ITT9132 Concrete Mathematics Exercises from Week 3

Silvio Capobianco

Last update: 13 February 2019

Exercise 1.8

Solve the recurrence:

$$
\begin{aligned}
& Q_{0}=\alpha ; Q_{1}=\beta ; \\
& Q_{n}=\left(1+Q_{n-1}\right) / Q_{n-2}, \text { for } n>1 .
\end{aligned}
$$

Assume that $Q_{n} \neq 0$ for all $n \geq 0$. Hint: $Q_{4}=(1+\alpha) / \beta$.
Solution. Let us just start computing. We get $Q_{2}=(1+\beta) / \alpha$ and $Q_{3}=$ $(1+((1+\beta) / \alpha)) / \beta=(1+\alpha+\beta) / \alpha \beta$. Then:

$$
\begin{aligned}
Q_{4} & =\frac{1+\frac{1+\alpha+\beta}{\alpha \beta}}{\frac{1+\beta}{\alpha}} \\
& =\frac{\frac{\alpha \beta+1+\alpha+\beta}{\alpha \beta}}{\frac{1+\beta}{\alpha}} \\
& =\frac{\frac{(1+\alpha)(1+\beta)}{\alpha \beta}}{\frac{1+\beta}{\alpha}} \\
& =\frac{1+\alpha}{\beta},
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{5} & =\frac{1+\frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha \beta}} \\
& =\frac{\frac{\beta+1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha \beta}} \\
& ==\alpha .
\end{aligned}
$$

Thus, $Q_{6}=(1+\alpha) /((1+\alpha) / \beta)=\beta$, and the sequence is periodic.
Important note: Exercise 1.8 asks us to solve a second order recurrence with two initial conditions, corresponding to two consecutive indices. To be sure that the solution is a periodic sequence, we must then make sure that two consecutive values are repeated.

Exercise 1.16

Use the repertoire method to solve the general four-parameter recurrence

$$
\begin{align*}
g(1) & =\alpha \tag{1}\\
g(2 n+j) & =3 g(n)+\gamma n+\beta_{j} \text { for } j=0,1 \text { and } n \geq 1
\end{align*}
$$

Solution. We construct a repertoire of both special solutions $g(n)$ given special values of the parameters $\alpha, \beta_{0}, \beta_{1}, \gamma$, and special values of the parameters given special solutions: from these, the general expression for $g(n)$ is then expressed in terms of four functions $A(n), B_{0}(n), B_{1}(n), C(n)$ as

$$
g(n)=A(n) \cdot \alpha+C(n) \cdot \gamma+B_{0}(n) \cdot \beta_{0}+B_{1}(n) \cdot \beta_{1} \forall n \geq 1
$$

This is possible because the system (1) is linear in its parameters: if $g_{i}(n)$ is the solution for the values $\left(\alpha_{i}, \beta_{0, i}, \beta_{1, i}, \gamma_{i}\right)$, then $\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ is the solution for the values

$$
\left(\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}, \lambda_{1} \beta_{0,1}+\lambda_{2} \beta_{0,2}, \lambda_{1} \beta_{1,1}+\lambda_{2} \beta_{1,2}, \lambda_{1} \gamma_{1}+\lambda_{2} \gamma_{2}\right)
$$

Observe that, for $\gamma=0$,(1) is a special case of Equation 1.17 with $\beta_{1}=d=1$. In this case, Equation 1.18 yields

$$
g_{0}\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(\alpha \beta_{b_{m-1}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{3},
$$

which is a complete solution for $\gamma=0$ and $\alpha, \beta_{0}, \beta_{1}$ arbitrary: in particular, it links together the functions $A(n), B_{0}(n)$ and $B_{1}(n)$, and yields $A\left(2^{m}+\ell\right)=3^{m}$ for every $m \geq 0$ and $0 \leq \ell<2^{m}$.

To have a complete repertoire, we consider the case $g(n)=n$ for every $n \geq 1$. Then (1) becomes:

$$
\begin{aligned}
1 & =\alpha \\
2 n & =3 n+\gamma n+\beta_{0} \quad \forall n \geq 1 \\
2 n+1 & =3 n+\gamma n+\beta_{1} \quad \forall n \geq 1
\end{aligned}
$$

which is satisfied for $\alpha=1, \gamma=-1, \beta_{0}=0, \beta_{1}=1$. This gives the relation

$$
\begin{equation*}
A(n)-C(n)+B_{1}(n)=n \quad \forall n \geq 1 \tag{2}
\end{equation*}
$$

From this and 1.18 we can construct $A(n), B_{0}(n), B_{1}(n)$ and $C(n)$. In fact, every solution $g(n)$ of (1) is the sum of the solution $g_{0}(n)$ of

$$
\begin{aligned}
g_{0}(1) & =\alpha \\
g_{0}(2 n+j) & =3 g(n)+\beta_{j} \text { for } j=0,1 \text { and } n \geq 1
\end{aligned}
$$

and the solution $g_{P}(n)$ of

$$
\begin{aligned}
g_{P}(1) & =0, \\
g_{P}(2 n+j) & =\gamma n \text { for } j=0,1 \text { and } n \geq 1 .
\end{aligned}
$$

If we broaden our repertoire by considering the case $g(n)=1$ for every $n \geq 1$, (1) becomes

$$
\begin{aligned}
& 1=\alpha, \\
& 1=3+\gamma n+\beta_{0} \quad \forall n \geq 1 \\
& 1=3+\gamma n+\beta_{1} \quad \forall n \geq 1,
\end{aligned}
$$

which is satisfied for $\alpha=1, \gamma=0, \beta_{0}=\beta_{1}=-2$: this gives the relation

$$
A(n)-2 B_{0}(n)-2 B_{1}(n)=1 \quad \forall n \geq 1
$$

which allows to express $B_{0}(n)$ in terms of the simpler functions $A(n)$ and $D(n)=A(n)+B_{1}(n)$.

