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Exercise 1

(10 points) Solve the recurrence:

T0 = 1 ;

nTn = 2Tn−1 +
2n

n!

(
1 +

n

3n

)
∀n ≥ 1 .

(1)

Solution: The form of the recurrence equation (1) suggests to make a
sostitution such that the factors n on the left-hand side and 2 on the right-
hand side disappear. Intuition would suggest to put

Tn =
2nUn

n!
: (2)

with this substitution and some manipulations, (1) becomes

U0 = 1 ;
2n

(n− 1)!
Un =

2n

(n− 1)!
Un−1 +

2n

(n− 1)!

(
1

n
+

1

3n

)
∀n ≥ 1 ,
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which clearly has the solution

Un = 1 +Hn +
n∑

k=1

1

3n

= Hn +
n∑

k=0

1

3n

= Hn +
1− 1

3n+1

1− 1

3

= Hn +
1

2

(
3− 1

3n

)
.

If we want to try a summation factor, we have to be careful to the fact that
an is n for n > 0, but 1 for n = 0. Then

sn =
n∏

j=1

aj−1
bj

=
(n− 1)!

2n

for n ≥ 1, and s0 = 1 as usual for the method: for n ≥ 1 we then have

Un = snanTn =
(n− 1)!

2n
· n =

n!

2n
Tn ,

which matches our previous intuition. In the end,

Tn =
2n

n!
Hn +

2n−1

n!

(
3− 1

3n

)
. (3)

Exercise 2

(8 points) Express
∑

1≤k≤n k·2−k as a function of n, and evaluate
∑

k≥1 k·2−k.

Solution: We can compute
∑

1≤k≤n k · 2−k in two different ways:

• Perturbation method:
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Let Sn =
∑

1≤k≤n k · 2−k: then

Sn + (n+ 1) · 2−n−1 =
1

2
+

n+1∑
k=2

k · 2−k

=
1

2
+

n∑
k=1

(k + 1) · 2−k−1

=
1

2
+

1

2

(
n∑

k=1

k · 2−k +
n∑

k=1

2−k

)
,

so that by multiplying both sides by 2 we get

2Sn + (n+ 1) · 2−n = 1 + Sn +
n∑

k=1

2−k . (4)

As the last summand on the right-hand side of (4) is 1− 2−n, we get

Sn = 2− (n+ 2) · 2−n .

• Discrete calculus:

We look at k · 2−k as an object of the form u∆v, where u(x) = x (so
that ∆u(x) = 1) and ∆v(x) = 2−x. Recall that ∆cx = (c − 1)cx for
c > 0: which means that

∆2−x = ∆

(
1

2

)x

=

(
1

2
− 1

)(
1

2

)x

= −1

2
· 2−x .

To have ∆v(x) = 2−x we must then set v(x) = −2 · 2−x. If we make
the additional observation that

∑
1≤k≤n k · 2−k =

∑
0≤k≤n k · 2−k, we
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can compute:∑
1≤k≤n

k · 2−k =
n+1∑
0

x ·
(

1

2

)x

δx

= −2x · 2−x
∣∣n+1

0
−

n+1∑
0

(−2)

(
1

2

)x+1

δx

= −(n+ 1) · 2−n +
n+1∑
0

(
1

2

)x+1

δx

= −(n+ 1) · 2−n +
n∑

k=0

2−k

= −(n+ 1) · 2−n +

(
1 +

n∑
k=1

2−k

)
= −(n+ 1) · 2−n + 1 + 1− 2−n

= 2− (n+ 2) · 2−n ,

which is the same result we had found by the perturbation method.

Then
∑

k≥1 k · 2k = limn→∞
∑

1≤k≤n k · 2k = 2.

Exercise 3

(4 points) Prove that
⌈
x− 1

2

⌉
≤
⌊
x+ 1

2

⌋
for every x ∈ R, and give a closed

formula for the difference.
Solution: The closed interval

[
x− 1

2
, x+ 1

2

]
contains two integers if {x} =

x− bxc = 1
2
, otherwise it contains a single integer. In this second case, such

single integer must be the common value of
⌈
x− 1

2

⌉
and

⌊
x+ 1

2

⌋
; otherwise,

x− 1
2

and x+ 1
2

are both integer, so they coincide with both their floors and
their ceilings, and the former is smaller than the latter. Then⌊

x+
1

2

⌋
−
⌈
x− 1

2

⌉
=

[
x− bxc =

1

2

]
.

Exercise 4

(8 points) Prove that n13 − n is divisible by 105 for every positive integer n.
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Solution: As 105 = 3 · 5 · 7 as a product of (powers of) primes, n13 − n is
divisible by 105 if and only if it is divisible by 3, 5, and 7. Write n13 − n =
n · (n12 − 1): to apply Fermat’s little theorem with prime p, we must collect
a factor np − n from n13 − n, or equivalently, a factor np−1 − 1 from n12 − 1.
For p = 3 we must show that n12 − 1 is divisible by n2 − 1: but this is true,
because

n12 − 1 = (n2)6 − 1 = (n2 − 1)(n10 + n8 + n6 + n4 + n2 + 1) .

Similarly, for p = 5 we must show that n12 − 1 is divisible by n4 − 1: which
is the case, because

n12 − 1 = (n4)3 − 1 = (n4 − 1)(n8 + n4 + 1) .

Finally, for p = 7 we must show that n12 − 1 is divisible by n6 − 1: which is
true, because n12 − 1 = (n6 − 1)(n6 + 1).
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