ITT9132 Concrete Mathematics Exercises from Week 6

Silvio Capobianco

Exercise 3.2

Give an explicit formula for the integer nearest to the real number x. Do this in the two cases when an integer plus $1 / 2$ is rounded up or down.

Solution. Put $x=n+t$ with n integer and $0 \leqslant t<1$. Rounding x to the nearest integer must yield $n=\lfloor x\rfloor$ when $t<1 / 2$, and $n+1=\lceil x\rceil$ when $t>1 / 2$.

This can be done by rounding x to $\lfloor x+1 / 2\rfloor$. In fact, $\lfloor x+1 / 2\rfloor=$ $\lfloor n+1 / 2+t\rfloor$ is n if $t<1 / 2$, and $n+1$ if $t>1 / 2$. We also observe that $\lfloor x+1 / 2\rfloor=n+1$ if $t=1 / 2$, i.e., this is the choice that corresponds to rounding up.

Another option is to reason as follows: Being $x=\lfloor x\rfloor+\{x\}$, rounding up means turning x into $\lfloor x\rfloor$ if $\{x\}<1 / 2$, and into $\lceil x\rceil=\lfloor x\rfloor+1$ if $\{x\} \geqslant 1 / 2$. Then we can just use Iverson's brackets and round x to $\lfloor x\rfloor+[\{x\} \geqslant 1 / 2]$.

Are there any options for rounding down? We may try reasoning "by symmetry" and swapping floor with ceiling, plus with minus: that is, round x to $\lceil x-1 / 2\rceil=\lceil n-1 / 2+t\rceil$. And in fact, we immediately check that this quantity is n for $t<1 / 2$ and $n+1$ for $t>1 / 2$. What about $t=1 / 2$? We quickly get $\lceil(n+1 / 2)-1 / 2\rceil=\lceil n\rceil=n$. So this is the function that rounds down, as required.

Exercise 3.3

Let m and n be positive integers and let α be an irrational number greater than n. Evaluate $\lfloor\lfloor m \alpha\rfloor n / \alpha\rfloor$.

Solution. The floor inside the floor is threatening trouble, so we should try to make it disappear. Write $m \alpha=\lfloor m \alpha\rfloor+\{m \alpha\}$. Then:

$$
\frac{\lfloor m \alpha\rfloor n}{\alpha}=\frac{(m \alpha-\{m \alpha\}) n}{\alpha}=m n-\frac{\{m \alpha\} n}{\alpha} .
$$

By hypothesis, $1 \leqslant n<\alpha$. Moreover, α is irrational, so $m \alpha$ is not an integer and $\{m \alpha\}$ is positive. Consequently, $0<\{m \alpha\} \cdot(n / \alpha)<1 \cdot 1$. We can thus conclude that:

$$
\begin{aligned}
\left\lfloor\frac{\lfloor m \alpha\rfloor n}{\alpha}\right\rfloor & =\left\lfloor m n-\frac{\{m a\} n}{\alpha}\right\rfloor \\
& =m n+\left\lfloor\frac{-\{m a\} n}{\alpha}\right\rfloor \\
& =m n-\left\lfloor\left.\frac{\{m a\} n}{\alpha} \right\rvert\,\right. \\
& =m n-1 .
\end{aligned}
$$

Note that we used the rule $\lfloor n+x\rfloor=n+\lfloor x\rfloor$, which holds whatever integer n and real x are. To apply it correctly, we must keep the "plus" sign outside the floor and not change x. This means that $\lfloor n-x\rfloor$ is $n+\lfloor-x\rfloor=n-\lceil x\rceil$, and not (in general) $n-\lfloor x\rfloor$.

Exercise 3.6

Can something interesting be said about $\lfloor f(x)\rfloor$ when $f(x)$ is a continuous, monotonically decreasing function that takes integer values only when x is an integer?
Solution. If $f(x)$ is continuous and strictly decreasing and only takes integer values on integer numbers, then $g(x)=-f(x)$ is continuous and strictly increasing and only takes integer values on integer numbers. Then:

$$
\lfloor f(x)\rfloor=-\lceil g(x)\rceil=-\lceil g(\lceil x\rceil)\rceil=\lfloor f(\lceil x\rceil)\rfloor,
$$

and similarly, $\lceil f(x)\rceil=\lceil f(\lfloor x\rfloor)\rceil$.

Exercise 3.10

Show that the expression

$$
\begin{equation*}
\left\lceil\frac{2 x+1}{2}\right\rceil-\left\lceil\frac{2 x+1}{4}\right\rceil+\left\lfloor\frac{2 x+1}{4}\right\rfloor \tag{1}
\end{equation*}
$$

is always either $\lfloor x\rfloor$ or $\lceil x\rceil$. In what circumstances does each case arise?
Solution. We observe that

$$
\begin{aligned}
\left\lceil\frac{2 x+1}{2}\right\rceil-\left\lceil\frac{2 x+1}{4}\right\rceil+\left\lfloor\frac{2 x+1}{4}\right\rfloor & =\left\lceil\frac{2 x+1}{2}\right\rceil-\left(\left\lceil\frac{2 x+1}{4}\right\rceil-\left\lfloor\frac{2 x+1}{4}\right\rfloor\right) \\
& =\left\lceil x+\frac{1}{2}\right\rceil-\left\lfloor\frac{2 x+1}{4} \text { is not an integer }\right] .
\end{aligned}
$$

(Do not forget that x is a real number.) But $(2 x+1) / 4=k$ is an integer if and only if $x=(4 k-1) / 2=2 k-1 / 2$: in this case, $\lceil x+1 / 2\rceil=2 k=\lceil x\rceil$. Otherwise, we know that

$$
\left\lceil x+\frac{1}{2}\right\rceil-1=\left\lceil(x+1)-\frac{1}{2}\right\rceil-1=\left\lceil x-\frac{1}{2}\right\rceil
$$

is $\lfloor x\rfloor$ if $\{x\}<1 / 2$, and $\lceil x\rceil$ if $\{x\} \geqslant 1 / 2$.

