ITT9131 Concrete Mathematics Exercises from 20 December

Silvio Capobianco

Revision: 20 December 2016

Exercise RET4

Solve the recurrence

$$g_n = 3g_{n-2} - 2g_{n-3} \quad \forall n \ge 3 \tag{1}$$

with the initial conditions $g_0 = 0$, $g_1 = 1$, $g_2 = 3$. Solution. As (1) is a third-order relation, we need three initial conditions. We apply our four-step technique:

- 1. We want the relation (1) to hold for every integer n, up to some correction summand, with the usual convention that $g_n = 0$ if n < 0. For n < 0 and $n \ge 3$ we have no problem: but we must check the cases n = 0, n = 1, n = 2.
- n = 0. The recurrence gives $g_0 = 3g_{-2} 2g_{-3} = 0$: as $g_0 = 0$, no correction is needed.
- n = 1. The recurrence gives $g_1 = 3g_{-1} 2g_{-2} = 0$: as $g_1 = 1$, we need a correction summand [n = 1].
- n = 2. The recurrence gives $g_2 = 3g_0 2g_{-1} = 0$: as $g_1 = 1$, we need a correction summand 3 [n = 2].
- 2. Multiplying both sides of the *n*th equation by z^n and summing over all integers n, we find:

$$\sum_{n} g_{n} z^{n} = 3 \sum_{n} g_{n-2} z^{n} - 2 \sum_{n} g_{n-3} z^{n} + \sum_{n} [n=1] z^{n} + 3 \sum_{n} [n=2] z^{n}.$$

Let then $G(z) = \sum_{n>0} g_n z^n$: the above becomes

$$G(z) = 3z^2G(z) - 2z^3G(z) + z + 3z^2$$
.

3. We easily solve the above with respect to G(z) and obtain:

$$G(z) = \frac{z + 3z^2}{1 - 3z^2 + 2z^3}.$$
 (2)

4. Let $P(z) = z + 3z^2$ and $Q(z) = 1 - 3z^2 + 2z^3$ then G(z) = P(z)/Q(z) with deg $P < \deg Q$, and we can use the Rational Expansion Theorem.

To find the roots of Q(z), we observe that Q(1) = 0, therefore $Q(z) = (1-z)(a+bz+cz^2)$ for suitable a, b, and c: comparing the coefficients yields a = 1, b = a, and c = -2. In turn, $1 + z - 2z^2$ also vanishes for z = 1, so it has the form (1-z)(r+sz): again, comparing the coefficients yields r = 1 and s = 2. We then have:

$$Q(z) = (1-z)^2 (1+2z).$$
(3)

To apply the Rational Expansion Theorem we put $\rho_1 = 1$, $d_1 = 2$, $\rho_2 = -2$, and $d_2 = 1$: then

$$g_n = (a_1n + b_1)1^n + a_2(-2)^n$$

where:

- $a_1 = 1/\rho_1 = \frac{(-1)^2 \cdot P(1) \cdot 2}{Q''(1)}$ because $\alpha_1 = 1$ is a double root;
- $a_1 = 1/\rho_2 = \frac{2 \cdot P(-1/2)}{Q'(-1/2)}$ because $\alpha_2 = 1/\rho_2 = -1/2$ is a simple root.

As $Q'(z) = -6z + 6z^2$ and Q''(z) = -6 + 12z we find:

$$a_1 = \frac{1 \cdot (1+3 \cdot 1^2) \cdot 2}{-6+12} = \frac{4}{3}$$

and

$$a_2 = \frac{2 \cdot (-1/2 + 3 \cdot 1/4)}{6 \cdot 1/2 + 6 \cdot 1/4} = \frac{1}{9}$$

To find b_1 , we put n = 0 and apply the initial condition: we get

$$\left(\frac{4}{3}\cdot 0+b_1\right)\cdot 1^0+\frac{1}{9}\cdot (-2)^0=0,$$

which yields $b_1 = -1/9$.

