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Exercise RET1

Find an explicit formula for the n-th Lucas number, defined by the recurrence
Ln = Ln−1 +Ln−2 for every n ≥ 2 with the initial conditions L0 = 2, L1 = 1.
Solution. Let L(z) =

∑
n≥0 Lnz

n be the generating function of the Lucas
numbers, with the convention that Ln = 0 if n < 0. The recurrence Ln =
Ln−1 + Ln−2 holds for every n < 0 and n ≥ 2; for n = 0, we must have
2 = L0 = L−1 + L−2 + 2; for n = 1 we must have 1 = L1 = L0 + L−1 − 1.
Then,∑

n

Lnz
n =

∑
n

Ln−1z
n +

∑
n

Ln−2z
n + 2

∑
n

[n = 0] zn −
∑
n

[n = 1] zn ,

that is,
L(z) = zL(z) + z2L(z) + 2− z :

which yields

L(z) =
2− z

1− z − z2
.

We know that 1− z− z2 = (1−φz)(1− φ̂z). In the notation of the Rational
Expansion Theorem, we have ρ1 = φ, ρ2 = φ̂, d1 = d2 = 1. The derivative
of Q(z) = 1 − z − z2 is Q′(z) = −1 − 2z. We can then use the formula for
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distinct roots and get

a1 =
−φ(2− 1/φ)

−1− 2/φ

=
2φ− 1

1 + 2/φ

=

√
5

1 + 4
1+
√
5

=

√
5(1 +

√
5)

1 +
√

5 + 4

=

√
5 + 5

5 +
√

5
= 1

and

a2 =
−φ̂(2− 1/φ̂)

−1− 2/φ̂

=
2φ̂− 1

1 + 2/φ̂

=
−
√

5

1 + 4
1−
√
5

=
−
√

5(1−
√

5)

1−
√

5 + 4

=
−
√

5 + 5

5−
√

5
= 1 .

Therefore, Ln = φn + φ̂n.

Exercise RET2

Solve the recurrence

gn = 6gn−1 − 9gn−2 ∀n ≥ 2 (1)
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with the initial conditions g0 = 1, g1 = 9.
Solution. Let G(z) be the generating function of the sequence 〈gn〉, with the
convention that gn = 0 if n < 0. The recurrence gnz

n = 6gn−1z
n − 9gn−2z

n

holds for every n < 0 and n ≥ 2; for n = 0 we must have 1 = g0 =
6g−1 − 9gn−2 + 1; for n = 1 we must have 9 = g1 = 6g0 − 9g−1 + 3. Then,∑

n

gnz
n = 6

∑
n

gn−1z
n − 9

∑
n

gn−2z
n +

∑
n

[n = 0] zn + 3
∑
n

[n = 1] zn ,

that is,
G(z) = 6zG(z)− 9z2G(z) + 1 + 3z :

which yields

G(z) =
1 + 3z

1− 6z + 9z2
=

1 + 3z

(1− 3z)2
.

In the notation of the Rational Expansion Theorem, we have P (z) = 1 + 3z,
Q(z) = (1− 3z)2, ρ1 = 3, d1 = 2. Therefore, Q′(z) = −6 + 18z, Q′′(z) = 18,
and gn = (a1n+ c1) · 3n, where

a1 =
(−3)2 · (1 + 3/3) · 2

18
= 2 .

For n = 0 we find 1 = g0 = (0 + c1) · 1, yielding c1 = 1. Therefore,

gn = (2n+ 1) · 3n .

Exercise RET3

Solve the recurrence

gn = 3gn−1 − 4gn−3 ∀n ≥ 3 (2)

with the initial conditions g0 = 0, g1 = 1, g2 = 3.
Solution. Observe that (2) is a recurrence of the third order, since gn depends
on gn−1 and gn−3: therefore, we need three initial conditions.

Let G(z) be the generating function of the sequence 〈gn〉, with the con-
vention that gn = 0 if n < 0. The recurrence gn = 3gn−1 − 4gn−3 holds for
every n < 0 and n ≥ 3; for n = 0 we have 0 = g0 = 3g−1−4g−3; for n = 1 we
have 1 = g1 = 3g0 − 4g−2 + 1; for n = 2 we have 3 = g2 = 3g1 − 4g−1. Then,∑

n

gnz
n = 3

∑
n

gn−1z
n − 4

∑
n

gn−3z
n +

∑
n

[n = 1] zn ,
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that is,
G(z) = 3zG(z)− 4z3G(z) + z :

which yields

G(z) =
z

1− 3z + 4z3
.

We observe that Q(1/2) = Q(−1) = 0: and in fact, if we divide Q(z) by
1 + z, we get 1− 4z + 4z2 = (1− 2z)2. Therefore,

G(z) =
z

(1 + z)(1− 2z)2
.

In the notation of the Rational Expansion Theorem, we have ρ1 = −1, d1 = 1,
ρ2 = 2, d2 = 2; also, P (z) = z and

Q(z) = 1− 3z + 4z3

, from which Q′(z) = −3 + 12z2 and Q′′(z) = 24z. Then gn = a1 · (−1)n +
(a2n+ c2) · 2n for suitable a1, a2, c2, where

a1 =
11 · (−1)

−3 + 12
= −1

9

and

a2 =
(−2)2 · (1/2) · 2

24 · 1/2
=

1

3
.

For n = 0 we find 0 = − (−1)0
9

+ (0 + c2) · 1, yielding c2 = 1/9. Therefore,

gn =
(−1)n+1

9
+

(
n

3
+

1

9

)
2n =

(−1)n+1

9
+

3n+ 1

9
· 2n .

Exercise 7.11

Let an = bn = cn = 0 for n < 0, and

A(z) =
∑
n

anz
n ; B(z) =

∑
n

bnz
n ; C(z) =

∑
n

cnz
n

2. Express A in terms of B when nbn =
∑n

k=0 2kak/(n− k)!
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Solution. We know that nbn = [zn−1]B′(z) = [zn]zB′(z), that is,
∑

n nbnz
n =

zB′(z). Moreover, nbn must be the coefficient of index n of the convolution
of A(2z) (because of the 2k factor) with a power series whose coefficient of
index n is 1/n!: such function is ez. This means

zB′(z) = ezA(2z)

and consequently

A(z) =
z

2
e−z/2B′

(z
2

)
.
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