# ITT9131 - Concrete Mathematics Solutions to the midterm exam 

Silvio Capobianco

8 November 2016

## Exercise 1

(10 points) Solve the recurrence:

$$
\begin{align*}
& T_{0}=1 \\
& T_{n}=2 T_{n-1}+\left(\frac{3}{2}\right)^{n}+2^{n} H_{n} \quad \forall n \geq 1 \tag{1}
\end{align*}
$$

Solution: The system (1) has the form

$$
\begin{aligned}
a_{0} T_{0} & =1 ; \\
a_{n} T_{n} & =b_{n} T_{n-1}+c_{n} \quad \forall n \geq 1
\end{aligned}
$$

with

$$
a_{n}=1 ; b_{n}=2 ; c_{n}=\left(\frac{3}{2}\right)^{n}+H_{n} .
$$

This suggests using a summation factor:

$$
s_{0}=1 ; s_{n}=\prod_{j=1}^{n} \frac{a_{j-1}}{b_{j}}=\frac{1}{2^{n}} \quad \forall n \geq 1
$$

Then, by putting $U_{n}=s_{n} a_{n} T_{n}=T_{n} / 2^{n}$ and simplifying, we get

$$
\begin{aligned}
U_{0} & =1 \\
U_{n} & =U_{n-1}+\left(\frac{3}{4}\right)^{n}+H_{n} \quad \forall n \geq 1:
\end{aligned}
$$

which clearly has the solution

$$
\begin{aligned}
U_{n} & =1+\sum_{k=1}^{n}\left(\left(\frac{3}{4}\right)^{k}+H_{k}\right) \\
& =\sum_{k=0}^{n}\left(\frac{3}{4}\right)^{k}+\sum_{k=1}^{n} H_{k} \\
& =\frac{4^{n+1}-3^{n+1}}{4^{n}}+(n+1) H_{n}-n
\end{aligned}
$$

In the end, the solution to (1) is:

$$
T_{n}=\frac{4^{n+1}-3^{n+1}}{2^{n}}+2^{n} \cdot\left((n+1) H_{n}-n\right) .
$$

## Exercise 2

(8 points) Prove that $n^{21}-n^{19}-n^{3}+n$ is divisible by 114 for every integer $n \geq 1$.

Solution: As $114=2 \cdot 3 \cdot 19$ as a product of (powers of) primes, we must prove that $n^{21}-n^{19}-n^{3}+n$ is divisible by 2,3 , and 19 for every $n \geq 1$. Factoring the polynomial, we get:

$$
n^{21}-n^{19}-n^{3}+n=n \cdot\left(n^{20}-n^{18}-n^{2}+1\right)=n \cdot\left(n^{18}-1\right) \cdot\left(n^{2}-1\right) .
$$

This decomposition tells us that $n^{21}-n^{19}-n^{3}+n$ is divisible by $n^{19}-n$, which in turn is divisible by 19 because of Fermat's last theorem. Moreover, as $n^{2}-1=(n-1)(n+1)$, the number $n^{21}-n^{19}-n^{3}+n$ always has the three consecutive factors $n-1, n$, and $n+1$ : of those, exactly one is a multiple of 3 , and at least one is even.

## Exercise 3

1. (3 points.) Prove that, for every $n \geq 1$,

$$
\begin{equation*}
H_{n} \leq 1+\lfloor\lg n\rfloor, \tag{2}
\end{equation*}
$$

where $\lg$ is the base-2 logarithm.
2. (9 points.) Use the inequality (2) to evaluate the infinite sum:

$$
\begin{equation*}
\sum_{k \geq 1} k^{-2} H_{k} \tag{3}
\end{equation*}
$$

Important: Point 2 can be solved without having solved point 1, as it only asks to use the inequality (2), not to have proven it.

Solution: For $n \geq 1$ let $m=\lfloor\lg n\rfloor$, so that $2^{m} \leq n \leq 2^{m+1}-1$. Then

$$
\begin{aligned}
H_{n} & \leq \sum_{k=1}^{2^{m+1}-1} \frac{1}{k} \\
& =\sum_{j=0}^{m} \sum_{k=2^{j}}^{2^{j+1}-1} \frac{1}{k} \\
& \leq \sum_{j=0}^{m} \sum_{k=2^{j}}^{2^{j+1}-1} \frac{1}{2^{j}} \\
& =\sum_{j=0}^{m} 1=m+1=1+\lfloor\lg n\rfloor
\end{aligned}
$$

Let now $u(x)=H_{x}$ and $v(x)=-x \underline{-1}=-1 /(x+1)$, so that $\Delta u(x)=\frac{1}{x+1}=$ $x \underline{-1}$ and $\Delta v(x)=x \underline{-2}$. Then for every $n \geq 2$ :

$$
\begin{aligned}
\sum_{1 \leq k<n} k^{-2} H_{k} & =\sum_{1}^{n} u(x) \Delta v(x) \delta x \\
& =-\left.x^{-1} H_{x}\right|_{1} ^{n}-\sum_{1}^{n} E v(x) \Delta u(x) \delta x \\
& =-\frac{1}{n+1} \cdot H_{n}+\frac{1}{2}+\sum_{1}^{n}(x+1)^{-1} x^{-1} \delta x \\
& =\frac{1}{2}-\frac{H_{n}}{n+1}+\sum_{1}^{n} x^{-2} \delta x \\
& =\frac{1}{2}-\frac{H_{n}}{n+1}-\left.x^{-2}\right|_{1} ^{n} \\
& =\frac{1}{2}-\frac{H_{n}}{n+1}-\frac{1}{n+1}+\frac{1}{2} \\
& =1-\frac{H_{n}+1}{n+1} .
\end{aligned}
$$

Because of the inequality (2), the second summand vanishes for $n \rightarrow \infty$. We can then conclude that:

$$
\sum_{k \geq 1} k^{-2} H_{k}=1
$$

