ITT9132 Concrete Mathematics Exercises from Week 8

Silvio Capobianco

The Least Efficient Primality test

Prove Wilson's theorem: for every $n \geqslant 2, n$ is prime if and only if $(n-1)$! \equiv $-1(\bmod n)$.

Solution. First, suppose that n is composite. Let p be a prime factor of n : then $p<n$, so $p \backslash(n-1)$!. If it were $n \backslash(n-1)$! +1 , then it would be $p \backslash 1$ too: which is impossible.

Next, suppose that n is prime. For $n=2$ the thesis becomes $1!\equiv-1$ $(\bmod 2)$, which is true: we can then suppose that $n \geqslant 3$ is odd. As n is prime, every $j \in[1: n-1]$ has an inverse modulo n, so:

$$
\begin{aligned}
(n-1)! & =\prod_{1 \leqslant j<n} j \\
& =\left(\prod_{1 \leqslant j<n, j=j^{-1} \bmod n} j\right) \cdot\left(\prod_{1 \leqslant j<n, j \neq j^{-1} \bmod n} j\right) \\
& \equiv\left(\prod_{1 \leqslant j<n, j=j^{-1} \bmod n} j\right) \cdot 1(\bmod n) .
\end{aligned}
$$

But $j=j^{-1} \bmod n$ if and only if $j^{2}-1=(j-1)(j+1) \equiv 0(\bmod n)$: as n is an odd prime, either $j=1$ or $j=n-1$. In the end:

$$
(n-1)!\equiv 1 \cdot(n-1) \equiv-1 \quad(\bmod n)
$$

Exercise 4.15

The Euclid numbers are defined by the recurrence:

$$
\begin{aligned}
e_{1} & =2 ; \\
e_{n+1} & =e_{1} \cdots e_{n}+1 \text { for every } n \geqslant 1
\end{aligned}
$$

For example, $e_{2}=3, e_{3}=7, e_{4}=43$, while $e_{5}=1807=13 \cdot 139$ is the smallest composite Euclid number.

Does every prime occur as a factor of some Euclid number e_{n} ?
Solution. As $e_{1}=2$ and $e_{2}=3$, the number $d_{n}=e_{n}-1$ is a multiple of 6 whenever $n \geqslant 3$. But $6 \equiv 1(\bmod 5)$, and as 5 is a prime number, $d_{n} \equiv-1(\bmod 5)\left(\right.$ i.e., $\left.5 \backslash e_{n}\right)$ if and only if $e_{3} \cdots e_{n-1} \equiv-1(\bmod 5)$: this does not seem to be the case for small n, as $e_{3}=7 \equiv 2(\bmod 5)$ and $e_{4}=43 \equiv 3$ $(\bmod 5)$.

We may, however, observe a pattern here: for $n \leqslant 4, e_{n} \bmod 5$ is 2 if n is odd, and 3 if n is even, i.e.,

$$
\begin{equation*}
e_{n} \bmod 5=2+(n \bmod 2) \tag{1}
\end{equation*}
$$

If (1) holds for every $n \geqslant 1$ (it clearly holds for $n=1$ and $n=2$) then no Euclid number can be divisible by 5 , and the answer to our original question is negative. We prove by induction that it is so:

Suppose that we have proved (1) for every positive integer up to n. Let us consider $e_{n+1}=e_{1} \cdots e_{n}+1$: by inductive hypothesis, $e_{n+1}-1(\bmod 5)=$ $\left(e_{1} \bmod 5\right) \cdots\left(e_{n} \bmod 5\right)$ is the product of $\lceil n / 2\rceil$ factors equal to 2 and $\lfloor n / 2\rfloor$ equal to 3 : hence, it is $2(\bmod 5)$ if n is odd, and $1(\bmod 5)$ if n is even. Consequently, e_{n+1} is congruent modulo 5 to $2=1+1$ if $n+1$ is odd (i.e., n is even) and to $3=2+1$ if $n+1$ is even (i.e., n is odd).

Exercise 4.19

Prove the following identities when n is a positive integer:

$$
\begin{align*}
\sum_{1 \leqslant k<n}\left\lfloor\frac{\phi(k+1)}{k}\right\rfloor & =\sum_{1<m \leqslant n}\left\lfloor\left(\sum_{1 \leqslant k<m}\left\lfloor\frac{\frac{m}{k}}{\left\lceil\frac{m}{k}\right\rceil}\right\rfloor\right)^{-1}\right\rfloor \tag{2}\\
& =n-1-\sum_{k=1}^{n}\left[\left\{\frac{(k-1)!+1}{k}\right\}\right] \tag{3}
\end{align*}
$$

Hint: This is a trick question and the answer is pretty easy.
Solution. First of all, the summands in the left-hand side of (2) are 1 if $k+1$ is prime, and 0 otherwise: thus, that left-hand-side itself is $\pi(n)$, the number of primes not greater than n. Next, in the inner sum of the right-hand side of (2), the summand $\lfloor(m / k) /\lceil m / k\rceil\rfloor$ is 1 if $k \backslash m$ and 0 otherwise: the sum itself, where k ranges from 0 to $m-1$, is greater than 1 if and only if m is composite, so the summand a_{m} in the outer sum is 1 if m is prime and 0 otherwise: the sum itself is again $\pi(n)$. Finally, by Wilson's theorem, the summands in the right-hand side of (3) are 1 if k is greater than 1 and not prime, and 0 otherwise: the sum itself is the number of composite numbers from 1 to n, so it yields $n-1$ when added to $\pi(n)$ (remember that 1 itself is neither prime nor composite).

