ITT9132 Concrete Mathematics Exercises from Week 6

Silvio Capobianco

Exercise 3.2

Give an explicit formula for the integer nearest to the real number x. Do this in the two cases when an integer plus 1/2 is rounded up or down.

Solution. Put x = n + t with n integer and $0 \le t < 1$. Rounding x to the nearest integer must yield $n = \lfloor x \rfloor$ when t < 1/2, and $n + 1 = \lceil x \rceil$ when t > 1/2.

This can be done by rounding x to $\lfloor x + 1/2 \rfloor$. In fact, $\lfloor x + 1/2 \rfloor = \lfloor n + 1/2 + t \rfloor$ is n if t < 1/2, and n + 1 if t > 1/2. We also observe that $\lfloor x + 1/2 \rfloor = n + 1$ if t = 1/2, *i.e.*, this is the choice that corresponds to rounding up.

Another option is to reason as follows: Being $x = \lfloor x \rfloor + \{x\}$, rounding up means turning x into $\lfloor x \rfloor$ if $\{x\} < 1/2$, and into $\lceil x \rceil = \lfloor x \rfloor + 1$ if $\{x\} \ge 1/2$. Then we can just use Iverson's brackets and round x to $|x| + \lceil \{x\} \ge 1/2$].

Are there any options for rounding down? We may try reasoning "by symmetry" and swapping floor with ceiling, plus with minus: that is, round x to $\lceil x - 1/2 \rceil = \lceil n - 1/2 + t \rceil$. And in fact, we immediately check that this quantity is n for t < 1/2 and n + 1 for t > 1/2. What about t = 1/2? We quickly get $\lceil (n + 1/2) - 1/2 \rceil = \lceil n \rceil = n$. So this is the function that rounds down, as required.

Exercise 3.3

Let *m* and *n* be positive integers and let α be an irrational number greater than *n*. Evaluate $\lfloor \lfloor m\alpha \rfloor n/\alpha \rfloor$.

Solution. The floor inside the floor is threatening trouble, so we should try to make it disappear. Write $m\alpha = \lfloor m\alpha \rfloor + \{m\alpha\}$. Then:

$$\frac{\lfloor m\alpha \rfloor n}{\alpha} = \frac{(m\alpha - \{m\alpha\})n}{\alpha} = mn - \frac{\{m\alpha\} n}{\alpha}$$

By hypothesis, $1 \leq n < \alpha$. Moreover, α is irrational, so $m\alpha$ is not an integer and $\{m\alpha\}$ is positive. Consequently, $0 < \{m\alpha\} \cdot (n/\alpha) < 1 \cdot 1$. We can thus conclude that:

$$\left\lfloor \frac{\lfloor m\alpha \rfloor n}{\alpha} \right\rfloor = \left\lfloor mn - \frac{\{ma\} n}{\alpha} \right\rfloor$$
$$= mn + \left\lfloor \frac{-\{ma\} n}{\alpha} \right\rfloor$$
$$= mn - \left\lceil \frac{\{ma\} n}{\alpha} \right\rceil$$
$$= mn - 1.$$

Note that we used the rule $\lfloor n + x \rfloor = n + \lfloor x \rfloor$, which holds whatever integer n and real x are. To apply it correctly, we must keep the "plus" sign outside the floor and not change x. This means that $\lfloor n - x \rfloor$ is $n + \lfloor -x \rfloor = n - \lceil x \rceil$, and not (in general) $n - \lfloor x \rfloor$.

Exercise 3.6

Can something interesting be said about $\lfloor f(x) \rfloor$ when f(x) is a continuous, monotonically *decreasing* function that takes integer values only when x is an integer?

Solution. If f(x) is continuous and strictly decreasing and only takes integer values on integer numbers, then g(x) = -f(x) is continuous and strictly *increasing* and only takes integer values on integer numbers. Then:

$$\lfloor f(x) \rfloor = - \lceil g(x) \rceil = - \lceil g(\lceil x \rceil) \rceil = \lfloor f(\lceil x \rceil) \rfloor ,$$

and similarly, $\lceil f(x) \rceil = \lceil f(\lfloor x \rfloor) \rceil$.

Exercise 3.10

Show that the expression

$$\left\lceil \frac{2x+1}{2} \right\rceil - \left\lceil \frac{2x+1}{4} \right\rceil + \left\lfloor \frac{2x+1}{4} \right\rfloor \tag{1}$$

is always either $\lfloor x \rfloor$ or $\lceil x \rceil$. In what circumstances does each case arise?

Solution. We observe that

$$\begin{bmatrix} \frac{2x+1}{2} \end{bmatrix} - \begin{bmatrix} \frac{2x+1}{4} \end{bmatrix} + \begin{bmatrix} \frac{2x+1}{4} \end{bmatrix} = \begin{bmatrix} \frac{2x+1}{2} \end{bmatrix} - \left(\begin{bmatrix} \frac{2x+1}{4} \end{bmatrix} - \begin{bmatrix} \frac{2x+1}{4} \end{bmatrix} \right)$$
$$= \begin{bmatrix} x+\frac{1}{2} \end{bmatrix} - \begin{bmatrix} \frac{2x+1}{4} \text{ is not an integer} \end{bmatrix}$$

(Do not forget that x is a real number.) But (2x + 1)/4 = k is an integer if and only if x = (4k - 1)/2 = 2k - 1/2: in this case, $\lceil x + 1/2 \rceil = 2k = \lceil x \rceil$. Otherwise, we know that

$$\left[x + \frac{1}{2}\right] - 1 = \left[(x+1) - \frac{1}{2}\right] - 1 = \left[x - \frac{1}{2}\right]$$

is $\lfloor x \rfloor$ if $\{x\} < 1/2$, and $\lceil x \rceil$ if $\{x\} \ge 1/2$.

