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Exercise 1

(12 points) Solve the recurrence:

g0 = 1 ; g1 = 3 ;

gn = 4gn−1 − 4gn−2 ∀n ≥ 2 .
(1)

Solution:
The recurrence (1) is easily solved with generating functions via the Ra-

tional Expansion Theorem. Let us follow the method step by step:

1. We must rewrite (1) so that it holds for every n ∈ Z, with the conven-
tion that gn = 0 if n < 0. We need to check the initial conditions:

• For n = 0 it is g0 = 1 but 4g−1 − 4g−2 = 0: we thus need a
correction summand 1.

• For n = 1 it is g1 = 3 but 4g0−4g−1 = 4: we thus need a correction
summand −1.

The recurrence (1) for arbitrary n ∈ Z is thus:

gn = 4gn−1 − 4gn−2 + [n = 0]− [n = 1] .

2. Let G(z) be the generating function of the sequence 〈gn〉. By multi-
plying the recurrence by zn for every n ∈ Z and summing over n we
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obtain:

G(z) =
∑
n

gnz
n

= 4
∑
n

gn−1zn − 4
∑
n

gn−2z
n +

∑
n

[n = 0] zn −
∑
n

[n = 1] zn

= 4
∑
n

gnz
n+1 − 4

∑
n

gnz
n+2 + 1− z

= 4zG(z)− 4z2G(z) + 1− z .

3. By solving the above with respect to G(z) we get

G(z) ·
(
1− 4z + 4z2

)
= 1− z ,

which yields

G(z) =
1− z

1− 4z + 4z2
.

4. The function G(z) has the form G(z) = P (z)/Q(z) where P (z) = 1−z
and Q(z) = 1−4z+4z2 = (1−2z)2. Then the solution of the recurrence
is (an + b) · 2n for suitable a and b. To find such numbers, we use the
Rational Expansion Theorem: in our case, ρ = 2 and d = 2, so:

a =
(−2)2 · P (1/2) · 2

Q′′(1/2)
=

4 · (1/2) · 2
8

=
1

2
.

To find b, we compare the initial condition g0 = 1 with the value
(a · 0 + b) · 20: which yields b = 1. In conclusion,

gn =
(n

2
+ 1
)
· 2n .

Exercise 2

(10 points) For n, r, s ≥ 0 all integers compute

Sn =
n∑
k=0

(
k

r

)(
n− k
s

)
.

Solution: The sequence 〈Sn〉 is the convolution of the sequences
〈(

n
r

)〉
and
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〈(
n
s

)〉
. We know that

∑
n≥0
(
n
r

)
= zr

(1−z)r+1 and
∑

n≥0
(
n
s

)
= zs

(1−z)s+1 : then the

generating function of 〈Sn〉 is

S(z) =
zr+s

(1− z)r+s+2
.

This writing is annoying, because the right-hand side does not have the con-
venient form zm

(1−z)m+1 : which it would have if the exponent at the numerator
was r + s + 1 instead of r + s. But as r + s ≥ 0, the constant coeffi-
cient of zr+s+1

(1−z)r+s+2 =
∑

n≥0
(

n
r+s+1

)
zn is

(
0

r+s+1

)
= 0: by applying the formula

G(z)−g0
z

=
∑

n≥0 gn+1z
n, we get

S(z) =
1

z
·
(

zr+s+1

(1− z)r+s+2
− 0

)
=
∑
n≥0

(
n+ 1

r + s+ 1

)
zn .

By comparison, we finally find:

n∑
k=0

(
k

r

)(
n− k
s

)
=

(
n+ 1

r + s+ 1

)
.

Exercise 3

(8 points) Determine the values of n ≥ 0 such that n14 − 3n10 + 3n6 − n2 is
divisible by 250.
Solution: As 250 = 2 · 53 as a product of powers of primes, we must show
that n14 − 3n10 + 3n6 − n2 is divisible by both 2 and 125. One part is easy:
there are four summands, which are either all even or all odd, so the sum is
even. For the other part, we factor the polynomial and obtain:

n14 − 3n10 + 3n6 − n2 = n2 · (n12 − 3n8 + 3n4 − 1) = n2 · (n4 − 1)3 .

If n is not a multiple of 5, then n4 − 1 is by Fermat’s little theorem, and as
there are three such factors, n14− 3n10 + 3n6− n2 is indeed divisible by 125.
If n is a multiple of 5, however, then n4 − 1 is not, and the contributions
to divisibility by 125 must come all from n: as there are two factors n in
n14 − 3n10 + 3n6 − n2, if n is divisible by 5 but not by 25, then n14 − 3n10 +
3n6−n2 is divisible by 525 but not by 125; while if n is divisible by 25, then
n14 − 3n10 + 3n6 − n2 is divisible by 625, thus also by 125.