Exercise 4.22

The number 1111111111111111111 is prime. Prove that, in any radix b, $(11 \ldots 1)_{b}$ can be prime only if the number of 1 's is prime.

Solution. If the number of 1 s is $n=q m$ with $q, m \geqslant 2$, then $(11 \ldots 1)_{b}$ is the juxtaposition of m sequences of q 1's each: thus,

$$
(11 \ldots 1)_{b}=\sum_{k=0}^{q m-1} b^{k}=\left(\sum_{k=0}^{q-1} b^{k}\right) \cdot\left(\sum_{j=0}^{m-1} b^{q j}\right)
$$

and both factors are nontrivial.

Exercise 4.30

Prove the following statement (the Chinese Remainder Theorem):
Let m_{1}, \ldots, m_{r} be positive integers with $\operatorname{gcd}\left(m_{j}, m_{k}\right)=1$ for $1 \leqslant j<$ $k \leqslant r$ let $m=m_{1} \cdots m_{r}$; and let a_{1}, \ldots, a_{r}, A be integers. Then there is exactly one integer a such that

$$
\begin{equation*}
a \equiv a_{k} \quad\left(\bmod m_{k}\right) \text { for } 1 \leqslant k \leqslant r \text { and } A \leqslant a<A+m . \tag{4}
\end{equation*}
$$

Solution. Let

$$
U=\left\{\left(x \bmod m_{1}, \ldots, x \bmod m_{r}\right) \mid x \in \mathbb{Z}\right\}:
$$

then,

$$
|U|=\operatorname{lcm}\left(m_{1}, \ldots, m_{r}\right)=m_{1} \cdots m_{r}=m
$$

because the m_{k} 's are pairwise relatively prime. Now, $A+m \equiv A\left(\bmod m_{k}\right)$ for every k, so the set

$$
S=\left\{\left(x \bmod m_{1}, \ldots, x \bmod m_{r}\right) \mid A \leqslant x<A+m\right\}
$$

actually coincides with U. Then for every $s \in S$ there exists exactly one $x \in\{A, \ldots, A+m-1\}$ such that $s=\left(x \bmod m_{1}, \ldots, x \bmod m_{r}\right)$. Given a_{1}, \ldots, a_{r}, let $s=\left(a_{1} \bmod m_{1}, \ldots, a_{r} \bmod m_{r}\right)$, and take x accordingly.

Exercise 4.11

Find a function $\sigma(n)$ with the property that

$$
\begin{equation*}
g(n)=\sum_{0 \leqslant k \leqslant n} f(k) \Leftrightarrow f(n)=\sum_{0 \leqslant k \leqslant n} \sigma(k) g(n-k) \tag{5}
\end{equation*}
$$

(This is analogous to the Möbius function; see (4.56).)
Solution. As (6) must be true whatever f and g are, let us consider the case $f(n)=\sigma(n), g(n)=[n=0]$: this surely satisfies the right-hand equation, because

$$
\sigma(n)=\sum_{0 \leqslant k \leqslant n} \sigma(k)[k=n]=\sum_{0 \leqslant k \leqslant n} \sigma(k)[n-k=0] .
$$

If we want it to also satisfy the left-hand equation, then we must have $\sum_{0 \leqslant k \leqslant 0} \sigma(k)=[n=0]$: this is only possible if $\sigma(0)=1, \sigma(1)=-1$, and $\sigma(k)=0$ for $k>1$.

Let us now prove that this choice of σ works whatever f and g are. So, suppose $g(n)=\sum_{0 \leqslant k \leqslant n} f(k)$: then

$$
\begin{aligned}
\sum_{0 \leqslant k \leqslant n} \sigma(k) g(n-k) & =g(n)-g(n-1) \\
& =\sum_{0 \leqslant k \leqslant n} f(k)-\sum_{0 \leqslant k \leqslant n-1} f(k) \\
& =f(n)
\end{aligned}
$$

Suppose now $f(n)=\sum_{0 \leqslant k \leqslant n} \sigma(k) g(n-k)$: this is $g(0)$ if $n=0$, and $g(n)-$ $g(n-1)$ if $n>0$. In this case we have:

$$
\begin{aligned}
\sum_{0 \leqslant k \leqslant n} f(n) & =f(0)+\sum_{1 \leqslant k \leqslant n} f(k) \\
& =g(0)+\sum_{1 \leqslant k \leqslant n}(g(k)-g(k-1)) \\
& =g(n)
\end{aligned}
$$

In the end, $\sigma(n)=[n=0]-[n=1]$.

