
ITT9132 Concrete Mathematics
Exercises from Week 7

Silvio Capobianco

Exercise 4.1

What is the smallest positive integers that has exactly k divisors, for 1 6
k 6 6?

Solution. Let us just start counting:

1. 1 has only one divisor.

2. 2 has exactly two divisors. This is actually true for every prime number
p, of which 2 is the smallest.

3. The only numbers with exactly three divisors, are the squares of primes.
(In fact, an nth power of a prime has exactly n+ 1 divisors.) Of these,
4 is the smallest.

4. The only numbers with exactly four divisors, are the cubes of primes
and the products of two distinct primes. Of these 6 = 2 · 3 is the
smallest, as 23 = 8.

5. The only numbers with exactly five divisors, are the fourth powers of
primes: the smallest one is 24 = 16.

6. A number has six divisors if and only if it is the fifth power of a prime,
or the power of a prime and the square of another prime: as 25 = 32
but 3 · 22 = 12, the smallest such number is 12.
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Exercise 4.2

Use the identity gcd(m,n) · lcm(m,n) = m · n to express lcm(m,n) in terms
of lcm(nmodm,n), when nmodm 6= 0. Hint: Use (4.12), (4.14) and (4.15).

Solution. We have:

lcm(m,n) =
m · n

gcd(m,n)

=
m · n

gcd(nmodm,m)
by the Euclidean algorithm

=
n · (nmodm) ·m

(nmodm) gcd(nmodm,m)

=
n

nmodm
· (nmodm) ·m

gcd(nmodm,m)

=
n

nmodm
· lcm(nmodm,m) .

Exercise 4.13(a)

A positive integer n is called squarefree if it is not divisible by m2 for any
m > 1. Find a necessary and sufficient condition that n is squarefree, in
terms of the prime-exponent representation (4.11) of n.

Solution. By applying the definition of prime number and the fundamental
theorem of arithmetic, we see that n is divisible by the square of an integer
m > 1 if and only if it is divisible by the square of a prime p. Then n is
squarefree if and only if np 6 1 for every prime p.

Exercise 4.14

Prove or disprove:

1. gcd(km, kn) = k gcd(m,n);

2. lcm(km, kn) = klcm(m,n).

Solution. The statements are trivially true for k = 1. For k > 1 they are
also true, because for every prime p, (km)p = kp + mp and (kn)p = kp + np,
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thus

gcd(km, kn) =
∏
p

pmin((km)p,(kn)p)

=
∏
p

pmin(kp+mp,kp+np)

=
∏
p

pkp+min(mp,np)

= k gcd(m,n) .

We can reason similarly for the least common multiple, or do as follows:

lcm(km, kn) =
(km) · (kn)

gcd(km, kn)

=
k2mn

k gcd(m,n)

= k · mn

gcd(m,n)

= k lcm(m,n) .

For k < 0 the left-hand sides are positive, but the right-hand sides are
negative. But as gcd(m,n) = gcd(|m|, |n|) for every two integers m.n not
both zero, we can replace k with |k| on the right-hand side, and still get a
correct formula. The above work also for k < 0.

For k = 0 the right-hand sides are 0 but the left-hand sides are undefined.
If we use the convention that a·[False] = 0 whenever a is infinite or undefined,
then we can summarize the formulas as:

gcd(km, kn) [k 6= 0] = k gcd(m,n)

lcm(km, kn) [k 6= 0] = klcm(m,n)

Esercise 4.17

Let fn be the “Fermat number” 22n +1. Prove that gcd(fm, fn) = 1 if m < n.

Solution. Let us construct the first Fermat numbers: f0 = 3, f1 = 5, f2 =
17, f3 = 257, f4 = 65537. We observe that f0 = 3 divides f1 − 2 = 3,
f2 − 2 = 15, f3 − 2 = 255, f4 − 2 = 65535; and so on. We also observe that
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f1 = 5 divides f2 − 2, f3 − 2, and f4 − 2. We thus formulate the following
conjecture: if m < n then fm \ fn − 2.

Is this conjecture of any utility for our objective? Yes, it is: if fm \fn−2,
then gcd(fm, fn) = gcd(fn mod fm, fm) = gcd(2, fm) = 1 as fm is odd.

