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A note on the repertoire method

Consider a recurrence equation of the form:

g(0) = α ,
g(n+ 1) = Φ(g(n)) + Ψ(n; β, γ, . . .) for n ≥ 0

(1)

where:

1. Φ is linear in g, i.e., if g(n) = λ1g1(n) + λ2g2(n) then Φ(g(n)) =
λ1Φ(g1(n)) + λ2Φ(g2(n)).

No hypotheses are made on the dependence of g on n.

2. Ψ is a linear function of the m− 1 parameters β, γ, . . .

No hypotheses are made on the dependence of Ψ on n.

Let a a repertoire of m pairs of the form ((αi, βi, γi, . . .), gi(n)) satisfy the
following conditions:

1. For every i = 1, 2, . . . ,m, gi(n) is the solution of the system corre-
sponding to the values α = αi, β = βi, γ = γi, . . .

2. The m m-tuples (αi, βi, γi, . . .) are linearly independent.

Then functions A(n), B(n), C(n), . . ., one per parameter, are uniquely de-
termined such that, however given α, β, γ, . . ., the solution of the recurrence
equation (1) is:

g(n) = αA(n) + βB(n) + γC(n) + . . .
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Exercise A.1

Use the repertoire method to solve the following general recurrence:

g(0) = α ,
g(n+ 1) = 2g(n) + βn+ γ for n ≥ 0 .

(2)

Solution. The recurrence (2) has the form (1) with Φ(g) = 2g and Ψ(n; β, γ) =
βn+ γ, which are linear in g and in β and γ, respectively: therefore we can
apply the repertoire method. The special case g(n) = 1 for every n ≥ 0
corresponds to (α, β, γ) = (1, 0,−1): thus,

A(n)− C(n) = 1 .

The special case g(n) = n for every n ≥ 0 corresponds to (α, β, γ) =
(0,−1, 1) : thus,

−B(n) + C(n) = n .

The special case g(n) = 2n for every n ≥ 0 corresponds to (α, β, γ) =
(1, 0, 0) : thus,

A(n) = 2n and consequently , C(n) = 2n − 1 and B(n) = 2n − 1− n .

The general solution of (2) is then:

g(n) = α · 2n + β · (2n − 1− n) + γ · (2n − 1)

= (α + β + γ) · 2n − βn− (β + γ) .

Exercise A.2

What if the recurrence (2) had been

g(0) = α ,
g(n+ 1) = δg(n) + βn+ γ for n ≥ 0 .

(3)

instead?

Solution. The recurrence (3), considered as a family of recurrence equations
parameterized by (α, β, γ, δ), does not have the form (1)! Here, the function
Φ depends on both the function g and the parameter δ: because of this, in
general g1(n) + g2(n) is not the solution for (α1 +α2, β1 +β2, γ1 +γ2, δ1 + δ2).
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However, for every fixed δ, (3) does have the form (1) with Φ(g) = δg
and Ψ(n; β, γ) = βn + γ: thus, for every fixed δ, we can use the repertoire
method to find three functions Aδ(n), Bδ(n), Cδ(n) such that

gδ(n) = α · Aδ(n) + β ·Bδ(n) + γ · Cδ(n)

for every n ≥ 0. By reasoning as before, the choice gδ(n) = 1 corresponds to
(α, β, γ) = (1, 0, 1− δ), thus

Aδ(n) + (1− δ)C(n) = 1 : (4)

the factor 1− δ in front of Cδ(n) rings a bell, and suggests we might have to
be careful about the cases δ = 1 and δ 6= 1. Choosing gδ(n) = n corresponds
to (α, β, γ) = (0, 1− δ, 1), thus

(1− δ)Bδ(n) + Cδ(n) = n . (5)

We are left with one triple of values to choose. As we had put g(n) = 2n

when δ = 2, we are tempted to just put g(n) = δn: but if δ = 1 this would
be the same as g(n) = 1, which we have already considered. We will then
deal separately with the cases δ = 1 and δ 6= 1.

Let us start with the latter. For δ 6= 1 the choice gδ(n) = δn corresponds
to (α, β, γ) = (1, 0, 0), thus

Aδ(n) = δn : (6)

by combining this with (4) and (5) we find

Cδ(n) =
1− Aδ(n)

1− δ
=

1− δn

1− δ
= 1 + δ + . . .+ δn−1

and

B(n) =
n− Cδ(n)

1− δ
=
n− 1− δ − . . .− δn−1

1− δ
.