In conclusion, n14 − 3n10 + 3n6 − n2 is divisible by 250 if and only if n is
either divisible by 25, or not divisible by 5.
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Questions

1. If 100 people are put in circle and every second person is eliminated,
which one will be left in the end?
100 = 64 + 36, and 2 · 36 + 1 = 73: hence, the seventy-third person will
be left in the end.

2. Explain the main idea of the method of the summation factor.
If the recurrence equation has the form anTn = bnTn−1 + cn, and we
find nonzero 〈sn〉 such that snbn = sn−1an−1 for every n ≥ 1, then by
putting Un = snanTn for every n ≥ 0 we can rewrite Un = Un−1 + sncn,
which is easy to solve.

3. Write the formula of integration by parts of discrete calculus.
u∆v = ∆(uv)−Ev∆u, where E is the shift operator: Ev(x) = v(x+1).

4. Write the definition of the sum of a sequence of real numbers, of which
at most finitely many are negative.
Any of the following answers is acceptable:

•
∑

k≥0 ak =
∑

ak≥0 ak +
∑

ak<0 ak.

•
∑

k≥0 ak = limn→∞
∑n

k=0 ak.

•
∑

k≥0 ak =
∑

k≥0 a
+
k −

∑
k≥0 a

−
k , where a+k = max(ak, 0) and a−k =

max(−ak, 0).

5. How many integers 1 ≤ k ≤ n are in the union of the spectra of
√

3
and (3 +

√
3)/2?

n. As 1/
√

3 + 2/(3 +
√

3) = 1 and the two numbers are irrational, the
spectra of

√
3 and (3 +

√
3)/2 form a partition of the positive integers.

6. State Bézout’s theorem.
The greatest common divisor of two positive integers m and n is the
smallest positive integer which can be written as a linear combination
of m and n with integer coefficients.

7. Is 10572 − 1 divisible by 37?
Yes, because 10572 − 1 = (10536 − 1) · (10536 + 1), and the first factor
is divisible by 37 by Fermat’s little theorem.
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8. State Euler’s theorem.
If a and m are positive integer and gcd(a,m) = 1, then aφ(m) ≡ 1
(mod m), where φ is Euler’s totient function.

9. Write the Vandermonde convolution.

n∑
k=0

(
r

k

)(
s

n− k

)
=

(
r + s

n

)
.

10. Write the recurrence relation for the Stirling numbers of the second
kind. {

n+ 1
k

}
= k

{
n
k

}
+

{
n

k − 1

}
.

11. How many ways are there of arranging 6 objects into 2 nonempty cy-
cles? [

6
2

]
= 5!H5 = 120 + 60 + 40 + 30 + 24 = 274 .

12. Let m ≥ 0. What is
∑

n

[
m
n

]
?

m!. This can be seen by either using the formulas
∑

n

[
m
n

]
zn = zm

and 1m = m!, or by observing that there is a bijection between the
arrangements of m objects into nonempty cycles and the permutations
of m objects.

13. Write the generalized Cassini’s identity.
For every k and n integer, fn+k = fkfn+1 + fk−1fn.

14. Can an analytic function be the generating function of two different
sequences?
No, because of the identity principle for analytic functions.

15. Let G(z) be the generating function of the sequence 〈gn〉. What is the
generating function of the sequence 〈g2n〉?
H(z), where H(z2) = G(z)+G(−z)

2
.
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16. Let G(z) be the generating function of the sequence 〈gn〉. What is the

generating function of the sequence
〈∑

i+j+k=n gigjgk

〉
?

(G(z))3. This is the convolution of three copies of the sequence 〈gn〉.

17. What is the generating function of the sequence 〈2n + n〉?
1

1− 2z
+

z

(1− z)2
, because the generating function of the sum is the

sum of the generating functions.

18. What is the generating function of the sequence of harmonic numbers?
1

1− z
ln

1

1− z
.

19. How many complete binary trees with 8 leaves exist?
The number of such trees is the Catalan number of index 7:

C7 =
1

8

(
14

7

)
=

1

8
· 14 · 13 · 12 · 11 · 10 · 9 · 8

1 · 2 · 3 · 4 · 5 · 6 · 7
= 429 .

20. What is the binomial convolution of two sequences?
The binomial convolution of 〈fn〉 and 〈gn〉 is the sequence

〈∑
k

(
n
k

)
fkgn−k

〉
.
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