ITT9131 Concrete Mathematics Solutions to final exam of 17 January 2017

Revision: 18 January 2017

Exercise 1

(12 points) Solve the recurrence:

$$
\begin{array}{ll}
g_{0}=1 ; & g_{1}=3 ; \\
g_{n}=4 g_{n-1}-4 g_{n-2} & \forall n \geq 2 . \tag{1}
\end{array}
$$

Solution:
The recurrence (1) is easily solved with generating functions via the Rational Expansion Theorem. Let us follow the method step by step:

1. We must rewrite (1) so that it holds for every $n \in \mathbb{Z}$, with the convention that $g_{n}=0$ if $n<0$. We need to check the initial conditions:

- For $n=0$ it is $g_{0}=1$ but $4 g_{-1}-4 g_{-2}=0$: we thus need a correction summand 1 .
- For $n=1$ it is $g_{1}=3$ but $4 g_{0}-4 g_{-1}=4$: we thus need a correction summand -1 .

The recurrence (1) for arbitrary $n \in \mathbb{Z}$ is thus:

$$
g_{n}=4 g_{n-1}-4 g_{n-2}+[n=0]-[n=1] .
$$

2. Let $G(z)$ be the generating function of the sequence $\left\langle g_{n}\right\rangle$. By multiplying the recurrence by z^{n} for every $n \in \mathbb{Z}$ and summing over n we
obtain:

$$
\begin{aligned}
G(z) & =\sum_{n} g_{n} z^{n} \\
& =4 \sum_{n} g_{n-1} z_{n}-4 \sum_{n} g_{n-2} z^{n}+\sum_{n}[n=0] z^{n}-\sum_{n}[n=1] z^{n} \\
& =4 \sum_{n} g_{n} z^{n+1}-4 \sum_{n} g_{n} z^{n+2}+1-z \\
& =4 z G(z)-4 z^{2} G(z)+1-z .
\end{aligned}
$$

3. By solving the above with respect to $G(z)$ we get

$$
G(z) \cdot\left(1-4 z+4 z^{2}\right)=1-z,
$$

which yields

$$
G(z)=\frac{1-z}{1-4 z+4 z^{2}} .
$$

4. The function $G(z)$ has the form $G(z)=P(z) / Q(z)$ where $P(z)=1-z$ and $Q(z)=1-4 z+4 z^{2}=(1-2 z)^{2}$. Then the solution of the recurrence is $(a n+b) \cdot 2^{n}$ for suitable a and b. To find such numbers, we use the Rational Expansion Theorem: in our case, $\rho=2$ and $d=2$, so:

$$
a=\frac{(-2)^{2} \cdot P(1 / 2) \cdot 2}{Q^{\prime \prime}(1 / 2)}=\frac{4 \cdot(1 / 2) \cdot 2}{8}=\frac{1}{2} .
$$

To find b, we compare the initial condition $g_{0}=1$ with the value $(a \cdot 0+b) \cdot 2^{0}$: which yields $b=1$. In conclusion,

$$
g_{n}=\left(\frac{n}{2}+1\right) \cdot 2^{n} .
$$

Exercise 2

(10 points) For $n, r, s \geq 0$ all integers compute

$$
S_{n}=\sum_{k=0}^{n}\binom{k}{r}\binom{n-k}{s} .
$$

Solution: The sequence $\left\langle S_{n}\right\rangle$ is the convolution of the sequences $\left\langle\binom{ n}{r}\right\rangle$ and
$\left\langle\binom{ n}{s}\right\rangle$. We know that $\sum_{n \geq 0}\binom{n}{r}=\frac{z^{r}}{(1-z)^{r+1}}$ and $\sum_{n \geq 0}\binom{n}{s}=\frac{z^{s}}{(1-z)^{s+1}}$: then the generating function of $\left\langle S_{n}\right\rangle$ is

