ITT9132 Concrete Mathematics Exercises from Week 4

Silvio Capobianco

Last update: 20 February 2019

A note on the repertoire method

Consider a recurrence equation of the form:

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0 \tag{1}
\end{align*}
$$

where:

1. Φ is linear in g, i.e., if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=$ $\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2. Ψ is a linear function of the $m-1$ parameters β, γ, \ldots

No hypotheses are made on the dependence of Ψ on n.
Let a a repertoire of m pairs of the form $\left(\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right), g_{i}(n)\right)$ satisfy the following conditions:

1. For every $i=1,2, \ldots, m, g_{i}(n)$ is the solution of the system corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$
2. The m-tuples $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right)$ are linearly independent.

Then functions $A(n), B(n), C(n), \ldots$, one per parameter, are uniquely determined such that, however given $\alpha, \beta, \gamma, \ldots$, the solution of the recurrence equation (1) is:

$$
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\ldots
$$

Exercise A. 1

Use the repertoire method to solve the following general recurrence:

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =2 g(n)+\beta n+\gamma \text { for } n \geq 0 . \tag{2}
\end{align*}
$$

Solution. The recurrence (2) has the form (1) with $\Phi(g)=2 g$ and $\Psi(n ; \beta, \gamma)=$ $\beta n+\gamma$, which are linear in g and in β and γ, respectively: therefore we can apply the repertoire method. The special case $g(n)=1$ for every $n \geq 0$ corresponds to $(\alpha, \beta, \gamma)=(1,0,-1)$: thus,

$$
A(n)-C(n)=1
$$

The special case $g(n)=n$ for every $n \geq 0$ corresponds to $(\alpha, \beta, \gamma)=$ $(0,-1,1)$: thus,

$$
-B(n)+C(n)=n
$$

The special case $g(n)=2^{n}$ for every $n \geq 0$ corresponds to $(\alpha, \beta, \gamma)=$ $(1,0,0)$: thus,

$$
A(n)=2^{n} \text { and consequently, } C(n)=2^{n}-1 \text { and } B(n)=2^{n}-1-n
$$

The general solution of (2) is then:

$$
\begin{aligned}
g(n) & =\alpha \cdot 2^{n}+\beta \cdot\left(2^{n}-1-n\right)+\gamma \cdot\left(2^{n}-1\right) \\
& =(\alpha+\beta+\gamma) \cdot 2^{n}-\beta n-(\beta+\gamma)
\end{aligned}
$$

Exercise A. 2

What if the recurrence (2) had been

$$
\begin{align*}
g(0) & =\alpha \\
g(n+1) & =\delta g(n)+\beta n+\gamma \text { for } n \geq 0 \tag{3}
\end{align*}
$$

instead?
Solution. The recurrence (3), considered as a family of recurrence equations parameterized by $(\alpha, \beta, \gamma, \delta)$, does not have the form (1)! Here, the function Φ depends on both the function g and the parameter δ : because of this, in general $g_{1}(n)+g_{2}(n)$ is not the solution for $\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}, \gamma_{1}+\gamma_{2}, \delta_{1}+\delta_{2}\right)$.

However, for every fixed $\delta,(3)$ does have the form (1) with $\Phi(g)=\delta g$ and $\Psi(n ; \beta, \gamma)=\beta n+\gamma$: thus, for every fixed δ, we can use the repertoire method to find three functions $A_{\delta}(n), B_{\delta}(n), C_{\delta}(n)$ such that

$$
g_{\delta}(n)=\alpha \cdot A_{\delta}(n)+\beta \cdot B_{\delta}(n)+\gamma \cdot C_{\delta}(n)
$$

for every $n \geq 0$. By reasoning as before, the choice $g_{\delta}(n)=1$ corresponds to $(\alpha, \beta, \gamma)=(1,0,1-\delta)$, thus

$$
\begin{equation*}
A_{\delta}(n)+(1-\delta) C(n)=1: \tag{4}
\end{equation*}
$$

the factor $1-\delta$ in front of $C_{\delta}(n)$ rings a bell, and suggests we might have to be careful about the cases $\delta=1$ and $\delta \neq 1$. Choosing $g_{\delta}(n)=n$ corresponds to $(\alpha, \beta, \gamma)=(0,1-\delta, 1)$, thus

$$
\begin{equation*}
(1-\delta) B_{\delta}(n)+C_{\delta}(n)=n \tag{5}
\end{equation*}
$$

We are left with one triple of values to choose. As we had put $g(n)=2^{n}$ when $\delta=2$, we are tempted to just put $g(n)=\delta^{n}$: but if $\delta=1$ this would be the same as $g(n)=1$, which we have already considered. We will then deal separately with the cases $\delta=1$ and $\delta \neq 1$.