In conclusion,

$$g_n = \frac{4}{3}n - \frac{1}{9} + \frac{(-1)^n}{9} \cdot 2^n.$$

Exercise 7.11

Let $a_n = b_n = c_n = 0$ for n < 0, and

$$A(z) = \sum_{n} a_n z^n$$
; $B(z) = \sum_{n} b_n z^n$; $C(z) = \sum_{n} c_n z^n$

3. Express A in terms of B when $a_n = \sum_{k=0}^n \binom{r+k}{k} b_{n-k}$. Then, construct $\{f_n(r)\}_{n\geq 0}$ such that $b_n = \sum_{k=0}^n f_k(r) a_{n-k}$.

Solution. A must be the convolution of B with a power series whose coefficient of index n is $\binom{r+n}{n}$. The tables in Section 7.2 provide the formula $\sum_{n\geq 0} \binom{c+n-1}{n} z^n = 1/(1-z)^c$: therefore, such function is $1/(1-z)^{r+1}$. This means

$$A(z) = \frac{B(z)}{(1-z)^{r+1}}$$

But then, $B(z) = (1-z)^{r+1}A(z)$: by the generalized binomial theorem (also displayed in the tables) $(1-z)^{r+1} = \sum_{n\geq 0} {r+1 \choose n} (-z)^n$. Therefore,

$$f_n(r) = [z^n](1-z)^{r+1} = (-1)^n [z^n](1+z)^{r+1} = (-1)^n \binom{r+1}{n}$$

Exercise 7.35

Evaluate the sum $\sum_{0 < k < n} 1/k(n-k)$ in two ways:

- 1. Expand the summand in partial fractions.
- 2. Treat the sum as a convolution and use generating functions.

Solution. Expanding 1/k(n-k) in partial fractions means finding constants A and B such that

$$\frac{1}{k(n-k)} = \frac{A}{k} + \frac{B}{n-k} :$$

from $\frac{1}{k} + \frac{1}{n-k} = \frac{n}{k(n-k)}$ we easily get $A = B = \frac{1}{n}$. Then

$$\sum_{0 < k < n} \frac{1}{k(n-k)} = \frac{1}{n} \sum_{0 < k < n} \left(\frac{1}{k} + \frac{1}{n-k}\right) = \frac{2}{n} H_{n-1}$$

We can also observe that $g_n = \sum_{0 < k < n} \frac{1}{k(n-k)}$ is the term of index n of the convolution of the sequence of generic term $h_n = \frac{1}{n} [n > 0]$ with itself. Let G(z) and H(z) be the generating functions of the sequences $\langle g_n \rangle$ and $\langle h_n \rangle$, respectively: we know that $H(z) = \ln \frac{1}{1-z}$, so

$$G(z) = H(z)^{2} = \left(\ln \frac{1}{1-z}\right)^{2}.$$
 (4)

This looks hard to manage until we remember that, if $G(z) = \sum_n g_n z^n$, then $zG'(z) = \sum_n ng_n z^n$. Said, done:

$$zG'(z) = z \frac{d}{dz} \left(\ln \frac{1}{1-z} \right)^2$$

= $z \cdot \left(2 \ln \frac{1}{1-z} \right) \cdot \frac{1}{\frac{1}{1-z}} \cdot \frac{1}{(1-z)^2}$
= $2z \cdot \left(\frac{1}{1-z} \ln \frac{1}{1-z} \right)$.

The function in parentheses on the last line is the generating function of the harmonic numbers¹: by pre-multiplying by z, H_n becomes the coefficient of z^{n+1} instead of z^n . Equating the power series,

$$\sum_{n} ng_{n}z^{n} = 2\sum_{n} H_{n}z^{n+1} = 2\sum_{n} H_{n-1}z^{n} :$$

then $ng_n = 2H_{n-1}$ for every *n*, which is equivalent to what we had found before.

Lesson learned: if you need to kill a mosquito, don't use a cannon!

¹More in general, if G(z) is the generating function of $\langle g_n \rangle$, then $\frac{G(z)}{1-z}$ is the generating function of $\left\langle \sum_{0 \le k \le n} g_k \right\rangle$. Recall the convention that undefined by zero is zero.