['TT9132 Concrete Mathematics
Exercises from Week 8

Silvio Capobianco

The Least Efficient Primality test

Prove Wilson’s theorem: for every n > 2, n is prime if and only if (n —1)! =
—1 (mod n).

Solution. First, suppose that n is composite. Let p be a prime factor of n:
then p <n,sop\ (n— 1)L If it were n\ (n — 1)! + 1, then it would be p \ 1
too: which is impossible.

Next, suppose that n is prime. For n = 2 the thesis becomes 1! = —1
(mod 2), which is true: we can then suppose that n > 3 is odd. As n is
prime, every j € [1 : n — 1] has an inverse modulo n, so:

n-1! = [

1<g<n

= H il- H j

1<j<n,j=7"1 modn 1<j<n,j#j~ modn

H j]-1 (modn).

1<j<n,j=j ' modn

But j = j7'modn if and only if j2 —1= (5 —1)(j + 1) =0 (mod n): as n
is an odd prime, either 7 =1 or 7 =n — 1. In the end:

m—1)!=1-(n—1)=—-1 (modn).



Exercise 4.15

The Fuclid numbers are defined by the recurrence:

61:2;

eny1 = e1---e,+ 1 foreveryn > 1.

For example, es = 3, e3 = 7, e, = 43, while e5 = 1807 = 13 - 139 is the
smallest composite Euclid number.
Does every prime occur as a factor of some Euclid number e,,?

Solution. As e; = 2 and ey = 3, the number d, = e, — 1 is a multiple
of 6 whenever n > 3. But 6 = 1 (mod 5), and as 5 is a prime number,
d, = —1(mod?5) (i.e., 5\e,) ifand only ifeg---e,_; = —1 (mod 5): this does
not seem to be the case for small n, as e3 =7 =2 (mod 5) and e, =43 =3
(mod 5).

We may, however, observe a pattern here: for n < 4, e, mod5 is 2 if n is
odd, and 3 if n is even, i.e.,

e, modb =2+ (nmod 2) . (1)

If (1) holds for every n > 1 (it clearly holds for n = 1 and n = 2) then no
Euclid number can be divisible by 5, and the answer to our original question
is negative. We prove by induction that it is so:

Suppose that we have proved (1) for every positive integer up to n. Let
us consider e,,1 = e;--- e, + 1: by inductive hypothesis, e,.1 — 1(mod5) =
(e modb) - - (e, mod 5) is the product of [n/2] factors equal to 2 and |n/2]
equal to 3: hence, it is 2 (mod 5) if n is odd, and 1 (mod 5) if n is even.
Consequently, e, is congruent modulo 5 to 2 =1+ 1if n+ 1 is odd (i.e.,
n is even) and to 3 =24 1 if n+ 1 is even (i.e., n is odd).

Exercise 4.19

Prove the following identities when n is a positive integer:

sl zl(zl)]

1<k<n 1<m<n 1<k<m k
(k=141 H
- n—1- WO T 3
> [{"= ¥



Hint: This is a trick question and the answer is pretty easy.

Solution. First of all, the summands in the left-hand side of (2) are 1if k+1
is prime, and 0 otherwise: thus, that left-hand-side itself is 7(n), the number
of primes not greater than n. Next, in the inner sum of the right-hand side
of (2), the summand |(m/k)/[m/k]]| is 1 if £\ m and 0 otherwise: the sum
itself, where k ranges from 0 to m — 1, is greater than 1 if and only if m is
composite, so the summand a,, in the outer sum is 1 if m is prime and 0
otherwise: the sum itself is again m(n). Finally, by Wilson’s theorem, the
summands in the right-hand side of (3) are 1 if k is greater than 1 and not
prime, and 0 otherwise: the sum itself is the number of composite numbers
from 1 to n, so it yields n — 1 when added to w(n) (remember that 1 itself is
neither prime nor composite).

Exercise 4.22

The number 1111111111111111111 is prime. Prove that, in any radix b,
(11...1), can be prime only if the number of 1’s is prime.

Solution. If the number of 1s is n = gm with ¢,m > 2, then (11...1); is
the juxtaposition of m sequences of g 1’s each: thus,

(11...1)b:q§ bk = (ib’“) : (ibqﬂ') :
k=0 k=0 =0

and both factors are nontrivial.

Exercise 4.30

Prove the following statement (the Chinese Remainder Theorem):

Let my,...,m, be positive integers with ged(mj,my) = 1 for 1 < j <
kE<rletm=mq---m,; and let aq,...,a,, A be integers. Then there is
exactly one integer a such that

a=a; (modmy) forl<k<randA<a<A+m. (4)
Solution. Let

U= {(xmodmy,...,xmodm,) |x € Z} :



then,
\U| = lem(my,...,m;) =mq---m, =m,

because the my’s are pairwise relatively prime. Now, A4+ m = A (mod my,)
for every k, so the set

S ={(xmodmy,...,xmodm,) | A<z <A+ m},

actually coincides with U. Then for every s € S there exists exactly one
x € {A,...,A+m — 1} such that s = (xmodmy,...,zmodm,). Given
ai,...,a., let s = (a;modmy,...,a modm,), and take x accordingly.

Exercise 4.11

Find a function o(n) with the property that

gin)= Y fk) & fn)= ) o(k)g(n—k) (5)

0<k<n 0<k<n
(This is analogous to the M&bius function; see (4.56).)

Solution. As (6) must be true whatever f and g are, let us consider the case
f(n) = o(n), g(n) = [n=0]: this surely satisfies the right-hand equation,

because
on)= > ok)k=nl= > ok)n-k=0].

0<k<n 0<k<n

If we want it to also satisfy the left-hand equation, then we must have
> o<k<o 0(k) = [n=0]: this is only possible if o(0) = 1, o(1) = —1, and
o(k) =0 for k > 1.

Let us now prove that this choice of ¢ works whatever f and g are. So,
suppose g(n) = > <, f(k): then

Y olkgln—k) = g(n)—g(n—1)
= > fR= > f

0<k<n 0<k<n—1

= f(n).



Suppose now f(n) = > ., 0(k)g(n — k): this is g(0) if n = 0, and g(n) —
g(n —1) if n > 0. In this case we have:

S fm) = FO+ S Fk)

= g(0)+ Y (g9(k) —g(k —1))
= g(n)

In the end, o(n) = [n=0] — [n = 1].



