ITT9131 - Concrete Mathematics Midterm exam - Recovery Solutions

23 November 2016

Exercise 1

(10 points) Solve the recurrence:

$$
\begin{align*}
T_{0} & =1 ; \\
n T_{n} & =2 T_{n-1}+\frac{2^{n}}{n!}\left(1+\frac{n}{3^{n}}\right) \quad \forall n \geq 1 . \tag{1}
\end{align*}
$$

Solution: The form of the recurrence equation (1) suggests to make a sostitution such that the factors n on the left-hand side and 2 on the righthand side disappear. Intuition would suggest to put

$$
\begin{equation*}
T_{n}=\frac{2^{n} U_{n}}{n!}: \tag{2}
\end{equation*}
$$

with this substitution and some manipulations, (1) becomes

$$
\begin{aligned}
U_{0} & =1 ; \\
\frac{2^{n}}{(n-1)!} U_{n} & =\frac{2^{n}}{(n-1)!} U_{n-1}+\frac{2^{n}}{(n-1)!}\left(\frac{1}{n}+\frac{1}{3^{n}}\right) \quad \forall n \geq 1,
\end{aligned}
$$

which clearly has the solution

$$
\begin{aligned}
U_{n} & =1+H_{n}+\sum_{k=1}^{n} \frac{1}{3^{n}} \\
& =H_{n}+\sum_{k=0}^{n} \frac{1}{3^{n}} \\
& =H_{n}+\frac{1-\frac{1}{3^{n+1}}}{1-\frac{1}{3}} \\
& =H_{n}+\frac{1}{2}\left(3-\frac{1}{3^{n}}\right) .
\end{aligned}
$$

If we want to try a summation factor, we have to be careful to the fact that a_{n} is n for $n>0$, but 1 for $n=0$. Then

$$
s_{n}=\prod_{j=1}^{n} \frac{a_{j-1}}{b_{j}}=\frac{(n-1)!}{2^{n}}
$$

for $n \geq 1$, and $s_{0}=1$ as usual for the method: for $n \geq 1$ we then have

$$
U_{n}=s_{n} a_{n} T_{n}=\frac{(n-1)!}{2^{n}} \cdot n=\frac{n!}{2^{n}} T_{n},
$$

which matches our previous intuition. In the end,

$$
\begin{equation*}
T_{n}=\frac{2^{n}}{n!} H_{n}+\frac{2^{n-1}}{n!}\left(3-\frac{1}{3^{n}}\right) . \tag{3}
\end{equation*}
$$

Exercise 2

(8 points) Express $\sum_{1 \leq k \leq n} k \cdot 2^{-k}$ as a function of n, and evaluate $\sum_{k \geq 1} k \cdot 2^{-k}$. Solution: We can compute $\sum_{1 \leq k \leq n} k \cdot 2^{-k}$ in two different ways:

- Perturbation method:

Let $S_{n}=\sum_{1 \leq k \leq n} k \cdot 2^{-k}$: then

$$
\begin{aligned}
S_{n}+(n+1) \cdot 2^{-n-1} & =\frac{1}{2}+\sum_{k=2}^{n+1} k \cdot 2^{-k} \\
& =\frac{1}{2}+\sum_{k=1}^{n}(k+1) \cdot 2^{-k-1} \\
& =\frac{1}{2}+\frac{1}{2}\left(\sum_{k=1}^{n} k \cdot 2^{-k}+\sum_{k=1}^{n} 2^{-k}\right),
\end{aligned}
$$

so that by multiplying both sides by 2 we get

$$
\begin{equation*}
2 S_{n}+(n+1) \cdot 2^{-n}=1+S_{n}+\sum_{k=1}^{n} 2^{-k} \tag{4}
\end{equation*}
$$

As the last summand on the right-hand side of (4) is $1-2^{-n}$, we get

$$
S_{n}=2-(n+2) \cdot 2^{-n}
$$

- Discrete calculus:

We look at $k \cdot 2^{-k}$ as an object of the form $u \Delta v$, where $u(x)=x$ (so that $\Delta u(x)=1)$ and $\Delta v(x)=2^{-x}$. Recall that $\Delta c^{x}=(c-1) c^{x}$ for $c>0$: which means that

$$
\Delta 2^{-x}=\Delta\left(\frac{1}{2}\right)^{x}=\left(\frac{1}{2}-1\right)\left(\frac{1}{2}\right)^{x}=-\frac{1}{2} \cdot 2^{-x}
$$