Let us now consider the case δ = 1. Then (4) becomes A1(n) = 1 and (5)
becomes C1(n) = n: for the last case, we set g1(n) = n2, which corresponds
to (α, β, γ) = (0, 2, 1), and find

2B1(n) + C1(n) = n2 , (7)

which yields B1(n) = (n2 − n)/2.
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Exercise 2.6

What is the value of
∑

k [1 ≤ j ≤ k ≤ n] as a function of j and n?

Solution. If j < 1 or j > n, then the sum is empty and its value is zero. If
1 ≤ j ≤ n, then the sum has n− j+ 1 nonzero summands, each having value
1. Therefore,

∑
k [1 ≤ j ≤ k ≤ n] = (n− j + 1) · [1 ≤ j ≤ n] .

Exercise 2.14

Use multiple sums to evaluate

n∑
k=1

k · 2k

Solution. Write k =
∑k

j=1 1. Then:

n∑
k=1

k · 2k =
n∑
k=1

(
k∑
j=1

1

)
· 2k

=
n∑
k=1

k∑
j=1

1 · 2k

=
n∑
j=1

n∑
k=j

2k

Clearly,

n∑
k=j

2k = 2j ·
n−j∑
k=0

2k

= 2j ·
(
2n−j+1 − 1

)
= 2n+1 − 2j
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Thus,

n∑
k=1

k · 2k =
n∑
j=1

(
2n+1 − 2j

)
=

n∑
j=1

2n+1 −
n∑
j=1

2j

= n · 2n+1 − 2 ·
n−1∑
j=0

2j

= n · 2n+1 − 2 · (2n − 1)

= n · 2n+1 − 2n+1 + 2

= (n− 1) · 2n+1 + 2

Exercise 2.15

Evaluate �n =
∑n

k=1 k
3 by the text’s Method 5 as follows: First write �n +

�n = 2
∑

1≤j≤k≤n jk ; then apply (2.33).

Solution. Recall that �n =
∑n

k=1 k
2. Then:

�n + �n =
n∑
k=1

k3 +
n∑
k=1

k2

=
n∑
k=1

k2(k + 1)

= 2
n∑
k=1

k · k(k + 1)

2

= 2
n∑
k=1

k ·
k∑
j=1

j

= 2
∑

1≤j≤k≤n

jk .

By (2.33), whatever the summands ak are,

∑
1≤j≤k≤n

ajak =
1

2

 n∑
k=1

a2k +

(
n∑
k=1

ak

)2
 :
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in our case, ak = k, and

�n + �n =
n∑
k=1

k2 +

(
n∑
k=1

k

)2

= �n +

(
n∑
k=1

k

)2

,

which yields �n = S2
n.

Exercise 2.21

Evaluate the sums Sn =
∑n

k=0(−1)n−k, Tn =
∑n

k=0(−1)n−kk, and Un =∑n
k=0(−1)n−kk2 by the perturbation method, assuming that n ≥ 0.

Solution. By applying the permutation p(k) = n − k we see that Sn =
[n is even]. Let’s try to reach the same result via the perturbation method.
First,

Sn+1 =
∑

0≤k≤n+1

(−1)n+1−k

=
∑

0≤k≤n

(−1)n+1−k + 1

= −Sn + 1 ;

next,

Sn+1 = (−1)n+1 +
∑

1≤k≤n+1

(−1)n+1−k

= (−1)n+1 +
∑

0≤k≤n

(−1)n−k

= (−1)n+1 + Sn .

Together, the two equalities above yield 2Sn = 1− (−1)n+1 = 1 + (−1)n, so
that:

Sn =
1 + (−1)n

2
= [n is even] .

For Tn we use a similar trick. First,

Tn+1 =
∑

0≤k≤n

(−1)n+1−kk + n+ 1

= −Tn + n+ 1 ;
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next,

Tn+1 = 0 +
∑

1≤k≤n+1

(−1)n+1−kk

=
∑

0≤k≤n

(−1)n−k(k + 1)

= Tn + Sn ;

together these yield 2Tn = n + 1 − Sn. But as Sn = [n is even], 1 − Sn =
[n is odd]: thus,

Tn =
n+ [n is odd]

2
.

With Un the trick will be similar as with Tn, but we will have to be careful
about the square:

−Un + (n+ 1)2 =
∑

0≤k≤n

(−1)n−k(k + 1)2

=
∑

0≤k≤n

(−1)n−k(k2 + 2k + 1)

= Un + 2Tn + Sn ,

which yields 2Un = (n+ 1)2 − 2Tn − Sn. But

2Tn + Sn = n+ [n is odd] + [n is even] = n+ 1 :

thus, Un = (n2 + n)/2.
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