_{1}, a_{2}, c_{2}, where

$$
a_{1}=\frac{1^{1} \cdot(-1)}{-3+12}=-\frac{1}{9}
$$

and

$$
a_{2}=\frac{(-2)^{2} \cdot(1 / 2) \cdot 2}{24 \cdot 1 / 2}=\frac{1}{3} .
$$

For $n=0$ we find $0=-\frac{(-1)^{0}}{9}+\left(0+c_{2}\right) \cdot 1$, yielding $c_{2}=1 / 9$. Therefore,

$$
g_{n}=\frac{(-1)^{n+1}}{9}+\left(\frac{n}{3}+\frac{1}{9}\right) 2^{n}=\frac{(-1)^{n+1}}{9}+\frac{3 n+1}{9} \cdot 2^{n} .
$$

Exercise 7.11

Let $a_{n}=b_{n}=c_{n}=0$ for $n<0$, and

$$
A(z)=\sum_{n} a_{n} z^{n} ; B(z)=\sum_{n} b_{n} z^{n} ; C(z)=\sum_{n} c_{n} z^{n}
$$

2. Express A in terms of B when $n b_{n}=\sum_{k=0}^{n} 2^{k} a_{k} /(n-k)$!

Solution. We know that $n b_{n}=\left[z^{n-1}\right] B^{\prime}(z)=\left[z^{n}\right] z B^{\prime}(z)$, that is, $\sum_{n} n b_{n} z^{n}=$ $z B^{\prime}(z)$. Moreover, $n b_{n}$ must be the coefficient of index n of the convolution of $A(2 z)$ (because of the 2^{k} factor) with a power series whose coefficient of index n is $1 / n!$: such function is e^{z}. This means

$$
z B^{\prime}(z)=e^{z} A(2 z)
$$

and consequently

$$
A(z)=\frac{z}{2} e^{-z / 2} B^{\prime}\left(\frac{z}{2}\right)
$$

