
ITT9132 Concrete Mathematics
Exercises from Week 6

Silvio Capobianco

Exercise 3.2

Give an explicit formula for the integer nearest to the real number x. Do
this in the two cases when an integer plus 1/2 is rounded up or down.

Solution. Put x = n + t with n integer and 0 6 t < 1. Rounding x to the
nearest integer must yield n = bxc when t < 1/2, and n + 1 = dxe when
t > 1/2.

This can be done by rounding x to bx+ 1/2c. In fact, bx+ 1/2c =
bn+ 1/2 + tc is n if t < 1/2, and n + 1 if t > 1/2. We also observe that
bx+ 1/2c = n + 1 if t = 1/2, i.e., this is the choice that corresponds to
rounding up.

Another option is to reason as follows: Being x = bxc+{x}, rounding up
means turning x into bxc if {x} < 1/2, and into dxe = bxc+ 1 if {x} > 1/2.
Then we can just use Iverson’s brackets and round x to bxc+ [{x} > 1/2].

Are there any options for rounding down? We may try reasoning “by
symmetry” and swapping floor with ceiling, plus with minus: that is, round
x to dx− 1/2e = dn− 1/2 + te. And in fact, we immediately check that this
quantity is n for t < 1/2 and n + 1 for t > 1/2. What about t = 1/2? We
quickly get d(n+ 1/2)− 1/2e = dne = n. So this is the function that rounds
down, as required.

Exercise 3.3

Let m and n be positive integers and let α be an irrational number greater
than n. Evaluate bbmαcn/αc.
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Solution. The floor inside the floor is threatening trouble, so we should try
to make it disappear. Write mα = bmαc+ {mα}. Then:

bmαcn
α

=
(mα− {mα})n

α
= mn− {mα}n

α
.

By hypothesis, 1 6 n < α. Moreover, α is irrational, so mα is not an integer
and {mα} is positive. Consequently, 0 < {mα} · (n/α) < 1 · 1. We can thus
conclude that: ⌊

bmαcn
α

⌋
=

⌊
mn− {ma}n

α

⌋
= mn+

⌊
−{ma}n

α

⌋
= mn−

⌈
{ma}n
α

⌉
= mn− 1 .

Note that we used the rule bn+ xc = n+ bxc, which holds whatever integer
n and real x are. To apply it correctly, we must keep the “plus” sign outside
the floor and not change x. This means that bn− xc is n+ b−xc = n−dxe,
and not (in general) n− bxc.

Exercise 3.6

Can something interesting be said about bf(x)c when f(x) is a continuous,
monotonically decreasing function that takes integer values only when x is
an integer?

Solution. If f(x) is continuous and strictly decreasing and only takes integer
values on integer numbers, then g(x) = −f(x) is continuous and strictly
increasing and only takes integer values on integer numbers. Then:

bf(x)c = −dg(x)e = −dg(dxe)e = bf(dxe)c ,

and similarly, df(x)e = df(bxc)e.

Exercise 3.10

Show that the expression⌈
2x+ 1

2

⌉
−
⌈

2x+ 1

4

⌉
+

⌊
2x+ 1

4

⌋
(1)
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is always either bxc or dxe. In what circumstances does each case arise?

Solution. We observe that⌈
2x+ 1

2

⌉
−
⌈

2x+ 1

4

⌉
+

⌊
2x+ 1

4

⌋
=

⌈
2x+ 1

2

⌉
−
(⌈

2x+ 1

4

⌉
−
⌊

2x+ 1

4

⌋)
=

⌈
x+

1

2

⌉
−
[

2x+ 1

4
is not an integer

]
.

(Do not forget that x is a real number.) But (2x + 1)/4 = k is an integer if
and only if x = (4k − 1)/2 = 2k − 1/2: in this case, dx+ 1/2e = 2k = dxe.
Otherwise, we know that⌈

x+
1

2

⌉
− 1 =

⌈
(x+ 1)− 1

2

⌉
− 1 =

⌈
x− 1

2

⌉
is bxc if {x} < 1/2, and dxe if {x} > 1/2.

