ITT9132 Concrete Mathematics Exercises from Week 7

Silvio Capobianco

Exercise 4.1

What is the smallest positive integers that has exactly k divisors, for $1 \leqslant$ $k \leqslant 6$?

Solution. Let us just start counting:

1. 1 has only one divisor.
2. 2 has exactly two divisors. This is actually true for every prime number p, of which 2 is the smallest.
3. The only numbers with exactly three divisors, are the squares of primes. (In fact, an nth power of a prime has exactly $n+1$ divisors.) Of these, 4 is the smallest.
4. The only numbers with exactly four divisors, are the cubes of primes and the products of two distinct primes. Of these $6=2 \cdot 3$ is the smallest, as $2^{3}=8$.
5. The only numbers with exactly five divisors, are the fourth powers of primes: the smallest one is $2^{4}=16$.
6. A number has six divisors if and only if it is the fifth power of a prime, or the power of a prime and the square of another prime: as $2^{5}=32$ but $3 \cdot 2^{2}=12$, the smallest such number is 12 .

Exercise 4.2

Use the identity $\operatorname{gcd}(m, n) \cdot \operatorname{lcm}(m, n)=m \cdot n$ to express $\operatorname{lcm}(m, n)$ in terms of $\operatorname{lcm}(n \bmod m, n)$, when $n \bmod m \neq 0$. Hint: Use (4.12), (4.14) and (4.15).

Solution. We have:

$$
\begin{aligned}
\operatorname{lcm}(m, n) & =\frac{m \cdot n}{\operatorname{gcd}(m, n)} \\
& =\frac{m \cdot n}{\operatorname{gcd}(n \bmod m, m)} \text { by the Euclidean algorithm } \\
& =\frac{n \cdot(n \bmod m) \cdot m}{(n \bmod m) \operatorname{gcd}(n \bmod m, m)} \\
& =\frac{n}{n \bmod m} \cdot \frac{(n \bmod m) \cdot m}{\operatorname{gcd}(n \bmod m, m)} \\
& =\frac{n}{n \bmod m} \cdot \operatorname{lcm}(n \bmod m, m)
\end{aligned}
$$

Exercise 4.13(a)

A positive integer n is called squarefree if it is not divisible by m^{2} for any $m>1$. Find a necessary and sufficient condition that n is squarefree, in terms of the prime-exponent representation (4.11) of n.

Solution. By applying the definition of prime number and the fundamental theorem of arithmetic, we see that n is divisible by the square of an integer $m>1$ if and only if it is divisible by the square of a prime p. Then n is squarefree if and only if $n_{p} \leqslant 1$ for every prime p.

Exercise 4.14

Prove or disprove:

1. $\operatorname{gcd}(k m, k n)=k \operatorname{gcd}(m, n)$;
2. $\operatorname{lcm}(k m, k n)=k \operatorname{lcm}(m, n)$.

Solution. The statements are trivially true for $k=1$. For $k>1$ they are also true, because for every prime $p,(k m)_{p}=k_{p}+m_{p}$ and $(k n)_{p}=k_{p}+n_{p}$,
thus

$$
\begin{aligned}
\operatorname{gcd}(k m, k n) & =\prod_{p} p^{\min \left((k m)_{p},(k n)_{p}\right)} \\
& =\prod_{p} p^{\min \left(k_{p}+m_{p}, k_{p}+n_{p}\right)} \\
& =\prod_{p} p^{k_{p}+\min \left(m_{p}, n_{p}\right)} \\
& =k \operatorname{gcd}(m, n) .
\end{aligned}
$$

We can reason similarly for the least common multiple, or do as follows:

$$
\begin{aligned}
\operatorname{lcm}(k m, k n) & =\frac{(k m) \cdot(k n)}{\operatorname{gcd}(k m, k n)} \\
& =\frac{k^{2} m n}{k \operatorname{gcd}(m, n)} \\
& =k \cdot \frac{m n}{\operatorname{gcd}(m, n)} \\
& =k \operatorname{lcm}(m, n)
\end{aligned}
$$

For $k<0$ the left-hand sides are positive, but the right-hand sides are negative. But as $\operatorname{gcd}(m, n)=\operatorname{gcd}(|m|,|n|)$ for every two integers m.n not both zero, we can replace k with $|k|$ on the right-hand side, and still get a correct formula. The above work also for $k<0$.