Exercise 3.12

Prove that

$$\left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor \tag{2}$$

for all integers n and all positive integers m. (This identity gives us another way to convert ceilings to floors and vice versa, instead of using the reflective law (3.4).)

Solution. The closed interval [n/m..(n+m-1)/m] has size 1-1/m, and can thus contain at most one integer: in this case, such integer must coincide with both $\lceil n/m \rceil$ and $\lfloor (n+m-1)/m \rfloor$. However, of the *m* consecutive integers $n, n+1, \ldots, n+m-1$, exactly one is divisible by *m*: if *x* is this number, then $x/m \in [n/m, (n+m-1)/m]$ is the common value of $\lceil n/m \rceil$ and $\lfloor (n+m-1)/m \rfloor$.

Exercise 3.13

Let α and β be positive reals. Consider the following statements:

1. Spec(α) and Spec(β) partition the positive integers, *i.e.*, every positive integer *n* belongs to exactly one between Spec(α) and Spec(β).

2. α and β are irrational and $1/\alpha + 1/\beta = 1$.

Prove that statement 2 implies statement 1.

Solution. We recall that, for a positive real x, the number N(x, n) of elements in Spec(x) not greater than n satisfies

$$N(x,n) = \left\lceil \frac{n+1}{x} \right\rceil - 1$$

Suppose that point 2 is satisfied. Then α and β , being irrational, must be different (otherwise $\alpha = \beta = 2$). Also, $(n + 1)/\alpha$ is not an integer (because α is irrational) and:

$$N(\alpha, n) = \left\lceil \frac{n+1}{\alpha} \right\rceil - 1 = \left\lfloor \frac{n+1}{\alpha} \right\rfloor = \frac{n+1}{\alpha} - \left\{ \frac{n+1}{\alpha} \right\} \,,$$

and similarly for $(n+1)/\beta$. Hence,

$$N(\alpha, n) + N(\beta, n) = \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)(n+1) - \left(\left\{\frac{n+1}{\alpha}\right\} + \left\{\frac{n+1}{\beta}\right\}\right)$$

By hypothesis, $1/\alpha + 1/\beta = 1$. Then the rightmost term in open parentheses is the sum of the fractional parts of two non-integer numbers whose sum is an integer, and is therefore equal to 1. Therefore, $N(\alpha, n) + N(\beta, n) =$ n + 1 - 1 = n for every positive integer n: then also, for every n, either $N(\alpha, n+1) = N(\alpha, n)+1$ and $N(\beta, n+1) = N(\beta, n)$, or $N(\alpha, n+1) = N(\alpha, n)$ and $N(\beta, n + 1) = N(\beta, n) + 1$, that is, each integer larger than 1 goes into exactly one of the two spectra. As $1/\alpha + 1/\beta = 1$ and $\alpha \neq \beta$, one of them is smaller than 2 and the other is greater, and n = 1 goes into the spectrum of the former: this allows us to conclude that $\text{Spec}(\alpha)$ and $\text{Spec}(\beta)$ partition the positive integers.

Exercise C.2

Prove equation (3.24): for every integer n and positive integer m,

$$\left\lceil \frac{n}{m} \right\rceil + \left\lceil \frac{n-1}{m} \right\rceil + \ldots + \left\lceil \frac{n-m+1}{m} \right\rceil = n.$$

Use the result to prove (3.25).

Solution. Write n = qm + r with $q, r \in \mathbb{Z}$ and $0 \leq r < m$. Then for every k from 1 to m:

$$\left\lceil \frac{n-k+1}{m} \right\rceil = q + \left\lceil \frac{r-k+1}{m} \right\rceil \,.$$

Now, for k between 0 and m-1, $\left\lceil \frac{r-k+1}{m} \right\rceil$ is 1 if r-k+1 > 0 (that is, $k \leq r$) and 0 otherwise. Then:

$$\sum_{k=1}^{m} \left\lceil \frac{n-k+1}{m} \right\rceil = \sum_{k=1}^{m} \left(q + \left\lceil \frac{r-k+1}{m} \right\rceil \right)$$
$$= qm + \sum_{k=1}^{m} [k \leqslant r]$$
$$= qm + r$$
$$= n.$$

Now, (3.24) holds for *every* integer n and positive integer m. If we want to prove (3.25), we can just exploit it:

$$\sum_{k=1}^{m} \left\lfloor \frac{n+k-1}{m} \right\rfloor = -\sum_{k=1}^{m} \left\lceil -\frac{n+k-1}{m} \right\rceil$$
$$= -\sum_{k=1}^{m} \left\lceil \frac{-n-k+1}{m} \right\rceil$$
$$= -(-n) \text{ by } (3.24)$$
$$= n.$$