Exercise 3.12

Prove that ⌈ n
m

⌉
=

⌊
n+m− 1

m

⌋
(2)

for all integers n and all positive integers m. (This identity gives us another
way to convert ceilings to floors and vice versa, instead of using the reflective
law (3.4).)

Solution. The closed interval [n/m..(n+m− 1)/m] has size 1− 1/m, and
can thus contain at most one integer: in this case, such integer must coincide
with both dn/me and b(n+m− 1)/mc. However, of the m consecutive
integers n, n + 1, . . . , n + m − 1, exactly one is divisible by m: if x is this
number, then x/m ∈ [n/m, (n + m − 1)/m] is the common value of dn/me
and b(n+m− 1)/mc.

Exercise 3.13

Let α and β be positive reals. Consider the following statements:

1. Spec(α) and Spec(β) partition the positive integers, i.e., every positive
integer n belongs to exactly one between Spec(α) and Spec(β).
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2. α and β are irrational and 1/α + 1/β = 1.

Prove that statement 2 implies statement 1.

Solution. We recall that, for a positive real x, the number N(x, n) of ele-
ments in Spec(x) not greater than n satisfies

N(x, n) =

⌈
n+ 1

x

⌉
− 1

Suppose that point 2 is satisfied. Then α and β, being irrational, must be
different (otherwise α = β = 2). Also, (n + 1)/α is not an integer (because
α is irrational) and:

N(α, n) =

⌈
n+ 1

α

⌉
− 1 =

⌊
n+ 1

α

⌋
=
n+ 1

α
−
{
n+ 1

α

}
,

and similarly for (n+ 1)/β. Hence,

N(α, n) +N(β, n) =

(
1

α
+

1

β

)
(n+ 1)−

({
n+ 1

α

}
+

{
n+ 1

β

})
By hypothesis, 1/α+ 1/β = 1. Then the rightmost term in open parentheses
is the sum of the fractional parts of two non-integer numbers whose sum
is an integer, and is therefore equal to 1. Therefore, N(α, n) + N(β, n) =
n + 1 − 1 = n for every positive integer n: then also, for every n, either
N(α, n+1) = N(α, n)+1 andN(β, n+1) = N(β, n), orN(α, n+1) = N(α, n)
and N(β, n + 1) = N(β, n) + 1, that is, each integer larger than 1 goes into
exactly one of the two spectra. As 1/α + 1/β = 1 and α 6= β, one of them
is smaller than 2 and the other is greater, and n = 1 goes into the spectrum
of the former: this allows us to conclude that Spec(α) and Spec(β) partition
the positive integers.

Exercise C.2

Prove equation (3.24): for every integer n and positive integer m,⌈ n
m

⌉
+

⌈
n− 1

m

⌉
+ . . .+

⌈
n−m+ 1

m

⌉
= n .

Use the result to prove (3.25).
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Solution. Write n = qm + r with q, r ∈ Z and 0 6 r < m. Then for every
k from 1 to m: ⌈

n− k + 1

m

⌉
= q +

⌈
r − k + 1

m

⌉
.

Now, for k between 0 and m− 1,
⌈
r−k+1

m

⌉
is 1 if r−k+ 1 > 0 (that is, k 6 r)

and 0 otherwise. Then:

m∑
k=1

⌈
n− k + 1

m

⌉
=

m∑
k=1

(
q +

⌈
r − k + 1

m

⌉)
= qm+

m∑
k=1

[k 6 r]

= qm+ r

= n .

Now, (3.24) holds for every integer n and positive integer m. If we want to
prove (3.25), we can just exploit it:

m∑
k=1

⌊
n+ k − 1

m

⌋
= −

m∑
k=1

⌈
−n+ k − 1

m

⌉
= −

m∑
k=1

⌈
−n− k + 1

m

⌉
= −(−n) by (3.24)

= n .

5


