ITT9132 Concrete Mathematics Exercises from Week 5

Silvio Capobianco

Exercise 2.8

What is the value of $0 \underline{m}$, when m is a given integer?
Solution. Let us consider the three cases $m>0, m=0, m<0$.

- If $m>0$, then $0^{\underline{m}}=0 \cdot(-1) \cdots(-m+1)=0$, since the factor 0 is surely present.
- If $m=0$ then $0^{\underline{m}}=1$ as an empty product.
- If $m<0$ then we should have $1=0^{\underline{0}}=0^{\underline{m}} \cdot(0-m)^{\underline{-m}}$. For $n>0$ ve have $n^{\underline{n}}=n!$. Thus, $0 \underline{\underline{m}}=1 /(-m)!=1 /|m|$.

Summarizing: $0^{\underline{m}}=\frac{1}{|m|!} \cdot[m \leqslant 0]$.

Exercise 2.10

The text derives the following formula for the difference of a product:

$$
\begin{equation*}
\Delta(u v)=u \Delta v+E v \Delta u . \tag{1}
\end{equation*}
$$

How can this formula be correct, when the left-hand side is symmetric with respect to u and v but the right-hand side is not?

Solution. The equation above is obtained as follows:

$$
\begin{aligned}
\Delta(u v)(x) & =u(x+1) v(x+1)-u(x) v(x) \\
& =u(x+1) v(x+1)-u(x) v(x+1)+u(x) v(x+1)-u(x) v(x) \\
& =\Delta u(x) E v(x)+u(x) \Delta v(x)
\end{aligned}
$$

But the following derivation is also licit:

$$
\begin{aligned}
\Delta(u v)(x) & =u(x+1) v(x+1)-u(x) v(x) \\
& =u(x+1) v(x+1)-u(x+1) v(x)+u(x+1) v(x)-u(x) v(x) \\
& =E u(x) \Delta v(x)+\Delta u(x) v(x)
\end{aligned}
$$

So there actually is a symmetry: $u \Delta v+E v \Delta u=v \Delta u+E u \Delta v$.

Exercise 2.16

Prove that $x^{\underline{\underline{m}}} /(x-n)^{\underline{\underline{m}}}=x^{\underline{n}} /(x-m)^{\underline{n}}$ unless one of the denominators is zero.

Solution. If b and d are not zero, then $a / b=c / d$ if and only if $a \cdot d=b \cdot c$. But if x is neither n nor m, then $x^{\underline{m}} \cdot(x-m)^{\underline{n}}$ and $x^{\underline{n}} \cdot(x-n)^{\underline{m}}$ are both equal to $x^{\underline{n+m}}$.

Exercise 2.17

Show that the following formulas can be used to convert between rising and falling factorial powers, for all integers m :

$$
\begin{aligned}
& x^{\bar{m}}=(-1)^{m}(-x)^{\underline{m}}=(x+m-1)^{\underline{m}}=\frac{1}{(x-1)^{-m}} ; \\
& x^{\underline{m}}=(-1)^{m}(-x)^{\bar{m}}=(x-m+1)^{\bar{m}}=\frac{1}{(x+1)^{-m}} .
\end{aligned}
$$

(The answer to exercise 2.9 defines x^{-m}.)
Solution. The equalities $x^{\bar{m}}=(x+m-1)^{\underline{m}}$ and $x^{\underline{m}}=(x-m+1)^{\bar{m}}$ follow immediately from the definition. Next,
$x^{\bar{m}}=x \cdot(x+1) \cdots(x+m-1)=(-1)^{m} \cdot(-x) \cdot(-x-1) \cdots(-x-m+1)=(-1)^{m}(-x)^{\underline{m}}$ and analogous for $x^{\bar{m}}=(-1)^{m}(-x)^{\underline{m}}$. Finally,

$$
(x-1)^{\frac{-m}{}}=\frac{1}{x(x+1) \cdots(x+m-1)}=\frac{1}{x^{\bar{m}}}
$$

and similarly,

$$
(x+1)^{\overline{-m}}=\frac{1}{x(x-1) \cdots(x-m+1)}=\frac{1}{x^{\underline{m}}} .
$$

