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Exercise 1.8

Solve the recurrence:

Q0 = α ; Q1 = β;
Qn = (1 +Qn−1)/Qn−2 , for n > 1 .

Assume that Qn 6= 0 for all n ≥ 0. Hint: Q4 = (1 + α)/β.

Solution. Let us just start computing. We get Q2 = (1 + β)/α and Q3 =
(1 + ((1 + β)/α))/β = (1 + α + β)/αβ. Then:

Q4 =
1 + 1+α+β

αβ

1+β
α

=

αβ+1+α+β
αβ

1+β
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=
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1+β
α

=
1 + α

β
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and

Q5 =
1 + 1+α

β

1+α+β
αβ

=

β+1+α
β

1+α+β
αβ

= = α .

Thus, Q6 = (1 + α)/((1 + α)/β) = β, and the sequence is periodic.

Important note: Exercise 1.8 asks us to solve a second order recurrence
with two initial conditions, corresponding to two consecutive indices. To be
sure that the solution is a periodic sequence, we must then make sure that
two consecutive values are repeated.

Exercise 1.16

Use the repertoire method to solve the general four-parameter recurrence

g(1) = α ,
g(2n+ j) = 3g(n) + γn+ βj for j = 0, 1 and n ≥ 1 .

(1)

Solution. We construct a repertoire of both special solutions g(n) given spe-
cial values of the parameters α, β0, β1, γ, and special values of the parameters
given special solutions: from these, the general expression for g(n) is then
expressed in terms of four functions A(n), B0(n), B1(n), C(n) as

g(n) = A(n) · α + C(n) · γ +B0(n) · β0 +B1(n) · β1 ∀n ≥ 1 .

This is possible because the system (1) is linear in its parameters: if gi(n)
is the solution for the values (αi, β0,i, β1,i, γi), then λ1g1(n) + λ2g2(n) is the
solution for the values

(λ1α1 + λ2α2, λ1β0,1 + λ2β0,2, λ1β1,1 + λ2β1,2, λ1γ1 + λ2γ2) .

Observe that, for γ = 0, (1) is a special case of Equation 1.17 with
β1 = d = 1. In this case, Equation 1.18 yields

g0((bmbm−1 . . . b1b0)2) = (αβbm−1 . . . βb1βb0)3 ,
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which is a complete solution for γ = 0 and α, β0, β1 arbitrary: in particular, it
links together the functionsA(n), B0(n) andB1(n), and yieldsA(2m+`) = 3m

for every m ≥ 0 and 0 ≤ ` < 2m.
To have a complete repertoire, we consider the case g(n) = n for every

n ≥ 1. Then (1) becomes:

1 = α ,
2n = 3n+ γn+ β0 ∀n ≥ 1 ,

2n+ 1 = 3n+ γn+ β1 ∀n ≥ 1 ,

which is satisfied for α = 1, γ = −1, β0 = 0, β1 = 1. This gives the relation

A(n)− C(n) +B1(n) = n ∀n ≥ 1 . (2)

From this and 1.18 we can construct A(n), B0(n), B1(n) and C(n). In fact,
every solution g(n) of (1) is the sum of the solution g0(n) of

g0(1) = α ,
g0(2n+ j) = 3g(n) + βj for j = 0, 1 and n ≥ 1 ,

and the solution gP (n) of

gP (1) = 0 ,
gP (2n+ j) = γn for j = 0, 1 and n ≥ 1 .

If we broaden our repertoire by considering the case g(n) = 1 for every n ≥ 1,
(1) becomes

1 = α ,
1 = 3 + γn+ β0 ∀n ≥ 1 ,
1 = 3 + γn+ β1 ∀n ≥ 1 ,

which is satisfied for α = 1, γ = 0, β0 = β1 = −2: this gives the relation

A(n)− 2B0(n)− 2B1(n) = 1 ∀n ≥ 1 ,

which allows to express B0(n) in terms of the simpler functions A(n) and
D(n) = A(n) +B1(n).

