ITT9132 Concrete Mathematics Exercises from Week 7

Silvio Capobianco

Exercise 4.1

What is the smallest positive integers that has exactly k divisors, for $1 \le k \le 6$?

Solution. Let us just start counting:

- 1. 1 has only one divisor.
- 2. 2 has exactly two divisors. This is actually true for every prime number p, of which 2 is the smallest.
- 3. The only numbers with exactly three divisors, are the squares of primes. (In fact, an *n*th power of a prime has exactly n + 1 divisors.) Of these, 4 is the smallest.
- 4. The only numbers with exactly four divisors, are the cubes of primes and the products of two distinct primes. Of these $6 = 2 \cdot 3$ is the smallest, as $2^3 = 8$.
- 5. The only numbers with exactly five divisors, are the fourth powers of primes: the smallest one is $2^4 = 16$.
- 6. A number has six divisors if and only if it is the fifth power of a prime, or the power of a prime and the square of another prime: as $2^5 = 32$ but $3 \cdot 2^2 = 12$, the smallest such number is 12.

Exercise 4.2

Use the identity $gcd(m, n) \cdot lcm(m, n) = m \cdot n$ to express lcm(m, n) in terms of $lcm(n \mod m, n)$, when $n \mod m \neq 0$. *Hint:* Use (4.12), (4.14) and (4.15).

Solution. We have:

$$\operatorname{lcm}(m,n) = \frac{m \cdot n}{\gcd(m,n)}$$

$$= \frac{m \cdot n}{\gcd(n \mod m,m)} \text{ by the Euclidean algorithm}$$

$$= \frac{n \cdot (n \mod m) \cdot m}{(n \mod m) \gcd(n \mod m,m)}$$

$$= \frac{n}{n \mod m} \cdot \frac{(n \mod m) \cdot m}{\gcd(n \mod m,m)}$$

$$= \frac{n}{n \mod m} \cdot \operatorname{lcm}(n \mod m,m) .$$

Exercise 4.13(a)

A positive integer n is called *squarefree* if it is not divisible by m^2 for any m > 1. Find a necessary and sufficient condition that n is squarefree, in terms of the prime-exponent representation (4.11) of n.

Solution. By applying the definition of prime number and the fundamental theorem of arithmetic, we see that n is divisible by the square of an integer m > 1 if and only if it is divisible by the square of a prime p. Then n is squarefree if and only if $n_p \leq 1$ for every prime p.

Exercise 4.14

Prove or disprove:

- 1. gcd(km, kn) = k gcd(m, n);
- 2. $\operatorname{lcm}(km, kn) = k\operatorname{lcm}(m, n)$.

Solution. The statements are trivially true for k = 1. For k > 1 they are also true, because for every prime p, $(km)_p = k_p + m_p$ and $(kn)_p = k_p + n_p$,

thus

$$gcd(km, kn) = \prod_{p} p^{\min((km)_{p}, (kn)_{p})}$$
$$= \prod_{p} p^{\min(k_{p}+m_{p}, k_{p}+n_{p})}$$
$$= \prod_{p} p^{k_{p}+\min(m_{p}, n_{p})}$$
$$= k gcd(m, n).$$

We can reason similarly for the least common multiple, or do as follows:

$$\operatorname{lcm}(km, kn) = \frac{(km) \cdot (kn)}{\operatorname{gcd}(km, kn)}$$
$$= \frac{k^2 mn}{k \operatorname{gcd}(m, n)}$$
$$= k \cdot \frac{mn}{\operatorname{gcd}(m, n)}$$
$$= k \operatorname{lcm}(m, n).$$

For k < 0 the left-hand sides are positive, but the right-hand sides are negative. But as gcd(m, n) = gcd(|m|, |n|) for every two integers m.n not both zero, we can replace k with |k| on the right-hand side, and still get a correct formula. The above work also for k < 0.

For k = 0 the right-hand sides are 0 but the left-hand sides are undefined. If we use the convention that $a \cdot [False] = 0$ whenever a is infinite or undefined, then we can summarize the formulas as:

$$gcd(km, kn) [k \neq 0] = k gcd(m, n)$$
$$lcm(km, kn) [k \neq 0] = k lcm(m, n)$$

Esercise 4.17

Let f_n be the "Fermat number" $2^{2^n} + 1$. Prove that $gcd(f_m, f_n) = 1$ if m < n.

Solution. Let us construct the first Fermat numbers: $f_0 = 3$, $f_1 = 5$, $f_2 = 17$, $f_3 = 257$, $f_4 = 65537$. We observe that $f_0 = 3$ divides $f_1 - 2 = 3$, $f_2 - 2 = 15$, $f_3 - 2 = 255$, $f_4 - 2 = 65535$; and so on. We also observe that

 $f_1 = 5$ divides $f_2 - 2$, $f_3 - 2$, and $f_4 - 2$. We thus formulate the following conjecture: if m < n then $f_m \setminus f_n - 2$.

Is this conjecture of any utility for our objective? Yes, it is: if $f_m \setminus f_n - 2$, then $gcd(f_m, f_n) = gcd(f_n \mod f_m, f_m) = gcd(2, f_m) = 1$ as f_m is odd.

Let us now prove the conjecture. If m < n then 2^{n-m} is even: but $a^{2r} - 1 = (a+1)(a^{2r-1} - a^{2r-2} + \ldots + a - 1)$. Put then $a = 2^{2^m}$ and $2^{n-m} = 2r$: then $f_m = a + 1$ and $f_n - 2 = a^{2r} - 1$.

Exercise 4.18

Show that if $2^n + 1$ is prime then n is a power of 2.