To have $\Delta v(x)=2^{-x}$ we must then set $v(x)=-2 \cdot 2^{-x}$. If we make the additional observation that $\sum_{1 \leq k \leq n} k \cdot 2^{-k}=\sum_{0 \leq k \leq n} k \cdot 2^{-k}$, we
can compute:

$$
\begin{aligned}
\sum_{1 \leq k \leq n} k \cdot 2^{-k} & =\sum_{0}^{n+1} x \cdot\left(\frac{1}{2}\right)^{x} \delta x \\
& =-\left.2 x \cdot 2^{-x}\right|_{0} ^{n+1}-\sum_{0}^{n+1}(-2)\left(\frac{1}{2}\right)^{x+1} \delta x \\
& =-(n+1) \cdot 2^{-n}+\sum_{0}^{n+1}\left(\frac{1}{2}\right)^{x+1} \delta x \\
& =-(n+1) \cdot 2^{-n}+\sum_{k=0}^{n} 2^{-k} \\
& =-(n+1) \cdot 2^{-n}+\left(1+\sum_{k=1}^{n} 2^{-k}\right) \\
& =-(n+1) \cdot 2^{-n}+1+1-2^{-n} \\
& =2-(n+2) \cdot 2^{-n}
\end{aligned}
$$

which is the same result we had found by the perturbation method.
Then $\sum_{k \geq 1} k \cdot 2^{k}=\lim _{n \rightarrow \infty} \sum_{1 \leq k \leq n} k \cdot 2^{k}=2$.

Exercise 3

(4 points) Prove that $\left\lceil x-\frac{1}{2}\right\rceil \leq\left\lfloor x+\frac{1}{2}\right\rfloor$ for every $x \in \mathbb{R}$, and give a closed formula for the difference.

Solution: The closed interval $\left[x-\frac{1}{2}, x+\frac{1}{2}\right]$ contains two integers if $\{x\}=$ $x-\lfloor x\rfloor=\frac{1}{2}$, otherwise it contains a single integer. In this second case, such single integer must be the common value of $\left\lceil x-\frac{1}{2}\right\rceil$ and $\left\lfloor x+\frac{1}{2}\right\rfloor$; otherwise, $x-\frac{1}{2}$ and $x+\frac{1}{2}$ are both integer, so they coincide with both their floors and their ceilings, and the former is smaller than the latter. Then

$$
\left\lfloor x+\frac{1}{2}\right\rfloor-\left\lceil x-\frac{1}{2}\right\rceil=\left\lceil x-\lfloor x\rfloor=\frac{1}{2}\right] .
$$

Exercise 4

(8 points) Prove that $n^{13}-n$ is divisible by 105 for every positive integer n.

Solution: As $105=3 \cdot 5 \cdot 7$ as a product of (powers of) primes, $n^{13}-n$ is divisible by 105 if and only if it is divisible by 3,5 , and 7 . Write $n^{13}-n=$ $n \cdot\left(n^{12}-1\right)$: to apply Fermat's little theorem with prime p, we must collect a factor $n^{p}-n$ from $n^{13}-n$, or equivalently, a factor $n^{p-1}-1$ from $n^{12}-1$. For $p=3$ we must show that $n^{12}-1$ is divisible by $n^{2}-1$: but this is true, because

$$
n^{12}-1=\left(n^{2}\right)^{6}-1=\left(n^{2}-1\right)\left(n^{10}+n^{8}+n^{6}+n^{4}+n^{2}+1\right) .
$$

Similarly, for $p=5$ we must show that $n^{12}-1$ is divisible by $n^{4}-1$: which is the case, because

$$
n^{12}-1=\left(n^{4}\right)^{3}-1=\left(n^{4}-1\right)\left(n^{8}+n^{4}+1\right) .
$$

Finally, for $p=7$ we must show that $n^{12}-1$ is divisible by $n^{6}-1$: which is true, because $n^{12}-1=\left(n^{6}-1\right)\left(n^{6}+1\right)$.