Let us start with the latter. For $\delta \neq 1$ the choice $g_{\delta}(n)=\delta^{n}$ corresponds to $(\alpha, \beta, \gamma)=(1,0,0)$, thus

$$
\begin{equation*}
A_{\delta}(n)=\delta^{n}: \tag{6}
\end{equation*}
$$

by combining this with (4) and (5) we find

$$
C_{\delta}(n)=\frac{1-A_{\delta}(n)}{1-\delta}=\frac{1-\delta^{n}}{1-\delta}=1+\delta+\ldots+\delta^{n-1}
$$

and

$$
B(n)=\frac{n-C_{\delta}(n)}{1-\delta}=\frac{n-1-\delta-\ldots-\delta^{n-1}}{1-\delta}
$$

Let us now consider the case $\delta=1$. Then (4) becomes $A_{1}(n)=1$ and (5) becomes $C_{1}(n)=n$: for the last case, we set $g_{1}(n)=n^{2}$, which corresponds to $(\alpha, \beta, \gamma)=(0,2,1)$, and find

$$
\begin{equation*}
2 B_{1}(n)+C_{1}(n)=n^{2} \tag{7}
\end{equation*}
$$

which yields $B_{1}(n)=\left(n^{2}-n\right) / 2$.

Exercise 2.6

What is the value of $\sum_{k}[1 \leq j \leq k \leq n]$ as a function of j and n ?
Solution. If $j<1$ or $j>n$, then the sum is empty and its value is zero. If $1 \leq j \leq n$, then the sum has $n-j+1$ nonzero summands, each having value 1. Therefore, $\sum_{k}[1 \leq j \leq k \leq n]=(n-j+1) \cdot[1 \leq j \leq n]$.

Exercise 2.14

Use multiple sums to evaluate

$$
\sum_{k=1}^{n} k \cdot 2^{k}
$$

Solution. Write $k=\sum_{j=1}^{k} 1$. Then:

$$
\begin{aligned}
\sum_{k=1}^{n} k \cdot 2^{k} & =\sum_{k=1}^{n}\left(\sum_{j=1}^{k} 1\right) \cdot 2^{k} \\
& =\sum_{k=1}^{n} \sum_{j=1}^{k} 1 \cdot 2^{k} \\
& =\sum_{j=1}^{n} \sum_{k=j}^{n} 2^{k}
\end{aligned}
$$

Clearly,

$$
\begin{aligned}
\sum_{k=j}^{n} 2^{k} & =2^{j} \cdot \sum_{k=0}^{n-j} 2^{k} \\
& =2^{j} \cdot\left(2^{n-j+1}-1\right) \\
& =2^{n+1}-2^{j}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{k=1}^{n} k \cdot 2^{k} & =\sum_{j=1}^{n}\left(2^{n+1}-2^{j}\right) \\
& =\sum_{j=1}^{n} 2^{n+1}-\sum_{j=1}^{n} 2^{j} \\
& =n \cdot 2^{n+1}-2 \cdot \sum_{j=0}^{n-1} 2^{j} \\
& =n \cdot 2^{n+1}-2 \cdot\left(2^{n}-1\right) \\
& =n \cdot 2^{n+1}-2^{n+1}+2 \\
& =(n-1) \cdot 2^{n+1}+2
\end{aligned}
$$