For $k=0$ the right-hand sides are 0 but the left-hand sides are undefined. If we use the convention that $a \cdot[$ False $]=0$ whenever a is infinite or undefined, then we can summarize the formulas as:

$$
\begin{aligned}
\operatorname{gcd}(k m, k n)[k \neq 0] & =k \operatorname{gcd}(m, n) \\
\operatorname{lcm}(k m, k n)[k \neq 0] & =k \operatorname{lcm}(m, n)
\end{aligned}
$$

Esercise 4.17

Let f_{n} be the "Fermat number" $2^{2^{n}}+1$. Prove that $\operatorname{gcd}\left(f_{m}, f_{n}\right)=1$ if $m<n$.
Solution. Let us construct the first Fermat numbers: $f_{0}=3, f_{1}=5, f_{2}=$ $17, f_{3}=257, f_{4}=65537$. We observe that $f_{0}=3$ divides $f_{1}-2=3$, $f_{2}-2=15, f_{3}-2=255, f_{4}-2=65535$; and so on. We also observe that
$f_{1}=5$ divides $f_{2}-2, f_{3}-2$, and $f_{4}-2$. We thus formulate the following conjecture: if $m<n$ then $f_{m} \backslash f_{n}-2$.

Is this conjecture of any utility for our objective? Yes, it is: if $f_{m} \backslash f_{n}-2$, then $\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{n} \bmod f_{m}, f_{m}\right)=\operatorname{gcd}\left(2, f_{m}\right)=1$ as f_{m} is odd.

Let us now prove the conjecture. If $m<n$ then 2^{n-m} is even: but $a^{2 r}-1=(a+1)\left(a^{2 r-1}-a^{2 r-2}+\ldots+a-1\right)$. Put then $a=2^{2^{m}}$ and $2^{n-m}=2 r$: then $f_{m}=a+1$ and $f_{n}-2=a^{2 r}-1$.

Exercise 4.18

Show that if $2^{n}+1$ is prime then n is a power of 2 .
Solution. We reformulate the problem as follows: if n has an odd factor $m>1$, then $2^{n}+1$ has a nontrivial factor. So suppose $n=q m$ with $m>1$ odd: then

$$
2^{n}+1=2^{q m}+1=\left(2^{q}+1\right)\left(2^{(m-1) q}-2^{(m-2) q}+\ldots+2^{2 q}-2^{q}+1\right),
$$

and the factor $2^{q}+1$ surely is nontrivial.

Exercise 4.20

For every positive integer n there's a prime p such that $n<p \leqslant 2 n$. (This is essentially "Bertrand's postulate", which Joseph Bertrand verified for $n<$ 3000000 in 1845 and Chebyshev proved for all n in 1850.) Use Bertrand's postulate to prove that there's a constant $b \approx 1.25$ such that the numbers

$$
\begin{equation*}
\left\lfloor 2^{b}\right\rfloor \cdot\left\lfloor 2^{2^{b}}\right\rfloor,\left\lfloor 2^{2^{2^{b}}}\right\rfloor, \ldots \tag{1}
\end{equation*}
$$

are all prime.
Solution. Call \lg the binary (base-2) logarithm. Let us define a "simple" sequence of primes by putting $p_{1}=2$, and p_{n} as the smallest prime larger than $2^{p_{n-1}}$. By Bertrand's postulate, $2^{p_{n-1}}<p_{n}<2^{p_{n-1}+1}$ for every $n \geqslant 2$: we can switch to strict inequality because such p_{n} are odd. Hence,

$$
\begin{equation*}
p_{n-1}<\lg p_{n}<p_{n-1}+1 \tag{2}
\end{equation*}
$$

for every $n \geqslant 2$. The left-hand inequality of (2) tells us that the sequence

