['TT9132 Concrete Mathematics
Exercises from Week 7

Silvio Capobianco

Exercise 4.1

What is the smallest positive integers that has exactly k divisors, for 1 <
k <67

Solution. Let us just start counting:
1. 1 has only one divisor.

2. 2 has exactly two divisors. This is actually true for every prime number
p, of which 2 is the smallest.

3. The only numbers with exactly three divisors, are the squares of primes.
(In fact, an nth power of a prime has exactly n+ 1 divisors.) Of these,
4 is the smallest.

4. The only numbers with exactly four divisors, are the cubes of primes
and the products of two distinct primes. Of these 6 = 2 - 3 is the
smallest, as 23 = 8.

5. The only numbers with exactly five divisors, are the fourth powers of
primes: the smallest one is 2* = 16.

6. A number has six divisors if and only if it is the fifth power of a prime,
or the power of a prime and the square of another prime: as 2° = 32
but 3 - 2% = 12, the smallest such number is 12.



Exercise 4.2

Use the identity ged(m,n) - lem(m,n) = m - n to express lem(m,n) in terms
of lem(n mod m,n), when nmodm # 0. Hint: Use (4.12), (4.14) and (4.15).

Solution. We have:

lem( ) m-n
cm(m,n) = ————
’ ged(m, n)
= by the Euclidean algorithm
ged(nmod m, m)

n-(nmodm)-m

(nmodm) ged(n mod m, m)
n (nmodm) - m

nmodm ged(nmodm,m)

n
- " d '
p——" - cm(n mod m, m)

Exercise 4.13(a)

A positive integer n is called squarefree if it is not divisible by m? for any
m > 1. Find a necessary and sufficient condition that n is squarefree, in
terms of the prime-exponent representation (4.11) of n.

Solution. By applying the definition of prime number and the fundamental
theorem of arithmetic, we see that n is divisible by the square of an integer
m > 1 if and only if it is divisible by the square of a prime p. Then n is
squarefree if and only if n, < 1 for every prime p.

Exercise 4.14

Prove or disprove:
1. ged(km, kn) = k ged(m,n);
2. lem(km, kn) = klem(m,n).

Solution. The statements are trivially true for £ = 1. For k£ > 1 they are
also true, because for every prime p, (km), = k, +m, and (kn), = k, + n,,



thus

ged(km, kn) = ][ pmin(tme )

p
— H pmin(k;n"‘mpvkp"‘”p)

p
— Hpkp+min(mpynp)
p

= kged(m,n).
We can reason similarly for the least common multiple, or do as follows:

ged(km, kn)
kE*mn

lem(km, kn)

k ged(m, n)
mn

" ged(m, n)
= klem(m,n).

For k£ < 0 the left-hand sides are positive, but the right-hand sides are
negative. But as ged(m,n) = ged(|m|,|n|) for every two integers m.n not
both zero, we can replace k with |k| on the right-hand side, and still get a
correct formula. The above work also for k£ < 0.

For k = 0 the right-hand sides are 0 but the left-hand sides are undefined.
If we use the convention that a-[False] = 0 whenever « is infinite or undefined,
then we can summarize the formulas as:

ged(km, kn) [k #0] = kged(m,n)
lem(km, kn) [k #0] = klem(m,n)

Esercise 4.17
Let f, be the “Fermat number” 22" +1. Prove that gcd(f,, fn) = 1 if m < n.

Solution. Let us construct the first Fermat numbers: fy =3, f1 =5, fo =
17, f3 = 257, fy = 65537. We observe that fy = 3 divides f; — 2 = 3,
fo—2=15, f3 —2 =255, f —2 = 65535; and so on. We also observe that



f1 = b5 divides fo — 2, f3 — 2, and f; — 2. We thus formulate the following
conjecture: if m < n then f,, \ f, — 2.
Is this conjecture of any utility for our objective? Yes, it is: if f,,, \ fn — 2,

then ged(fon, fn) = ged(fumod fin, fn) = ged(2, ) = 1 as f is odd.