Exercise 2.2

Simplify the expression $x \cdot([x>0]-[x<0])$.
Solution. If $x>0$ then the expression has value $x \cdot(1-0)=x$. If $x=0$ then the expression has value $0 \cdot(0-0)=0$. If $x<0$ then the expression has value $x \cdot(0-1)=-x$. Thus, $x \cdot([x>0]-[x<0])=|x|$

Exercise 2.13

Use the repertoire method to find a closed form for $\sum_{k=0}^{n}(-1)^{k} k^{2}$.
Solution. The function $g(n)=\sum_{k=0}^{n}(-1)^{k} k^{2}$ is a special solution of the recurrence equation:

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{n}=R_{n-1}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \text { for } n \geq 1
\end{aligned}
$$

for the special values $\alpha=\beta=\gamma=0, \delta=1$. As we know that we can express

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma+D(n) \delta
$$

for special functions $A(n), B(n), C(n)$ and $D(n)$, if we manage to find $D(n)$ in closed form, then that will be the closed form of $g(n)$.

Let us use the repertoire method. First of all, for $\alpha=1, \beta=\gamma=\delta=0$ we find $A(n)=1$ for every $n \geq 0$. The next step should not be to put $R_{n}=1$ for every $n \geq 0$, as we already know that this is associate to the special values $\alpha=1, \beta=\gamma=\delta=0$. Instead, we put $R_{n}=(-1)^{n}$, which corresponds to $\alpha=1, \beta=2, \gamma=\delta=0$ and yields $A(n)+2 B(n)=(-1)^{n}$: as we know that $A(n)=1$ for every $n \geq 0$, this means $2 B(n)=(-1)^{n}-1$ and thus

$$
B(n)=\left((-1)^{n}-1\right) / 2=-[n \text { is odd }]
$$

. The third step will be to put $R_{n}=(-1)^{n} \cdot n$. This corresponds to the recurrence:

$$
\begin{aligned}
0 & =\alpha \\
(-1)^{n} n & =(-1)^{n-1}(n-1)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& =(-1)^{n}(1-n)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& =(-1)^{n} \cdot\left((\beta+1)+(\gamma-1) n+\delta n^{2}\right) \quad \forall n \geq 1
\end{aligned}
$$

which is satisfied if and only if $\alpha=\delta=0, \beta=-1$, and $\gamma=2$. We thus get the equation:

$$
-B(n)+2 C(n)=(-1)^{n} n
$$

The fourth step will be to put $R_{n}=(-1)^{n} n^{2}$. This corresponds to the
recurrence:

$$
\begin{aligned}
0 & =\alpha, \\
(-1)^{n} n^{2} & =(-1)^{n-1}(n-1)^{2}+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& =(-1)^{n-1}\left(n^{2}-2 n+1\right)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& =(-1)^{n}\left(-n^{2}+2 n-1\right)+(-1)^{n}\left(\beta+\gamma n+\delta n^{2}\right) \\
& =(-1)^{n} \cdot\left((\beta-1)+(\gamma+2) n+(\delta-1) n^{2}\right) \quad \forall n \geq 1,
\end{aligned}
$$

which is satisfied if and only if $\beta=1, \gamma=-2$, and $\delta=2$. We thus get:

$$
B(n)-2 C(n)+D(n)=(-1)^{n} n^{2}
$$

At this point, we have a full system of equations:

$$
\begin{aligned}
A(n) & & =1 \\
A(n)+2 B(n) & & =(-1)^{n} \\
-B(n)+2 C(n) & & =(-1)^{n} n \\
B(n) & -2 C(n)+2 D(n) & =(-1)^{n} n^{2}
\end{aligned}
$$

from which we want to find $D(n)$. But by adding together the third and fourth equation we immediately find $2 D(n)=(-1)^{n} \cdot\left(n+n^{2}\right)$ Then $g(n)=$ $D(n)=(-1)^{n}\left(n^{2}+n\right) / 2=(-1)^{n} S_{n}$.

Exercise 2.21 (part 1)

Evaluate the sum $S_{n}=\sum_{k=0}^{n}(-1)^{n-k}$ by the perturbation method, assuming that $n \geq 0$.
Solution. On the one hand,

$$
\begin{aligned}
S_{n+1} & =\sum_{0 \leq k \leq n+1}(-1)^{n+1-k} \\
& =\sum_{0 \leq k \leq n}(-1)^{n+1-k}+1 \\
& =-S_{n}+1
\end{aligned}
$$

next,

$$
\begin{aligned}
S_{n+1} & =(-1)^{n+1}+\sum_{1 \leq k \leq n+1}(-1)^{n+1-k} \\
& =(-1)^{n+1}+\sum_{0 \leq k \leq n}(-1)^{n-k} \\
& =(-1)^{n+1}+S_{n}
\end{aligned}
$$

Together, the two equalities above yield $2 S_{n}=1-(-1)^{n+1}=1+(-1)^{n}$, so that:

$$
S_{n}=\frac{1+(-1)^{n}}{2}=[n \text { is even }]
$$