Exercise 2.15

Evaluate $\mathrm{T}_{n}=\sum_{k=1}^{n} k^{3}$ by the text's Method 5 as follows: First write 回 $_{n}+$ $\square_{n}=2 \sum_{1 \leq j \leq k \leq n} j k$; then apply (2.33).
Solution. Recall that $\square_{n}=\sum_{k=1}^{n} k^{2}$. Then:

$$
\begin{aligned}
\text { ® }_{n}+\square_{n} & =\sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2} \\
& =\sum_{k=1}^{n} k^{2}(k+1) \\
& =2 \sum_{k=1}^{n} k \cdot \frac{k(k+1)}{2} \\
& =2 \sum_{k=1}^{n} k \cdot \sum_{j=1}^{k} j \\
& =2 \sum_{1 \leq j \leq k \leq n} j k
\end{aligned}
$$

By (2.33), whatever the summands a_{k} are,

$$
\sum_{1 \leq j \leq k \leq n} a_{j} a_{k}=\frac{1}{2}\left(\sum_{k=1}^{n} a_{k}^{2}+\left(\sum_{k=1}^{n} a_{k}\right)^{2}\right):
$$

in our case, $a_{k}=k$, and

$$
\text { 囚 }_{n}+\square_{n}=\sum_{k=1}^{n} k^{2}+\left(\sum_{k=1}^{n} k\right)^{2}=\square_{n}+\left(\sum_{k=1}^{n} k\right)^{2},
$$

which yields 四 ${ }_{n}=S_{n}^{2}$.

Exercise 2.21

Evaluate the sums $S_{n}=\sum_{k=0}^{n}(-1)^{n-k}, T_{n}=\sum_{k=0}^{n}(-1)^{n-k} k$, and $U_{n}=$ $\sum_{k=0}^{n}(-1)^{n-k} k^{2}$ by the perturbation method, assuming that $n \geq 0$.

Solution. By applying the permutation $p(k)=n-k$ we see that $S_{n}=$ [n is even]. Let's try to reach the same result via the perturbation method. First,

$$
\begin{aligned}
S_{n+1} & =\sum_{0 \leq k \leq n+1}(-1)^{n+1-k} \\
& =\sum_{0 \leq k \leq n}(-1)^{n+1-k}+1 \\
& =-S_{n}+1
\end{aligned}
$$

next,

$$
\begin{aligned}
S_{n+1} & =(-1)^{n+1}+\sum_{1 \leq k \leq n+1}(-1)^{n+1-k} \\
& =(-1)^{n+1}+\sum_{0 \leq k \leq n}(-1)^{n-k} \\
& =(-1)^{n+1}+S_{n}
\end{aligned}
$$

Together, the two equalities above yield $2 S_{n}=1-(-1)^{n+1}=1+(-1)^{n}$, so that:

$$
S_{n}=\frac{1+(-1)^{n}}{2}=[n \text { is even }]
$$

For T_{n} we use a similar trick. First,

$$
\begin{aligned}
T_{n+1} & =\sum_{0 \leq k \leq n}(-1)^{n+1-k} k+n+1 \\
& =-T_{n}+n+1
\end{aligned}
$$

next,

$$
\begin{aligned}
T_{n+1} & =0+\sum_{1 \leq k \leq n+1}(-1)^{n+1-k} k \\
& =\sum_{0 \leq k \leq n}(-1)^{n-k}(k+1) \\
& =T_{n}+S_{n}
\end{aligned}
$$

together these yield $2 T_{n}=n+1-S_{n}$. But as $S_{n}=[n$ is even $], 1-S_{n}=$ [n is odd]: thus,

$$
T_{n}=\frac{n+[n \text { is odd }]}{2}
$$

With U_{n} the trick will be similar as with T_{n}, but we will have to be careful about the square:

$$
\begin{aligned}
-U_{n}+(n+1)^{2} & =\sum_{0 \leq k \leq n}(-1)^{n-k}(k+1)^{2} \\
& =\sum_{0 \leq k \leq n}(-1)^{n-k}\left(k^{2}+2 k+1\right) \\
& =U_{n}+2 T_{n}+S_{n}
\end{aligned}
$$

which yields $2 U_{n}=(n+1)^{2}-2 T_{n}-S_{n}$. But

$$
2 T_{n}+S_{n}=n+[n \text { is odd }]+[n \text { is even }]=n+1:
$$

thus, $U_{n}=\left(n^{2}+n\right) / 2$.

