ITT9131 Concrete Mathematics
 Exercises from 20 December

Silvio Capobianco

Revision: 20 December 2016

Exercise RET4

Solve the recurrence

$$
\begin{equation*}
g_{n}=3 g_{n-2}-2 g_{n-3} \quad \forall n \geq 3 \tag{1}
\end{equation*}
$$

with the initial conditions $g_{0}=0, g_{1}=1, g_{2}=3$.
Solution. As (1) is a third-order relation, we need three initial conditions. We apply our four-step technique:

1. We want the relation (1) to hold for every integer n, up to some correction summand, with the usual convention that $g_{n}=0$ if $n<0$. For $n<0$ and $n \geq 3$ we have no problem: but we must check the cases $n=0, n=1, n=2$.
$n=0$. The recurrence gives $g_{0}=3 g_{-2}-2 g_{-3}=0$: as $g_{0}=0$, no correction is needed.
$n=1$. The recurrence gives $g_{1}=3 g_{-1}-2 g_{-2}=0$: as $g_{1}=1$, we need a correction summand $[n=1]$.
$n=2$. The recurrence gives $g_{2}=3 g_{0}-2 g_{-1}=0$: as $g_{1}=1$, we need a correction summand $3[n=2]$.
2. Multiplying both sides of the nth equation by z^{n} and summing over all integers n, we find:

$$
\sum_{n} g_{n} z^{n}=3 \sum_{n} g_{n-2} z^{n}-2 \sum_{n} g_{n-3} z^{n}+\sum_{n}[n=1] z^{n}+3 \sum_{n}[n=2] z^{n} .
$$

Let then $G(z)=\sum_{n \geq 0} g_{n} z^{n}$: the above becomes

$$
G(z)=3 z^{2} G(z)-2 z^{3} G(z)+z+3 z^{2} .
$$

3. We easily solve the above with respect to $G(z)$ and obtain:

$$
\begin{equation*}
G(z)=\frac{z+3 z^{2}}{1-3 z^{2}+2 z^{3}} \tag{2}
\end{equation*}
$$

4. Let $P(z)=z+3 z^{2}$ and $Q(z)=1-3 z^{2}+2 z^{3}$ then $G(z)=P(z) / Q(z)$ with $\operatorname{deg} P<\operatorname{deg} Q$, and we can use the Rational Expansion Theorem. To find the roots of $Q(z)$, we observe that $Q(1)=0$, therefore $Q(z)=$ $(1-z)\left(a+b z+c z^{2}\right)$ for suitable a, b, and c : comparing the coefficients yields $a=1, b=a$, and $c=-2$. In turn, $1+z-2 z^{2}$ also vanishes for $z=1$, so it has the form $(1-z)(r+s z)$: again, comparing the coefficients yields $r=1$ and $s=2$. We then have:

$$
\begin{equation*}
Q(z)=(1-z)^{2}(1+2 z) . \tag{3}
\end{equation*}
$$

To apply the Rational Expansion Theorem we put $\rho_{1}=1, d_{1}=2$, $\rho_{2}=-2$, and $d_{2}=1$: then

$$
g_{n}=\left(a_{1} n+b_{1}\right) 1^{n}+a_{2}(-2)^{n},
$$

where:

- $a_{1}=1 / \rho_{1}=\frac{(-1)^{2} \cdot P(1) \cdot 2}{Q^{\prime \prime}(1)}$ because $\alpha_{1}=1$ is a double root;
- $a_{1}=1 / \rho_{2}=\frac{2 \cdot P(-1 / 2)}{Q^{\prime}(-1 / 2)}$ because $\alpha_{2}=1 / \rho_{2}=-1 / 2$ is a simple root.

As $Q^{\prime}(z)=-6 z+6 z^{2}$ and $Q^{\prime \prime}(z)=-6+12 z$ we find:

$$
a_{1}=\frac{1 \cdot\left(1+3 \cdot 1^{2}\right) \cdot 2}{-6+12}=\frac{4}{3}
$$

and

$$
a_{2}=\frac{2 \cdot(-1 / 2+3 \cdot 1 / 4)}{6 \cdot 1 / 2+6 \cdot 1 / 4}=\frac{1}{9}
$$

To find b_{1}, we put $n=0$ and apply the initial condition: we get

$$
\left(\frac{4}{3} \cdot 0+b_{1}\right) \cdot 1^{0}+\frac{1}{9} \cdot(-2)^{0}=0
$$

which yields $b_{1}=-1 / 9$.
In conclusion,

$$
g_{n}=\frac{4}{3} n-\frac{1}{9}+\frac{(-1)^{n}}{9} \cdot 2^{n} .
$$

Exercise 7.11

Let $a_{n}=b_{n}=c_{n}=0$ for $n<0$, and

$$
A(z)=\sum_{n} a_{n} z^{n} ; B(z)=\sum_{n} b_{n} z^{n} ; C(z)=\sum_{n} c_{n} z^{n}
$$

3. Express A in terms of B when $a_{n}=\sum_{k=0}^{n}\binom{r+k}{k} b_{n-k}$. Then, construct $\left\{f_{n}(r)\right\}_{n \geq 0}$ such that $b_{n}=\sum_{k=0}^{n} f_{k}(r) a_{n-k}$.

