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Exercise 1
(10 points) Solve the recurrence:
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Solution: The form of the recurrence equation (1) suggests to make a
sostitution such that the factors n on the left-hand side and 2 on the right-
hand side disappear. Intuition would suggest to put
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with this substitution and some manipulations, (1) becomes
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which clearly has the solution
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If we want to try a summation factor, we have to be careful to the fact that
a, is n for n > 0, but 1 for n = 0. Then
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for n > 1, and sg = 1 as usual for the method: for n > 1 we then have
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which matches our previous intuition. In the end,

Exercise 2
(8 points) Express ), ., k-27" as a function of n, and evaluate ), ., k-27%
Solution: We can compute ;.. k- 2% in two different ways:

e Perturbation method:



Let Sy =" cpep k- 27" then
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so that by multiplying both sides by 2 we get
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As the last summand on the right-hand side of (4) is 1 — 27", we get

Sy =2—(n+2)-27".

Discrete calculus:

We look at k- 27% as an object of the form uAwv, where u(z) = z (so
that Au(z) = 1) and Av(x) = 27*. Recall that Ac* = (¢ — 1)¢® for
¢ > 0: which means that
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To have Av(z) = 27 we must then set v(z) = —2 - 27, If we make
the additional observation that Y7, k-27% =37, k-27% we



can compute:
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which is the same result we had found by the perturbation method.

Then ZkZI k- 2F = lim,_ o0 Zlgkgn k-2k=2.

Exercise 3

(4 points) Prove that [z — 1] < |2+ 1] for every z € R, and give a closed
formula for the difference.

Solution: The closed interval [m — %, T+ %] contains two integers if {x} =
r—|z] = %, otherwise it contains a single integer. In this second case, such
single integer must be the common value of (:c — ﬂ and Lx + %J, otherwise,
xr — % and x + % are both integer, so they coincide with both their floors and

their ceilings, and the former is smaller than the latter. Then
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Exercise 4

(8 points) Prove that n'® —n is divisible by 105 for every positive integer n.
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Solution: As 105 =3-5-7 as a product of (powers of) primes, n'® — n is

divisible by 105 if and only if it is divisible by 3, 5, and 7. Write n'® —n =
n-(n'? —1): to apply Fermat’s little theorem with prime p, we must collect
a factor n? — n from n'® —n, or equivalently, a factor n?~! — 1 from n'? — 1.
For p = 3 we must show that n'? — 1 is divisible by n? — 1: but this is true,
because

n?—1=m° -1=0*-1Dn"+n®+n’ +n* +n*+1).

Similarly, for p = 5 we must show that n'? — 1 is divisible by n* — 1: which
is the case, because

n?—1=m"Y-1=m"-D"n*+n*+1).

Finally, for p = 7 we must show that n'? — 1 is divisible by n% — 1: which is
true, because n'? — 1 = (n® — 1)(n® + 1).