Exercise 3.12

Prove that

$$
\begin{equation*}
\left\lceil\frac{n}{m}\right\rceil=\left\lfloor\frac{n+m-1}{m}\right\rfloor \tag{2}
\end{equation*}
$$

for all integers n and all positive integers m. (This identity gives us another way to convert ceilings to floors and vice versa, instead of using the reflective law (3.4).)

Solution. The closed interval $[n / m . .(n+m-1) / m]$ has size $1-1 / m$, and can thus contain at most one integer: in this case, such integer must coincide with both $\lceil n / m\rceil$ and $\lfloor(n+m-1) / m\rfloor$. However, of the m consecutive integers $n, n+1, \ldots, n+m-1$, exactly one is divisible by m : if x is this number, then $x / m \in[n / m,(n+m-1) / m]$ is the common value of $\lceil n / m\rceil$ and $\lfloor(n+m-1) / m\rfloor$.

Exercise 3.13

Let α and β be positive reals. Consider the following statements:

1. $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ partition the positive integers, i.e., every positive integer n belongs to exactly one between $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$.
2. α and β are irrational and $1 / \alpha+1 / \beta=1$.

Prove that statement 2 implies statement 1.
Solution. We recall that, for a positive real x, the number $N(x, n)$ of elements in $\operatorname{Spec}(x)$ not greater than n satisfies

$$
N(x, n)=\left\lceil\frac{n+1}{x}\right\rceil-1
$$

Suppose that point 2 is satisfied. Then α and β, being irrational, must be different (otherwise $\alpha=\beta=2$). Also, $(n+1) / \alpha$ is not an integer (because α is irrational) and:

$$
N(\alpha, n)=\left\lceil\frac{n+1}{\alpha}\right\rceil-1=\left\lfloor\frac{n+1}{\alpha}\right\rfloor=\frac{n+1}{\alpha}-\left\{\frac{n+1}{\alpha}\right\},
$$

and similarly for $(n+1) / \beta$. Hence,

$$
N(\alpha, n)+N(\beta, n)=\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)(n+1)-\left(\left\{\frac{n+1}{\alpha}\right\}+\left\{\frac{n+1}{\beta}\right\}\right)
$$

By hypothesis, $1 / \alpha+1 / \beta=1$. Then the rightmost term in open parentheses is the sum of the fractional parts of two non-integer numbers whose sum is an integer, and is therefore equal to 1 . Therefore, $N(\alpha, n)+N(\beta, n)=$ $n+1-1=n$ for every positive integer n : then also, for every n, either $N(\alpha, n+1)=N(\alpha, n)+1$ and $N(\beta, n+1)=N(\beta, n)$, or $N(\alpha, n+1)=N(\alpha, n)$ and $N(\beta, n+1)=N(\beta, n)+1$, that is, each integer larger than 1 goes into exactly one of the two spectra. As $1 / \alpha+1 / \beta=1$ and $\alpha \neq \beta$, one of them is smaller than 2 and the other is greater, and $n=1$ goes into the spectrum of the former: this allows us to conclude that $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ partition the positive integers.

Exercise C. 2

Prove equation (3.24): for every integer n and positive integer m,

$$
\left\lceil\frac{n}{m}\right\rceil+\left\lceil\frac{n-1}{m}\right\rceil+\ldots+\left\lceil\frac{n-m+1}{m}\right\rceil=n
$$

Use the result to prove (3.25).

Solution. Write $n=q m+r$ with $q, r \in \mathbb{Z}$ and $0 \leqslant r<m$. Then for every k from 1 to m :

$$
\left\lceil\frac{n-k+1}{m}\right\rceil=q+\left\lceil\frac{r-k+1}{m}\right\rceil \text {. }
$$

Now, for k between 0 and $m-1,\left\lceil\frac{r-k+1}{m}\right\rceil$ is 1 if $r-k+1>0$ (that is, $k \leqslant r$) and 0 otherwise. Then:

$$
\begin{aligned}
\sum_{k=1}^{m}\left\lceil\frac{n-k+1}{m}\right\rceil & =\sum_{k=1}^{m}\left(q+\left\lceil\frac{r-k+1}{m}\right\rceil\right) \\
& =q m+\sum_{k=1}^{m}[k \leqslant r] \\
& =q m+r \\
& =n .
\end{aligned}
$$

Now, (3.24) holds for every integer n and positive integer m. If we want to prove (3.25), we can just exploit it:

$$
\begin{aligned}
\sum_{k=1}^{m}\left\lfloor\frac{n+k-1}{m}\right\rfloor & =-\sum_{k=1}^{m}\left\lceil-\frac{n+k-1}{m}\right\rceil \\
& =-\sum_{k=1}^{m}\left\lceil\frac{-n-k+1}{m}\right\rceil \\
& =-(-n) \text { by }(3.24) \\
& =n .
\end{aligned}
$$