$$
S(z)=\frac{z^{r+s}}{(1-z)^{r+s+2}}
$$

This writing is annoying, because the right-hand side does not have the convenient form $\frac{z^{m}}{(1-z)^{m+1}}$: which it would have if the exponent at the numerator was $r+s+1$ instead of $r+s$. But as $r+s \geq 0$, the constant coefficient of $\frac{z^{r+s+1}}{(1-z)^{r+s+2}}=\sum_{n \geq 0}\binom{n}{r+s+1} z^{n}$ is $\binom{0}{r+s+1}=0$: by applying the formula $\frac{G(z)-g_{0}}{z}=\sum_{n \geq 0} g_{n+1} z^{n}$, we get

$$
S(z)=\frac{1}{z} \cdot\left(\frac{z^{r+s+1}}{(1-z)^{r+s+2}}-0\right)=\sum_{n \geq 0}\binom{n+1}{r+s+1} z^{n} .
$$

By comparison, we finally find:

$$
\sum_{k=0}^{n}\binom{k}{r}\binom{n-k}{s}=\binom{n+1}{r+s+1}
$$

Exercise 3

(8 points) Determine the values of $n \geq 0$ such that $n^{14}-3 n^{10}+3 n^{6}-n^{2}$ is divisible by 250 .
Solution: As $250=2 \cdot 5^{3}$ as a product of powers of primes, we must show that $n^{14}-3 n^{10}+3 n^{6}-n^{2}$ is divisible by both 2 and 125 . One part is easy: there are four summands, which are either all even or all odd, so the sum is even. For the other part, we factor the polynomial and obtain:

$$
n^{14}-3 n^{10}+3 n^{6}-n^{2}=n^{2} \cdot\left(n^{12}-3 n^{8}+3 n^{4}-1\right)=n^{2} \cdot\left(n^{4}-1\right)^{3} .
$$

If n is not a multiple of 5 , then $n^{4}-1$ is by Fermat's little theorem, and as there are three such factors, $n^{14}-3 n^{10}+3 n^{6}-n^{2}$ is indeed divisible by 125 . If n is a multiple of 5 , however, then $n^{4}-1$ is not, and the contributions to divisibility by 125 must come all from n : as there are two factors n in $n^{14}-3 n^{10}+3 n^{6}-n^{2}$, if n is divisible by 5 but not by 25 , then $n^{14}-3 n^{10}+$ $3 n^{6}-n^{2}$ is divisible by 525 but not by 125 ; while if n is divisible by 25 , then $n^{14}-3 n^{10}+3 n^{6}-n^{2}$ is divisible by 625 , thus also by 125 .

In conclusion, $n^{14}-3 n^{10}+3 n^{6}-n^{2}$ is divisible by 250 if and only if n is either divisible by 25 , or not divisible by 5 .

Questions

1. If 100 people are put in circle and every second person is eliminated, which one will be left in the end?
$100=64+36$, and $2 \cdot 36+1=73$: hence, the seventy-third person will be left in the end.
2. Explain the main idea of the method of the summation factor.

If the recurrence equation has the form $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$, and we find nonzero $\left\langle s_{n}\right\rangle$ such that $s_{n} b_{n}=s_{n-1} a_{n-1}$ for every $n \geq 1$, then by putting $U_{n}=s_{n} a_{n} T_{n}$ for every $n \geq 0$ we can rewrite $U_{n}=U_{n-1}+s_{n} c_{n}$, which is easy to solve.
3. Write the formula of integration by parts of discrete calculus.
$u \Delta v=\Delta(u v)-E v \Delta u$, where E is the shift operator: $E v(x)=v(x+1)$.
4. Write the definition of the sum of a sequence of real numbers, of which at most finitely many are negative.
Any of the following answers is acceptable:

- $\sum_{k \geq 0} a_{k}=\sum_{a_{k} \geq 0} a_{k}+\sum_{a_{k}<0} a_{k}$.
- $\sum_{k \geq 0} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}$.
- $\sum_{k \geq 0} a_{k}=\sum_{k \geq 0} a_{k}^{+}-\sum_{k \geq 0} a_{k}^{-}$, where $a_{k}^{+}=\max \left(a_{k}, 0\right)$ and $a_{k}^{-}=$ $\max \left(-a_{k}, 0\right)$.

