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Exercise 1.2

Find the shortest sequence of moves that transfers a tower of n disks from
the left peg A to the right peg B, if direct moves between A and B are
disallowed. Here, A is the start peg, B the stop peg, and C the spool peg.

Solution. For n = 1 the shortest sequence is A→ C, C → B. For n = 2 it
is:

1. A→ C.

2. C → B.

3. A→ C.

4. B → C. Note that the whole tower is on peg C now.

5. C → A.

6. C → B.

7. A→ C.

8. C → B.

For the general case, observe that the strategy that solves the problem for n
disks works as follows:

1. Move the upper tower of n− 1 disks on peg B.
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2. Move the n-th disk to peg C.

3. Move the upper tower of n− 1 disks on peg A.

4. Move the n-th disk to peg B.

5. Move the upper tower of n− 1 disks on peg B.

Then the number Xn of moves needed by the strategy to solve the problem
with n disks satisfies X0 = 0 and Xn = 3Xn−1 + 2 for every n > 0. It is easy
to see that the only solution is Xn = 3n − 1.

Exercise 1.3

Show that, in the previous exercise, each legal arrangement of n disks is
encountered exactly once.

Solution. There is exactly one legal arrangement per subdivision of the
n disks in three (possibly empty) sets. There are 3n − 1 moves between
displacements, so there are 3n displacements reached overall. If one of these
was touched twice, then it would be possible to reduce the number of moves
by performing, the first time we reach said displacement, the chain of steps
we would have taken on the second of its occurrences: which contradicts the
result we obtained in the previous exercise.

Exercise 1.4

Are there any starting and ending configurations of n disks on three pegs
that are more than 2n − 1 moves apart, according to Lucas’s original rules?

Solution. By contradiction, let n be the smallest number of tiles such that
there are two configurations A and B of n tiles which are at least 2n moves
apart. Then the largest tile in A and B must be on two different pegs,
otherwise A could be turned into B by only moving the n − 1 smaller tiles,
which requires less than 2n−1 moves by our hypothesis on n. But then, the
problem can be solved by first transforming A into some other configuration
C where only the n− 1 smaller tiles are moved, then moving the larger tile,
and finally transforming C into B by only moving the n−1 smaller pegs: by
our hypothesis on n, this requires at most (2n−1−1)+1+(2n−1−1) = 2n−1
moves. This is a contradiction.
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The technique of minimum counterexample

The proof technique we employed to solve the previous exercise is based on
the following, intuitive1 fact:

Every nonempty set of natural numbers has a minimum.

Suppose that we have a sequence {P (n)}n≥0 of propositions depending on
natural numbers, and that we want to prove that they are all true. To do
this, we may reason by contradiction and suppose that they are not all true:
then the set F = {n ≥ 0 | P (n) is false} is nonempty, and has a minimum n̄.
From here, we derive a contradiction. Some possibilities are:

1. Prove that P (n̄) is true.

2. Prove that P (m) is false for some m < n̄).

This technique, or variants of it, also works with other kinds of induction
such as structural induction.

Exercise 1.7

Let H(n) = J(n + 1) − J(n). Equation (1.8) tells us that H(2n) = 2, and
H(2n+1) = J(2n+2)−J(2n+1) = (2J(n+1)−1)−(2J(n)+1) = 2H(n)−2
for every n ≥ 1. Therefore it seems possible to prove that H(n) = 2 for all
n, by induction on n. What’s wrong here?

Solution. To correctly prove by induction that H(n) = 2 for every n ≥ 1, we
need to check the induction base for n = 1. However, H(1) = J(2)− J(1) =
1− 1 = 0.

Exercise 1.9

Consider the following statement:

P (n) : x1 · · ·xn ≤
(
x1 + . . . + xn

n

)n

∀x1, . . . , xn > 0 . (1)

This is trivially true for n = 1, and is also true for n = 2 as (x1+x2)
2−4x1x2 =

(x1 − x2)
2 ≥ 0.

1Actually, it is equivalent to induction.
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1. By setting xn = (x1 + . . . + xn−1)/(n − 1), prove that P (n) implies
P (n− 1) for every n > 1.

2. Prove that, for every n ≥ 1, P (n) and P (2) together imply P (2n).

3. Explain why points 1 and 2 together imply that P (n) is true for every
n ≥ 1.

Solution. Observe that (1) expresses the following, well known fact: the
geometric mean of a finite sequence of positive numbers never exceeds their

arithmetic mean. The formula is true for n = 2, because
√
x1x2 ≤

x1 + x2

2
is equivalent to (

√
x1 −

√
x2)

2 ≥ 0.
Point 1. Suppose P (n) is true. Then it remains true with the special

choice of xn:

x1 · · ·xn−1 ·
x1 + . . . + xn−1

n− 1
≤

(
x1 + . . . + xn−1 + x1+...+xn−1

n−1

n

)n

=

(
(n−1)(x1+...+xn−1)+(x1+...+xn−1)

n−1

n

)n

=

(
x1 + . . . + xn−1

n− 1

)n

=

(
x1 + . . . + xn−1

n− 1

)n−1

· x1 + . . . + xn−1

n− 1
.

As x1, . . . , xn−1 are arbitrary and (x1 + . . . + xn−1)/(n− 1) > 0, P (n− 1) is
true.

Point 2. Suppose P (n) and P (2) are both true. Then:

x1 · · ·xn · xn+1 · · ·x2n ≤
(
x1 + . . . + xn

n

)n

·
(
xn+1 + . . . + x2n

n

)n

=

((
x1 + . . . + xn

n

)
·
(
xn+1 + . . . + x2n

n

))n

≤

( x1+...+xn

n
+ xn+1+...+x2n

n

2

)2
n

=

(
x1 + . . . + xn + xn+1 + . . . + x2n

2n

)2n

.
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As x1, . . . , x2n are arbitrary, P (2n) is true.
Point 3. For every positive integer n there exists an integer k ≥ 0 and

positive integers m0 = 2,m1, . . . ,mk = n such that, for every i < k, either
mi+1 = 2mi or mi+1 = mi − 1. (For instance, set mi+1 = 2mi until mi ≥ n,
then mi+1 = mi − 1 until mi = n.) By points 1 and 2, P (m0) is true, and
P (m0) and P (mi) together imply P (mi+1) for every i < k: therefore, P (mk)
is true. As mk = n is arbitrary, the thesis follows.
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