Solution. A must be the convolution of B with a power series whose coefficient of index n is $\binom{r+n}{n}$. The tables in Section 7.2 provide the formula $\sum_{n \geq 0}\binom{c+n-1}{n} z^{n}=1 /(1-z)^{c}$: therefore, such function is $1 /(1-z)^{r+1}$. This means

$$
A(z)=\frac{B(z)}{(1-z)^{r+1}}
$$

But then, $B(z)=(1-z)^{r+1} A(z)$: by the generalized binomial theorem (also displayed in the tables) $(1-z)^{r+1}=\sum_{n \geq 0}\binom{r+1}{n}(-z)^{n}$. Therefore,

$$
f_{n}(r)=\left[z^{n}\right](1-z)^{r+1}=(-1)^{n}\left[z^{n}\right](1+z)^{r+1}=(-1)^{n}\binom{r+1}{n}
$$

Exercise 7.35

Evaluate the sum $\sum_{0<k<n} 1 / k(n-k)$ in two ways:

1. Expand the summand in partial fractions.
2. Treat the sum as a convolution and use generating functions.

Solution. Expanding $1 / k(n-k)$ in partial fractions means finding constants A and B such that

$$
\frac{1}{k(n-k)}=\frac{A}{k}+\frac{B}{n-k}:
$$

from $\frac{1}{k}+\frac{1}{n-k}=\frac{n}{k(n-k)}$ we easily get $A=B=\frac{1}{n}$. Then

$$
\sum_{0<k<n} \frac{1}{k(n-k)}=\frac{1}{n} \sum_{0<k<n}\left(\frac{1}{k}+\frac{1}{n-k}\right)=\frac{2}{n} H_{n-1} .
$$

We can also observe that $g_{n}=\sum_{0<k<n} \frac{1}{k(n-k)}$ is the term of index n of the convolution of the sequence of generic term $h_{n}=\frac{1}{n}[n>0]$ with itself. Let $G(z)$ and $H(z)$ be the generating functions of the sequences $\left\langle g_{n}\right\rangle$ and $\left\langle h_{n}\right\rangle$, respectively: we know that $H(z)=\ln \frac{1}{1-z}$, so

$$
\begin{equation*}
G(z)=H(z)^{2}=\left(\ln \frac{1}{1-z}\right)^{2} \tag{4}
\end{equation*}
$$

This looks hard to manage until we remember that, if $G(z)=\sum_{n} g_{n} z^{n}$, then $z G^{\prime}(z)=\sum_{n} n g_{n} z^{n}$. Said, done:

$$
\begin{aligned}
z G^{\prime}(z) & =z \frac{d}{d z}\left(\ln \frac{1}{1-z}\right)^{2} \\
& =z \cdot\left(2 \ln \frac{1}{1-z}\right) \cdot \frac{1}{\frac{1}{1-z}} \cdot \frac{1}{(1-z)^{2}} \\
& =2 z \cdot\left(\frac{1}{1-z} \ln \frac{1}{1-z}\right)
\end{aligned}
$$

The function in parentheses on the last line is the generating function of the harmonic numbers ${ }^{1}$: by pre-multiplying by z, H_{n} becomes the coefficient of z^{n+1} instead of z^{n}. Equating the power series,

$$
\sum_{n} n g_{n} z^{n}=2 \sum_{n} H_{n} z^{n+1}=2 \sum_{n} H_{n-1} z^{n}:
$$

then $n g_{n}=2 H_{n-1}$ for every n, which is equivalent to what we had found before.

Lesson learned: if you need to kill a mosquito, don't use a cannon!

[^0]
[^0]: ${ }^{1}$ More in general, if $G(z)$ is the generating function of $\left\langle g_{n}\right\rangle$, then $\frac{G(z)}{1-z}$ is the generating function of $\left\langle\sum_{0 \leq k \leq n} g_{k}\right\rangle$. Recall the convention that undefined by zero is zero.