Let us now prove the conjecture. If m < n then 2n−m is even: but
a2r − 1 = (a + 1)(a2r−1 − a2r−2 + . . . + a − 1). Put then a = 22m and
2n−m = 2r: then fm = a+ 1 and fn − 2 = a2r − 1.

Exercise 4.18

Show that if 2n + 1 is prime then n is a power of 2.

Solution. We reformulate the problem as follows: if n has an odd factor
m > 1, then 2n + 1 has a nontrivial factor. So suppose n = qm with m > 1
odd: then

2n + 1 = 2qm + 1 = (2q + 1)(2(m−1)q − 2(m−2)q + . . .+ 22q − 2q + 1) ,

and the factor 2q + 1 surely is nontrivial.

Exercise 4.20

For every positive integer n there’s a prime p such that n < p 6 2n. (This
is essentially “Bertrand’s postulate”, which Joseph Bertrand verified for n <
3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand’s
postulate to prove that there’s a constant b ≈ 1.25 such that the numbers⌊

2b
⌋
.
⌊
22b
⌋
,
⌊
222

b
⌋
, . . . (1)

are all prime.

Solution. Call lg the binary (base-2) logarithm. Let us define a “simple”
sequence of primes by putting p1 = 2, and pn as the smallest prime larger
than 2pn−1 . By Bertrand’s postulate, 2pn−1 < pn < 2pn−1+1 for every n > 2:
we can switch to strict inequality because such pn are odd. Hence,

pn−1 < lg pn < pn−1 + 1 (2)

for every n > 2. The left-hand inequality of (2) tells us that the sequence

bn = lg(n) pn , (3)
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where lg(n) is the nth iteration of lg, is nondecreasing. To prove that it is
bounded from above, we set a1 = 2 and an = 2an−1 for every n > 2, so that
a2 = 4, a3 = 16, and so on: we prove by induction that pn < an+1 for every
n > 1, from which follows bn < 2 for every n > 1 as lg(n) an+1 = 2. This is
true for n = 1 and n = 2 as p2 = 5; for n > 3, if pn−1 < an, then, as pn−1
and an are both integers, pn−1 + 1 6 an, and the right-hand inequality of (2)
tells us that pn < 2pn−1+1 6 2an = an+1. We then set:

b = lim
n→∞

bn = sup
n>1

lg(n) pn . (4)

To prove that this is the b we were looking for, we set u1 = 2b and un = 2un−1

for every n > 2: we will show that bunc = pn for every n > 1, which will
solve the exercise. Clearly bunc > pn as bn < b; also, as b = 1.25164 . . .
and 21.26 < 2.4, bu1c = p1. If for some n > 1 it is bunc > pn, let n be the
minimum value for which this happens: then un > pn, too, and

un−1 = lg un > lg pn > pn−1 ,

against minimality of n.

Factorial factors

For p prime, let εp(n) the exponent of p in the prime factorization of n: that
is, let n = pεp(n) · m with p 6 |m. For example, ε2(20) = 2, ε5(20) = 1, and
ε3(20) = 0. Prove that

εp(n!) =
∑
k>1

⌊
n

pk

⌋
(5)

for every prime p and positive integer n.

Solution. Of the n positive integers from 1 to n, only every pth contributes
with one or more factor p. Of those, one in p contribute with two or more
factors p; of those, one in p contributes with three or more factors p; and so
on.

We then get an idea about how to compute εp(n!). Construct a table A
with infinitely many rows and n columns; enumerate the columns from 1 to
n, and the rows with the positive integers. Let then:

Ak,m =
[
pk \m

]
∀k > 1, 1 6 m 6 n .
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1 2 3 4 5 6 7 8 9
1 0 1 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

Figure 1: The table of factorial factors for n = 9 and p = 2 has 7 entries
equal to 1, and indeed, 9! = 362880 = 27 · 2385

The double sum
∑

k,mAk,m converges, because only finitely many terms are
nonzero. Moreover, the kth row contributes with as many 1s as there are
multiples of pk between 1 and n: there are exactly

⌊
n/pk

⌋
such 1s. Also, the

mth column contributes with a number of 1s equal to (the exponent of) the
maximum power of p which divides m. Then the maximum power of p that
divides n! is the sum of all the entries of the matrix: by Tonelli’s theorem,∑

k,m

Ak,m =
∑
k>1

∑
16m6n

[
pk \m

]
=

∑
k>1

⌊
n

pk

⌋
,

as we wanted to prove.
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