Exercise 2.23

Evaluate $\sum_{k=1}^{n}(2 k+1) / k(k+1)$ in two ways:

1. Replace $1 / k(k+1)$ by the "partial fractions" $1 / k-1 /(k+1)$.
2. Sum by parts.

Solution. By method 1 we get:

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{2 k+1}{k(k+1)} & =2 \sum_{k=1}^{n} \frac{1}{k+1}+\sum_{k=1}^{n} \frac{1}{k(k+1)} \\
& =2 \cdot\left(H_{n+1}-1\right)+\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =2 H_{n+1}-2+1-\frac{1}{n+1} \\
& =2 H_{n}-\frac{n}{n+1}
\end{aligned}
$$

as $H_{n+1}=H_{n}+1 /(n+1)$.
To use method 2, we need to express $(2 k+1) / k(k+1)$ as $u \Delta v$ for suitable u and v. If we choose $u(x)=2 x+1$ and $\Delta v(x)=1 / x(x+1)=(x-1)^{-2}$, then $\Delta u(x)=2$ and $v(x)=-(x-1)^{\underline{-1}}=-1 / x$, thus:

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{2 k+1}{k(k+1)} & =\sum_{1}^{n+1} u(x) \Delta v(x) \delta x \\
& =\left.u(x) v(x)\right|_{x=1} ^{x=n+1}-\sum_{1}^{n+1} E v(x) \Delta u(x) \delta x \\
& =-\left.\frac{2 x+1}{x}\right|_{x=1} ^{x=n+1}+\sum_{1}^{n+1} \frac{2}{x+1} \delta x
\end{aligned}
$$

The first summand is simply $1-1 /(n+1)$. For the second, we know that
$\sum_{1}^{n+1} \Delta g(x) \delta x=g(n+1)-g(1):$ for $\Delta g(x)=1 /(x+1)$ it is clearly $g(x)=H_{x}$, thus

$$
\sum_{1}^{n+1} \frac{2}{x+1}=2\left(H_{n+1}-H_{1}\right)=2 H_{n}+\frac{2}{n+1}-2
$$

Putting everything together, $\sum_{k=1}^{n}(2 k+1) / k(k+1)=2 H_{n}-n /(n+1)$, as we had previously found.

Exercise 2.28

At what point does the following derivation go astray?

$$
\begin{align*}
1 & =\sum_{k \geqslant 1} \frac{1}{k \cdot(k+1)} \tag{2}\\
& =\sum_{k \geqslant 1}\left(\frac{k}{k+1}-\frac{k-1}{k}\right) \tag{3}\\
& =\sum_{k \geqslant 1} \sum_{j \geqslant 1}\left(\frac{k}{j}[j=k+1]-\frac{j}{k}[j=k-1]\right) \tag{4}\\
& =\sum_{j \geqslant 1} \sum_{k \geqslant 1}\left(\frac{k}{j}[j=k+1]-\frac{j}{k}[j=k-1]\right) \tag{5}\\
& =\sum_{j \geqslant 1} \sum_{k \geqslant 1}\left(\frac{k}{j}[k=j-1]-\frac{j}{k}[k=j+1]\right) \tag{6}\\
& =\sum_{j \geqslant 1}\left(\frac{j-1}{j}-\frac{j}{j+1}\right) \tag{7}\\
& =\sum_{j \geqslant 1} \frac{-1}{j \cdot(j+1)} \tag{8}\\
& =-1 \tag{9}
\end{align*}
$$

Solution. Let us check each passage in detail.

- (2) is correct. The right hand side is the limit for $n \rightarrow \infty$ of the telescopic sum $\sum_{1 \leqslant k \leqslant n}(1 / k-1 /(k+1))=1-1 /(n+1)$.
- (3) is correct. We are rewriting the generic summand into a different form, whose value is the same as the previous.
- (4) is correct. We are replacing each summand with a new sum whose summands are all zero except finitely many.
- (5) is WRONG! We are re-arranging the terms of a sum which is not absolutely convergent: this operation is not guaranteed to preserve the value of the sum.
- (6) is correct. We are rewriting the conditions in Iverson brackets without altering them.
- (7) is correct. We are summing over k, which gives an immediate result since for every j only finitely many summands are nonzero.
- (8) is correct.
- (9) is correct.