Solution. We reformulate the problem as follows: if n has an odd factor m > 1, then $2^n + 1$ has a nontrivial factor. So suppose n = qm with m > 1 odd: then

$$2^{n} + 1 = 2^{qm} + 1 = (2^{q} + 1)(2^{(m-1)q} - 2^{(m-2)q} + \dots + 2^{2q} - 2^{q} + 1)$$

and the factor $2^q + 1$ surely is nontrivial.

Exercise 4.20

For every positive integer n there's a prime p such that n . (This is essentially "Bertrand's postulate", which Joseph Bertrand verified for <math>n < 3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand's postulate to prove that there's a constant $b \approx 1.25$ such that the numbers

$$\lfloor 2^b \rfloor \cdot \lfloor 2^{2^b} \rfloor \cdot \lfloor 2^{2^{2^b}} \rfloor \cdot \dots$$
 (1)

are all prime.

Solution. Call lg the binary (base-2) logarithm. Let us define a "simple" sequence of primes by putting $p_1 = 2$, and p_n as the smallest prime larger than $2^{p_{n-1}}$. By Bertrand's postulate, $2^{p_{n-1}} < p_n < 2^{p_{n-1}+1}$ for every $n \ge 2$: we can switch to strict inequality because such p_n are odd. Hence,

$$p_{n-1} < \lg p_n < p_{n-1} + 1 \tag{2}$$

for every $n \ge 2$. The left-hand inequality of (2) tells us that the sequence

$$b_n = \lg^{(n)} p_n \,, \tag{3}$$

where $\lg^{(n)}$ is the *n*th iteration of lg, is nondecreasing. To prove that it is bounded from above, we set $a_1 = 2$ and $a_n = 2^{a_{n-1}}$ for every $n \ge 2$, so that $a_2 = 4$, $a_3 = 16$, and so on: we prove by induction that $p_n < a_{n+1}$ for every $n \ge 1$, from which follows $b_n < 2$ for every $n \ge 1$ as $\lg^{(n)} a_{n+1} = 2$. This is true for n = 1 and n = 2 as $p_2 = 5$; for $n \ge 3$, if $p_{n-1} < a_n$, then, as p_{n-1} and a_n are both integers, $p_{n-1} + 1 \le a_n$, and the right-hand inequality of (2) tells us that $p_n < 2^{p_{n-1}+1} \le 2^{a_n} = a_{n+1}$. We then set:

$$b = \lim_{n \to \infty} b_n = \sup_{n \ge 1} \lg^{(n)} p_n \,. \tag{4}$$

To prove that this is the *b* we were looking for, we set $u_1 = 2^b$ and $u_n = 2^{u_{n-1}}$ for every $n \ge 2$: we will show that $\lfloor u_n \rfloor = p_n$ for every $n \ge 1$, which will solve the exercise. Clearly $\lfloor u_n \rfloor \ge p_n$ as $b_n < b$; also, as b = 1.25164... and $2^{1.26} < 2.4$, $\lfloor u_1 \rfloor = p_1$. If for some n > 1 it is $\lfloor u_n \rfloor > p_n$, let *n* be the minimum value for which this happens: then $u_n > p_n$, too, and

$$u_{n-1} = \lg u_n > \lg p_n > p_{n-1} \,,$$

against minimality of n.

Factorial factors

For p prime, let $\epsilon_p(n)$ the exponent of p in the prime factorization of n: that is, let $n = p^{\epsilon_p(n)} \cdot m$ with $p \not/m$. For example, $\epsilon_2(20) = 2$, $\epsilon_5(20) = 1$, and $\epsilon_3(20) = 0$. Prove that

$$\epsilon_p(n!) = \sum_{k \ge 1} \left\lfloor \frac{n}{p^k} \right\rfloor \tag{5}$$

for every prime p and positive integer n.

Solution. Of the *n* positive integers from 1 to *n*, only every *p*th contributes with one or more factor *p*. Of those, one in *p* contribute with *two* or more factors *p*; of those, one in *p* contributes with *three* or more factors *p*; and so on.

We then get an idea about how to compute $\epsilon_p(n!)$. Construct a table A with infinitely many rows and n columns; enumerate the columns from 1 to n, and the rows with the positive integers. Let then:

$$A_{k,m} = \begin{bmatrix} p^k \setminus m \end{bmatrix} \quad \forall k \ge 1, 1 \le m \le n.$$

	1	2	3	4	5	6	7	8	9
1	0	1	0	1	0	1	0	1	0
1	0	0	0	1	0	0	0	1	0
1	0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	0
÷	:	÷	÷	÷	÷	÷	÷	÷	÷

Figure 1: The table of factorial factors for n = 9 and p = 2 has 7 entries equal to 1, and indeed, $9! = 362880 = 2^7 \cdot 2385$

The double sum $\sum_{k,m} A_{k,m}$ converges, because only finitely many terms are nonzero. Moreover, the *k*th row contributes with as many 1s as there are multiples of p^k between 1 and *n*: there are exactly $\lfloor n/p^k \rfloor$ such 1s. Also, the *m*th column contributes with a number of 1s equal to (the exponent of) the maximum power of *p* which divides *m*. Then the maximum power of *p* that divides *n*! is the sum of all the entries of the matrix: by Tonelli's theorem,

$$\sum_{k,m} A_{k,m} = \sum_{k \ge 1} \sum_{1 \le m \le n} \left[p^k \setminus m \right]$$
$$= \sum_{k \ge 1} \left\lfloor \frac{n}{p^k} \right\rfloor,$$

as we wanted to prove.