Let us now prove the conjecture. If m < n then 2"™™ is even: but
a¥ —1 = (a+1(a®> 't —-a>2+...+a—1). Put then a = 22" and
27=m = 2p: then f,, =a+ 1 and f, — 2 = a*" — 1.

Exercise 4.18

Show that if 2™ + 1 is prime then n is a power of 2.

Solution. We reformulate the problem as follows: if n has an odd factor

m > 1, then 2" 4+ 1 has a nontrivial factor. So suppose n = gm with m > 1
odd: then

2 41 =20 41 = (204 1)(2m Ve _om=2a 4 9% _ a4 1)

and the factor 29 + 1 surely is nontrivial.

Exercise 4.20

For every positive integer n there’s a prime p such that n < p < 2n. (This
is essentially “Bertrand’s postulate”, which Joseph Bertrand verified for n <
3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand’s

postulate to prove that there’s a constant b ~ 1.25 such that the numbers

2] 2] 2] (1)
are all prime.

Solution. Call lg the binary (base-2) logarithm. Let us define a “simple”
sequence of primes by putting p; = 2, and p,, as the smallest prime larger
than 2P»-1. By Bertrand’s postulate, 2Pn-1 < p, < 2P+ for every n > 2:
we can switch to strict inequality because such p,, are odd. Hence,

Pn-1 < lgpn < Pn—1 + 1 (2>

for every n > 2. The left-hand inequality of (2) tells us that the sequence
bn = lg(n) Pn s (3)
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where lg(") is the nth iteration of lg, is nondecreasing. To prove that it is
bounded from above, we set a; = 2 and a,, = 2% for every n > 2, so that
as = 4, a3 = 16, and so on: we prove by induction that p, < a,; for every
n > 1, from which follows b, < 2 for every n > 1 as 1g™ a,.1 = 2. This is
true for n = 1 and n = 2 as p, = 5; for n > 3, if p,_1 < a,, then, as p,_1
and a,, are both integers, p,_1 + 1 < a,, and the right-hand inequality of (2)
tells us that p, < 2Pr-1T1 < 2% =g, ;. We then set:

b= lim b, = suplg™ p,. (4)

n—oo n>1
To prove that this is the b we were looking for, we set u; = 2° and u,, = 241
for every n > 2: we will show that |u,| = p, for every n > 1, which will
solve the exercise. Clearly |u,| > p, as b, < b; also, as b = 1.25164...
and 226 < 2.4, |uy| = py. If for some n > 1 it is |u,] > py,, let n be the
minimum value for which this happens: then u, > p,, too, and

Up—1 = 1gu, >1gpn > pp_1,

against minimality of n.

Factorial factors

For p prime, let €,(n) the exponent of p in the prime factorization of n: that
is, let n = p*™ . m with p fm. For example, ;(20) = 2, €5(20) = 1, and

€3(20) = 0. Prove that
) =3 EJ (5)

k>1

for every prime p and positive integer n.

Solution. Of the n positive integers from 1 to n, only every pth contributes
with one or more factor p. Of those, one in p contribute with two or more
factors p; of those, one in p contributes with three or more factors p; and so
on.

We then get an idea about how to compute €,(n!). Construct a table A
with infinitely many rows and n columns; enumerate the columns from 1 to
n, and the rows with the positive integers. Let then:

A = [pk\m} VE>1,1<m<n.
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123456789
110 10101010
110 001 00 01O
110 00000010
110 0000 0O0O0O0

Figure 1: The table of factorial factors for n = 9 and p = 2 has 7 entries
equal to 1, and indeed, 9! = 362880 = 27 - 2385

The double sum ), A, converges, because only finitely many terms are
nonzero. Moreover, ‘the kth row contributes with as many 1s as there are
multiples of p* between 1 and n: there are exactly [n/ p"’J such 1s. Also, the
mth column contributes with a number of 1s equal to (the exponent of) the
maximum power of p which divides m. Then the maximum power of p that
divides n! is the sum of all the entries of the matrix: by Tonelli’s theorem,

;Ak,m = Z Z [Pk\m}

k>1 1<m<n

sl

k>1

as we wanted to prove.