Exercise 2.2

Simplify the expression x · ([x > 0]− [x < 0]).

Solution. If x > 0 then the expression has value x · (1 − 0) = x. If x = 0
then the expression has value 0 · (0 − 0) = 0. If x < 0 then the expression
has value x · (0− 1) = −x. Thus, x · ([x > 0]− [x < 0]) = |x|

.
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Exercise 2.13

Use the repertoire method to find a closed form for
∑n

k=0(−1)kk2.

Solution. The function g(n) =
∑n

k=0(−1)kk2 is a special solution of the
recurrence equation:

R0 = α ,
Rn = Rn−1 + (−1)n(β + γn+ δn2) for n ≥ 1

for the special values α = β = γ = 0, δ = 1. As we know that we can express

Rn = A(n)α +B(n)β + C(n)γ +D(n)δ

for special functions A(n), B(n), C(n) and D(n), if we manage to find D(n)
in closed form, then that will be the closed form of g(n).

Let us use the repertoire method. First of all, for α = 1, β = γ = δ = 0
we find A(n) = 1 for every n ≥ 0. The next step should not be to put Rn = 1
for every n ≥ 0, as we already know that this is associate to the special values
α = 1, β = γ = δ = 0. Instead, we put Rn = (−1)n, which corresponds to
α = 1, β = 2, γ = δ = 0 and yields A(n) + 2B(n) = (−1)n: as we know that
A(n) = 1 for every n ≥ 0, this means 2B(n) = (−1)n − 1 and thus

B(n) = ((−1)n − 1)/2 = − [n is odd]

. The third step will be to put Rn = (−1)n · n. This corresponds to the
recurrence:

0 = α ,

(−1)nn = (−1)n−1(n− 1) + (−1)n(β + γn+ δn2)

= (−1)n(1− n) + (−1)n(β + γn+ δn2)

= (−1)n ·
(
(β + 1) + (γ − 1)n+ δn2

)
∀n ≥ 1 ,

which is satisfied if and only if α = δ = 0, β = −1, and γ = 2. We thus get
the equation:

−B(n) + 2C(n) = (−1)nn .

The fourth step will be to put Rn = (−1)nn2. This corresponds to the
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recurrence:

0 = α ,

(−1)nn2 = (−1)n−1(n− 1)2 + (−1)n(β + γn+ δn2)

= (−1)n−1(n2 − 2n+ 1) + (−1)n(β + γn+ δn2)

= (−1)n(−n2 + 2n− 1) + (−1)n(β + γn+ δn2)

= (−1)n ·
(
(β − 1) + (γ + 2)n+ (δ − 1)n2

)
∀n ≥ 1 ,

which is satisfied if and only if β = 1, γ = −2, and δ = 2. We thus get:

B(n)− 2C(n) +D(n) = (−1)nn2 .

At this point, we have a full system of equations:

A(n) = 1
A(n) +2B(n) = (−1)n

−B(n) +2C(n) = (−1)nn
B(n) −2C(n) +2D(n) = (−1)nn2

from which we want to find D(n). But by adding together the third and
fourth equation we immediately find 2D(n) = (−1)n · (n+ n2) Then g(n) =
D(n) = (−1)n(n2 + n)/2 = (−1)nSn.

Exercise 2.21 (part 1)

Evaluate the sum Sn =
∑n

k=0(−1)n−k by the perturbation method, assuming
that n ≥ 0.

Solution. On the one hand,

Sn+1 =
∑

0≤k≤n+1

(−1)n+1−k

=
∑

0≤k≤n

(−1)n+1−k + 1

= −Sn + 1 ;

next,

Sn+1 = (−1)n+1 +
∑

1≤k≤n+1

(−1)n+1−k

= (−1)n+1 +
∑

0≤k≤n

(−1)n−k

= (−1)n+1 + Sn .
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Together, the two equalities above yield 2Sn = 1− (−1)n+1 = 1 + (−1)n, so
that:

Sn =
1 + (−1)n

2
= [n is even] .
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