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Exercise RET4

Solve the recurrence

gn = 3gn−2 − 2gn−3 ∀n ≥ 3 (1)

with the initial conditions g0 = 0, g1 = 1, g2 = 3.
Solution. As (1) is a third-order relation, we need three initial conditions.
We apply our four-step technique:

1. We want the relation (1) to hold for every integer n, up to some cor-
rection summand, with the usual convention that gn = 0 if n < 0. For
n < 0 and n ≥ 3 we have no problem: but we must check the cases
n = 0, n = 1, n = 2.

n = 0. The recurrence gives g0 = 3g−2−2g−3 = 0: as g0 = 0, no correction
is needed.

n = 1. The recurrence gives g1 = 3g−1 − 2g−2 = 0: as g1 = 1, we need a
correction summand [n = 1].

n = 2. The recurrence gives g2 = 3g0 − 2g−1 = 0: as g1 = 1, we need a
correction summand 3 [n = 2].

2. Multiplying both sides of the nth equation by zn and summing over all
integers n, we find:∑
n

gnz
n = 3

∑
n

gn−2z
n−2

∑
n

gn−3z
n+
∑
n

[n = 1] zn+3
∑
n

[n = 2] zn .
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Let then G(z) =
∑

n≥0 gnz
n: the above becomes

G(z) = 3z2G(z)− 2z3G(z) + z + 3z2 .

3. We easily solve the above with respect to G(z) and obtain:

G(z) =
z + 3z2

1− 3z2 + 2z3
. (2)

4. Let P (z) = z + 3z2 and Q(z) = 1− 3z2 + 2z3 then G(z) = P (z)/Q(z)
with degP < degQ, and we can use the Rational Expansion Theorem.

To find the roots of Q(z), we observe that Q(1) = 0, therefore Q(z) =
(1− z)(a+ bz+ cz2) for suitable a, b, and c: comparing the coefficients
yields a = 1, b = a, and c = −2. In turn, 1 + z − 2z2 also vanishes
for z = 1, so it has the form (1 − z)(r + sz): again, comparing the
coefficients yields r = 1 and s = 2. We then have:

Q(z) = (1− z)2(1 + 2z) . (3)

To apply the Rational Expansion Theorem we put ρ1 = 1, d1 = 2,
ρ2 = −2, and d2 = 1: then

gn = (a1n+ b1)1
n + a2(−2)n ,

where:

• a1 = 1/ρ1 =
(−1)2 · P (1) · 2

Q′′(1)
because α1 = 1 is a double root;

• a1 = 1/ρ2 =
2 · P (−1/2)

Q′(−1/2)
because α2 = 1/ρ2 = −1/2 is a simple

root.

As Q′(z) = −6z + 6z2 and Q′′(z) = −6 + 12z we find:

a1 =
1 · (1 + 3 · 12) · 2
−6 + 12

=
4

3

and

a2 =
2 · (−1/2 + 3 · 1/4)

6 · 1/2 + 6 · 1/4
=

1

9
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To find b1, we put n = 0 and apply the initial condition: we get(
4

3
· 0 + b1

)
· 10 +

1

9
· (−2)0 = 0 ,

which yields b1 = −1/9.

In conclusion,

gn =
4

3
n− 1

9
+

(−1)n

9
· 2n .

Exercise 7.11

Let an = bn = cn = 0 for n < 0, and

A(z) =
∑
n

anz
n ; B(z) =

∑
n

bnz
n ; C(z) =

∑
n

cnz
n

3. Express A in terms of B when an =
∑n

k=0

(
r+k
k

)
bn−k. Then, construct

{fn(r)}n≥0 such that bn =
∑n

k=0 fk(r)an−k.

Solution. A must be the convolution of B with a power series whose coef-
ficient of index n is

(
r+n
n

)
. The tables in Section 7.2 provide the formula∑

n≥0
(
c+n−1

n

)
zn = 1/(1− z)c: therefore, such function is 1/(1− z)r+1. This

means

A(z) =
B(z)

(1− z)r+1

But then, B(z) = (1− z)r+1A(z): by the generalized binomial theorem (also
displayed in the tables) (1− z)r+1 =

∑
n≥0
(
r+1
n

)
(−z)n. Therefore,

fn(r) = [zn](1− z)r+1 = (−1)n[zn](1 + z)r+1 = (−1)n
(
r + 1

n

)

Exercise 7.35

Evaluate the sum
∑

0<k<n 1/k(n− k) in two ways:

1. Expand the summand in partial fractions.

2. Treat the sum as a convolution and use generating functions.
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Solution. Expanding 1/k(n− k) in partial fractions means finding constants
A and B such that

1

k(n− k)
=
A

k
+

B

n− k
:

from 1
k

+ 1
n−k = n

k(n−k) we easily get A = B = 1
n
. Then∑

0<k<n

1

k(n− k)
=

1

n

∑
0<k<n

(
1

k
+

1

n− k

)
=

2

n
Hn−1 .

We can also observe that gn =
∑

0<k<n
1

k(n−k) is the term of index n of the

convolution of the sequence of generic term hn = 1
n

[n > 0] with itself. Let
G(z) and H(z) be the generating functions of the sequences 〈gn〉 and 〈hn〉,
respectively: we know that H(z) = ln 1

1−z , so

G(z) = H(z)2 =

(
ln

1

1− z

)2

. (4)

This looks hard to manage until we remember that, if G(z) =
∑

n gnz
n, then

zG′(z) =
∑

n ngnz
n. Said, done:

zG′(z) = z
d

dz

(
ln

1

1− z

)2

= z ·
(

2 ln
1

1− z

)
· 1

1
1−z
· 1

(1− z)2

= 2z ·
(

1

1− z
ln

1

1− z

)
.

The function in parentheses on the last line is the generating function of the
harmonic numbers1: by pre-multiplying by z, Hn becomes the coefficient of
zn+1 instead of zn. Equating the power series,∑

n

ngnz
n = 2

∑
n

Hnz
n+1 = 2

∑
n

Hn−1z
n :

then ngn = 2Hn−1 for every n, which is equivalent to what we had found
before.

Lesson learned: if you need to kill a mosquito, don’t use a cannon!

1More in general, if G(z) is the generating function of 〈gn〉, then G(z)
1−z is the generating

function of
〈∑

0≤k≤n gk

〉
. Recall the convention that undefined by zero is zero.
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