ITT9130 - Concrete Mathematics November 11, 2014: Midterm exam

Revision: November 12, 2014

Exercise 1

Prove that, for every nonnegative integer n, the quantity

$$
n^{16}-n^{14}-n^{4}+n^{2}
$$

is divisible by 78 .

Solution

By straightforward factorization,

$$
\begin{aligned}
n^{16}-n^{14}-n^{4}+n^{2} & =n^{12} \cdot\left(n^{4}-n^{2}\right)-\left(n^{4}-n^{2}\right) \\
& =\left(n^{12}-1\right) \cdot\left(n^{4}-n^{2}\right) \\
& =\left(n^{12}-1\right) \cdot n^{2} \cdot\left(n^{2}-1\right) \\
& =\left(n^{13}-n\right) \cdot((n-1) \cdot n \cdot(n+1))
\end{aligned}
$$

The product $(n-1) \cdot n \cdot(n+1)$ is made of three consecutive factors, of which one is divisible by 3 , and at least one is even: the product itself is thus divisible by 6 . The product $n^{13}-n$ is divisible by 13 because of Fermat's little theorem. We may thus conclude that, for every $n \geq 0, n^{16}-n^{14}-n^{4}+n^{2}$ is divisible by $6 \cdot 13=78$.

Exercise 2

Solve the following recurrence:

$$
\begin{align*}
& T_{0}=1 \\
& T_{n}=-n T_{n-1}+3 \cdot n \cdot n!\text { for } n>0 . \tag{1}
\end{align*}
$$

Hint: consider the general solution to the recurrence:

$$
\begin{align*}
& U_{0}=\alpha \\
& U_{n}=U_{n-1}+(-1)^{n} \cdot(\beta n+\gamma) \text { for } n>0 . \tag{2}
\end{align*}
$$

Solution

If we write $T_{n}=(-1)^{n} n!U_{n}$, then (1) becomes

$$
\begin{aligned}
U_{0} & =1 \\
(-1)^{n} n!U_{n} & =-n(-1)^{n-1}(n-1)!U_{n-1}+3 \cdot n \cdot n!\text { for } n>0 \text { : }
\end{aligned}
$$

we divide the second equation by $(-1)^{n} n$! and get

$$
\begin{aligned}
& U_{0}=1 \\
& U_{n}=U_{n-1}+(-1)^{n} \cdot 3 n \text { for } n>0
\end{aligned}
$$

which in turn is a special case of (2) for $\alpha=1, \beta=3, \gamma=0$. So let's search for a solution of (2) of the form:

$$
U_{n}=\alpha \cdot A(n)+\beta \cdot B(n)+\gamma \cdot C(n) .
$$

The choice $U_{n}=1$ for every $n \geq 0$ corresponds to $\alpha=1, \beta=\gamma=0$: thus, $A(n)=1$. The choice $U_{n}=(-1)^{n}$ corresponds to $\alpha=1, \beta=0, \gamma=2$: thus, $A(n)+2 C(n)=(-1)^{n}$, from which follows

$$
C(n)=\frac{\left((-1)^{n}-1\right)}{2}=-[n \text { is odd }]
$$

The choice $U_{n}=(-1)^{n} \cdot n$ corresponds to $\alpha=0, \beta=2, \gamma=-1$: which yields $2 B(n)-C(n)=(-1)^{n} \cdot n$, and consequently,

$$
B(n)=\frac{(-1)^{n} n-[n \text { is odd }]}{2}=(-1)^{n} \cdot\left\lceil\frac{n}{2}\right\rceil .
$$

Finally, for $\alpha=1, \beta=3, \gamma=0$ we have $U_{n}=1+3 \cdot(-1)^{n} \cdot\lceil n / 2\rceil$: thus,

$$
T_{n}=(-1)^{n} \cdot n!\cdot\left(1+3 \cdot(-1)^{n} \cdot\left\lceil\frac{n}{2}\right\rceil\right)=\left(3\left\lceil\frac{n}{2}\right\rceil+(-1)^{n}\right) \cdot n!.
$$

Exercise 3

For $n \geq 0$, evaluate

$$
S_{n}=\sum_{0 \leq k<n} k(k-1) H_{k}
$$

Solution

The generic summand can be rewritten as $k^{2} H_{k}$: this suggests using summation by parts with $u(x)=H_{x}$ and $\Delta v(x)=x^{2}$ Indeed, with this choice we get $\Delta u(x)=1 /(x+1)$ and $v(x)=x^{\underline{3}} / 3$, so that

$$
E v(x) \Delta u(x)=\frac{(x+1)^{\underline{3}}}{3} \cdot \frac{1}{x+1}=\frac{x^{\underline{2}}}{3}
$$

Let us proceed:

$$
\begin{aligned}
\sum_{0 \leq k<n} k(k-1) H_{k} & =\sum_{0}^{n} x^{\underline{2}} H_{x} \delta(x) \\
& =\left[\frac{x^{\underline{3}}}{3} H_{x}\right]_{0}^{n}-\frac{1}{3} \sum_{0}^{n} x^{\underline{2}} \delta(x) \\
& =\frac{n^{\underline{3}}}{3} H_{n}-0-\frac{1}{3}\left[\frac{x^{\underline{3}}}{3}\right]_{0}^{n} \\
& =\frac{n^{\underline{3}}}{3} H_{n}-\frac{1}{3}\left(\frac{n^{\underline{3}}}{3}-0\right) \\
& =\frac{n^{\underline{3}}}{3}\left(H_{n}-\frac{1}{3}\right)
\end{aligned}
$$

