
ITT9132 Concrete Mathematics
Exercises from Week 8

Silvio Capobianco

The Least Efficient Primality test

Prove Wilson’s theorem: for every n > 2, n is prime if and only if (n− 1)! ≡
−1 (mod n).

Solution. First, suppose that n is composite. Let p be a prime factor of n:
then p < n, so p \ (n− 1)!. If it were n \ (n− 1)! + 1, then it would be p \ 1
too: which is impossible.

Next, suppose that n is prime. For n = 2 the thesis becomes 1! ≡ −1
(mod 2), which is true: we can then suppose that n > 3 is odd. As n is
prime, every j ∈ [1 : n− 1] has an inverse modulo n, so:

(n− 1)! =
∏

16j<n

j

=

 ∏
16j<n,j=j−1 modn

j

 ·
 ∏

16j<n,j 6=j−1 modn

j


≡

 ∏
16j<n,j=j−1 modn

j

 · 1 (mod n) .

But j = j−1 modn if and only if j2 − 1 = (j − 1)(j + 1) ≡ 0 (mod n): as n
is an odd prime, either j = 1 or j = n− 1. In the end:

(n− 1)! ≡ 1 · (n− 1) ≡ −1 (mod n) .
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Exercise 4.15

The Euclid numbers are defined by the recurrence:

e1 = 2 ;

en+1 = e1 · · · en + 1 for every n > 1 .

For example, e2 = 3, e3 = 7, e4 = 43, while e5 = 1807 = 13 · 139 is the
smallest composite Euclid number.

Does every prime occur as a factor of some Euclid number en?

Solution. As e1 = 2 and e2 = 3, the number dn = en − 1 is a multiple
of 6 whenever n > 3. But 6 ≡ 1 (mod 5), and as 5 is a prime number,
dn ≡ −1( mod 5) (i.e., 5\en) if and only if e3 · · · en−1 ≡ −1 (mod 5): this does
not seem to be the case for small n, as e3 = 7 ≡ 2 (mod 5) and e4 = 43 ≡ 3
(mod 5).

We may, however, observe a pattern here: for n 6 4, en mod 5 is 2 if n is
odd, and 3 if n is even, i.e.,

en mod 5 = 2 + (nmod 2) . (1)

If (1) holds for every n > 1 (it clearly holds for n = 1 and n = 2) then no
Euclid number can be divisible by 5, and the answer to our original question
is negative. We prove by induction that it is so:

Suppose that we have proved (1) for every positive integer up to n. Let
us consider en+1 = e1 · · · en + 1: by inductive hypothesis, en+1 − 1( mod 5) =
(e1 mod 5) · · · (en mod 5) is the product of dn/2e factors equal to 2 and bn/2c
equal to 3: hence, it is 2 (mod 5) if n is odd, and 1 (mod 5) if n is even.
Consequently, en+1 is congruent modulo 5 to 2 = 1 + 1 if n + 1 is odd (i.e.,
n is even) and to 3 = 2 + 1 if n+ 1 is even (i.e., n is odd).

Exercise 4.19

Prove the following identities when n is a positive integer:

∑
16k<n

⌊
φ(k + 1)

k

⌋
=

∑
1<m6n

( ∑
16k<m

⌊
m
k⌈
m
k

⌉⌋)−1
 (2)

= n− 1−
n∑

k=1

⌈{
(k − 1)! + 1

k

}⌉
(3)
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Hint: This is a trick question and the answer is pretty easy.

Solution. First of all, the summands in the left-hand side of (2) are 1 if k+1
is prime, and 0 otherwise: thus, that left-hand-side itself is π(n), the number
of primes not greater than n. Next, in the inner sum of the right-hand side
of (2), the summand b(m/k)/ dm/kec is 1 if k \m and 0 otherwise: the sum
itself, where k ranges from 0 to m − 1, is greater than 1 if and only if m is
composite, so the summand am in the outer sum is 1 if m is prime and 0
otherwise: the sum itself is again π(n). Finally, by Wilson’s theorem, the
summands in the right-hand side of (3) are 1 if k is greater than 1 and not
prime, and 0 otherwise: the sum itself is the number of composite numbers
from 1 to n, so it yields n− 1 when added to π(n) (remember that 1 itself is
neither prime nor composite).

Exercise 4.22

The number 1111111111111111111 is prime. Prove that, in any radix b,
(11 . . . 1)b can be prime only if the number of 1’s is prime.

Solution. If the number of 1s is n = qm with q,m > 2, then (11 . . . 1)b is
the juxtaposition of m sequences of q 1’s each: thus,

(11 . . . 1)b =

qm−1∑
k=0

bk =

(
q−1∑
k=0

bk

)
·

(
m−1∑
j=0

bqj

)
,

and both factors are nontrivial.

Exercise 4.30

Prove the following statement (the Chinese Remainder Theorem):
Let m1, . . . ,mr be positive integers with gcd(mj,mk) = 1 for 1 6 j <

k 6 r let m = m1 · · ·mr; and let a1, . . . , ar, A be integers. Then there is
exactly one integer a such that

a ≡ ak (mod mk) for 1 6 k 6 r and A 6 a < A+m. (4)

Solution. Let

U = {(xmodm1, . . . , xmodmr) | x ∈ Z} :
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then,
|U | = lcm(m1, . . . ,mr) = m1 · · ·mr = m,

because the mk’s are pairwise relatively prime. Now, A+m ≡ A (mod mk)
for every k, so the set

S = {(xmodm1, . . . , xmodmr) | A 6 x < A+m} ,

actually coincides with U . Then for every s ∈ S there exists exactly one
x ∈ {A, . . . , A + m − 1} such that s = (xmodm1, . . . , xmodmr). Given
a1, . . . , ar, let s = (a1 modm1, . . . , ar modmr), and take x accordingly.

Exercise 4.11

Find a function σ(n) with the property that

g(n) =
∑

06k6n

f(k) ⇔ f(n) =
∑

06k6n

σ(k)g(n− k) (5)

(This is analogous to the Möbius function; see (4.56).)

Solution. As (6) must be true whatever f and g are, let us consider the case
f(n) = σ(n), g(n) = [n = 0]: this surely satisfies the right-hand equation,
because

σ(n) =
∑

06k6n

σ(k) [k = n] =
∑

06k6n

σ(k) [n− k = 0] .

If we want it to also satisfy the left-hand equation, then we must have∑
06k60 σ(k) = [n = 0]: this is only possible if σ(0) = 1, σ(1) = −1, and

σ(k) = 0 for k > 1.
Let us now prove that this choice of σ works whatever f and g are. So,

suppose g(n) =
∑

06k6n f(k): then∑
06k6n

σ(k)g(n− k) = g(n)− g(n− 1)

=
∑

06k6n

f(k)−
∑

06k6n−1

f(k)

= f(n) .
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Suppose now f(n) =
∑

06k6n σ(k)g(n− k): this is g(0) if n = 0, and g(n)−
g(n− 1) if n > 0. In this case we have:∑

06k6n

f(n) = f(0) +
∑

16k6n

f(k)

= g(0) +
∑

16k6n

(g(k)− g(k − 1))

= g(n) .

In the end, σ(n) = [n = 0]− [n = 1].
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