$$
\begin{equation*}
b_{n}=\lg ^{(n)} p_{n} \tag{3}
\end{equation*}
$$

where $\lg ^{(n)}$ is the nth iteration of \lg, is nondecreasing. To prove that it is bounded from above, we set $a_{1}=2$ and $a_{n}=2^{a_{n-1}}$ for every $n \geqslant 2$, so that $a_{2}=4, a_{3}=16$, and so on: we prove by induction that $p_{n}<a_{n+1}$ for every $n \geqslant 1$, from which follows $b_{n}<2$ for every $n \geqslant 1$ as $\lg ^{(n)} a_{n+1}=2$. This is true for $n=1$ and $n=2$ as $p_{2}=5$; for $n \geqslant 3$, if $p_{n-1}<a_{n}$, then, as p_{n-1} and a_{n} are both integers, $p_{n-1}+1 \leqslant a_{n}$, and the right-hand inequality of (2) tells us that $p_{n}<2^{p_{n-1}+1} \leqslant 2^{a_{n}}=a_{n+1}$. We then set:

$$
\begin{equation*}
b=\lim _{n \rightarrow \infty} b_{n}=\sup _{n \geqslant 1} \lg ^{(n)} p_{n} . \tag{4}
\end{equation*}
$$

To prove that this is the b we were looking for, we set $u_{1}=2^{b}$ and $u_{n}=2^{u_{n-1}}$ for every $n \geqslant 2$: we will show that $\left\lfloor u_{n}\right\rfloor=p_{n}$ for every $n \geqslant 1$, which will solve the exercise. Clearly $\left\lfloor u_{n}\right\rfloor \geqslant p_{n}$ as $b_{n}<b$; also, as $b=1.25164 \ldots$ and $2^{1.26}<2.4,\left\lfloor u_{1}\right\rfloor=p_{1}$. If for some $n>1$ it is $\left\lfloor u_{n}\right\rfloor>p_{n}$, let n be the minimum value for which this happens: then $u_{n}>p_{n}$, too, and

$$
u_{n-1}=\lg u_{n}>\lg p_{n}>p_{n-1},
$$

against minimality of n.

Factorial factors

For p prime, let $\epsilon_{p}(n)$ the exponent of p in the prime factorization of n : that is, let $n=p^{\epsilon_{p}(n)} \cdot m$ with $p \nmid m$. For example, $\epsilon_{2}(20)=2, \epsilon_{5}(20)=1$, and $\epsilon_{3}(20)=0$. Prove that

$$
\begin{equation*}
\epsilon_{p}(n!)=\sum_{k \geqslant 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor \tag{5}
\end{equation*}
$$

for every prime p and positive integer n.
Solution. Of the n positive integers from 1 to n, only every p th contributes with one or more factor p. Of those, one in p contribute with two or more factors p; of those, one in p contributes with three or more factors p; and so on.

We then get an idea about how to compute $\epsilon_{p}(n!)$. Construct a table A with infinitely many rows and n columns; enumerate the columns from 1 to n, and the rows with the positive integers. Let then:

$$
A_{k, m}=\left[p^{k} \backslash m\right] \quad \forall k \geqslant 1,1 \leqslant m \leqslant n .
$$

	1	2	3	4	5	6	7	8	9
1	0	1	0	1	0	1	0	1	0
1	0	0	0	1	0	0	0	1	0
1	0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	0
\vdots									

Figure 1: The table of factorial factors for $n=9$ and $p=2$ has 7 entries equal to 1 , and indeed, $9!=362880=2^{7} \cdot 2385$

The double sum $\sum_{k, m} A_{k, m}$ converges, because only finitely many terms are nonzero. Moreover, the k th row contributes with as many 1 s as there are multiples of p^{k} between 1 and n : there are exactly $\left\lfloor n / p^{k}\right\rfloor$ such 1 s . Also, the m th column contributes with a number of 1 s equal to (the exponent of) the maximum power of p which divides m. Then the maximum power of p that divides n ! is the sum of all the entries of the matrix: by Tonelli's theorem,

$$
\begin{aligned}
\sum_{k, m} A_{k, m} & =\sum_{k \geqslant 1} \sum_{1 \leqslant m \leqslant n}\left[p^{k} \backslash m\right] \\
& =\sum_{k \geqslant 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor
\end{aligned}
$$

as we wanted to prove.