5. How many integers $1 \leq k \leq n$ are in the union of the spectra of $\sqrt{3}$ and $(3+\sqrt{3}) / 2$?
n. As $1 / \sqrt{3}+2 /(3+\sqrt{3})=1$ and the two numbers are irrational, the spectra of $\sqrt{3}$ and $(3+\sqrt{3}) / 2$ form a partition of the positive integers.
6. State Bézout's theorem.

The greatest common divisor of two positive integers m and n is the smallest positive integer which can be written as a linear combination of m and n with integer coefficients.
7. Is $105^{72}-1$ divisible by 37 ?

Yes, because $105^{72}-1=\left(105^{36}-1\right) \cdot\left(105^{36}+1\right)$, and the first factor is divisible by 37 by Fermat's little theorem.
8. State Euler's theorem.

If a and m are positive integer and $\operatorname{gcd}(a, m)=1$, then $a^{\phi(m)} \equiv 1$ $(\bmod m)$, where ϕ is Euler's totient function.
9. Write the Vandermonde convolution.

$$
\sum_{k=0}^{n}\binom{r}{k}\binom{s}{n-k}=\binom{r+s}{n}
$$

10. Write the recurrence relation for the Stirling numbers of the second kind.

$$
\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}=k\left\{\begin{array}{l}
n \\
k
\end{array}\right\}+\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\} .
$$

11. How many ways are there of arranging 6 objects into 2 nonempty cycles?

$$
\left[\begin{array}{l}
6 \\
2
\end{array}\right]=5!H_{5}=120+60+40+30+24=274
$$

12. Let $m \geq 0$. What is $\sum_{n}\left[\begin{array}{c}m \\ n\end{array}\right]$?
$m!$. This can be seen by either using the formulas $\sum_{n}\left[\begin{array}{c}m \\ n\end{array}\right] z^{n}=z^{\bar{m}}$ and $1^{\bar{m}}=m$!, or by observing that there is a bijection between the arrangements of m objects into nonempty cycles and the permutations of m objects.
13. Write the generalized Cassini's identity.

For every k and n integer, $f_{n+k}=f_{k} f_{n+1}+f_{k-1} f_{n}$.
14. Can an analytic function be the generating function of two different sequences?
No, because of the identity principle for analytic functions.
15. Let $G(z)$ be the generating function of the sequence $\left\langle g_{n}\right\rangle$. What is the generating function of the sequence $\left\langle g_{2 n}\right\rangle$?
$H(z)$, where $H\left(z^{2}\right)=\frac{G(z)+G(-z)}{2}$.
16. Let $G(z)$ be the generating function of the sequence $\left\langle g_{n}\right\rangle$. What is the generating function of the sequence $\left\langle\sum_{i+j+k=n} g_{i} g_{j} g_{k}\right\rangle$? $(G(z))^{3}$. This is the convolution of three copies of the sequence $\left\langle g_{n}\right\rangle$.
17. What is the generating function of the sequence $\left\langle 2^{n}+n\right\rangle$?
$\frac{1}{1-2 z}+\frac{z}{(1-z)^{2}}$, because the generating function of the sum is the sum of the generating functions.
18. What is the generating function of the sequence of harmonic numbers?
$\frac{1}{1-z} \ln \frac{1}{1-z}$.
19. How many complete binary trees with 8 leaves exist?

The number of such trees is the Catalan number of index 7:

$$
C_{7}=\frac{1}{8}\binom{14}{7}=\frac{1}{8} \cdot \frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}=429 .
$$

20. What is the binomial convolution of two sequences?

The binomial convolution of $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ is the sequence $\left\langle\sum_{k}\binom{n}{k} f_{k} g_{n-k}\right\rangle$.

