
ITT9132 Concrete Mathematics
Exercises from Week 9

Silvio Capobianco

Exercise 1

Solve the recurrence:

T0 = 1 ;

Tn = 2Tn−1 +

(
3

2

)n

+ 2nHn ∀n > 1 .
(1)

Solution. The system (1) has the form

a0T0 = 1 ;
anTn = bnTn−1 + cn ∀n > 1

with

an = 1 ; bn = 2 ; cn =

(
3

2

)n

+Hn .

This suggests using a summation factor:

s0 = 1 ; sn =
n∏

j=1

aj−1
bj

=
1

2n
∀n > 1 .

Then, by putting Un = snanTn = Tn/2
n and simplifying, we get

U0 = 1 ;

Un = Un−1 +

(
3

4

)n

+Hn ∀n > 1 :
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which clearly has the solution

Un = 1 +
n∑

k=1

((
3

4

)k

+Hk

)

=
n∑

k=0

(
3

4

)k

+
n∑

k=1

Hk

=
4n+1 − 3n+1

4n
+ (n+ 1)Hn − n

In the end, the solution to (1) is:

Tn =
4n+1 − 3n+1

2n
+ 2n · ((n+ 1)Hn − n) .

Exercise 2

Solve the recurrence:

T0 = 1 ;

nTn = 2Tn−1 +
2n

n!

(
1 +

n

3n

)
∀n > 1 .

(2)

Solution. Equation (2) has the form

anTn = bnTn−1 + cn

with:

a0 = 1 ; an = n for every n > 1 ; bn = 2 ; cn =
2n

n!

(
1 +

n

3n

)
.

This suggests using a summation factor sn such that snbn = sn−1an−1 for
every n > 1. We must be a bit careful, because an = n only for n > 1, while
a0 = 1; so we have to determine separately not only s0, but also s1. We have:

s0 = 1 ; s1 =
a0
b1

=
1

2
; sn = sn−1 ·

an−1
bn

= sn−1 ·
n− 1

2
for every n > 2 .

The last recurrence has the solution sn = (n − 1)!/2n, which also holds for
n = 1 as 0! = 1. By multiplying (2) by sn and putting

Un = snanTn =
(n− 1)!

2n
nTn =

n!

2n
Tn
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we get:

u0 = 1 ;

Un = Un−1 +
(n− 1)!

2n
· 2n

n!

(
1 +

n

3n

)
= Un−1 +

1

n

(
1 +

n

3n

)
= Un−1 +

1

n
+

1

3n

which has the solution:

Un = 1 +
n∑

k=1

(
1

k
+

1

3k

)
=

n∑
k=1

1

k
+

n∑
k=0

1

3k

= Hn +
1− (1/3)n+1

1− 1/3

= Hn +
1

2
·
(

3− 1

3n

)
.

Then the solution of our original recurrence is:

Tn =
2n

n!
Un =

2n

n!
Hn +

2n−1

n!
·
(

3− 1

3n

)
.

Exercise 3

Express
∑

16k6n k · 2−k as a function of n, and evaluate
∑

k>1 k · 2−k.

Solution. We can compute
∑

16k6n k · 2−k in two different ways:

• Perturbation method:
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Let Sn =
∑

16k6n k · 2−k: then

Sn + (n+ 1) · 2−n−1 =
1

2
+

n+1∑
k=2

k · 2−k

=
1

2
+

n∑
k=1

(k + 1) · 2−k−1

=
1

2
+

1

2

(
n∑

k=1

k · 2−k +
n∑

k=1

2−k

)
,

so that by multiplying both sides by 2 we get

2Sn + (n+ 1) · 2−n = 1 + Sn +
n∑

k=1

2−k . (3)

As the last summand on the right-hand side of (3) is 1− 2−n, we get

Sn = 2− (n+ 2) · 2−n .

• Discrete calculus:

We look at k · 2−k as an object of the form u∆v, where u(x) = x (so
that ∆u(x) = 1) and ∆v(x) = 2−x. Recall that ∆cx = (c − 1)cx for
c > 0: which means that

∆2−x = ∆

(
1

2

)x

=

(
1

2
− 1

)(
1

2

)x

= −1

2
· 2−x .

To have ∆v(x) = 2−x we must then set v(x) = −2 · 2−x. If we make
the additional observation that

∑
16k6n k · 2−k =

∑
06k6n k · 2−k, we
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can compute:

∑
16k6n

k · 2−k =
n+1∑
0

x ·
(

1

2

)x

δx

= −2x · 2−x
∣∣n+1

0
−

n+1∑
0

(−2)

(
1

2

)x+1

δx

= −(n+ 1) · 2−n +
n+1∑
0

(
1

2

)x+1

δx

= −(n+ 1) · 2−n +
n∑

k=0

2−k

= −(n+ 1) · 2−n +

(
1 +

n∑
k=1

2−k

)
= −(n+ 1) · 2−n + 1 + 1− 2−n

= 2− (n+ 2) · 2−n ,

which is the same result we had found by the perturbation method.

Then
∑

k>1 k · 2−k = limn→∞
∑

16k6n k · 2−k = 2.

Exercise 4

1. Prove that, for every n > 1,

Hn 6 1 + blg nc , (4)

where lg is the base-2 logarithm.

2. Use the inequality (4) to evaluate the infinite sum:∑
k>1

k−2Hk . (5)

Important: Point 2 can be solved without having solved point 1, as it only
asks to use the inequality (4), not to have proven it.
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Solution. For n > 1 let m = blg nc, so that 2m 6 n 6 2m+1 − 1. Then

Hn 6
2m+1−1∑
k=1

1

k

=
m∑
j=0

2j+1−1∑
k=2j

1

k

6
m∑
j=0

2j+1−1∑
k=2j

1

2j

=
m∑
j=0

1 = m+ 1 = 1 + blg nc .

Let now u(x) = Hx and v(x) = −x−1 = −1/(x+ 1), so that ∆u(x) = 1
x+1

=
x−1 and ∆v(x) = x−2. Then for every n > 2:

∑
16k<n

k−2Hk =
n∑
1

u(x) ∆v(x) δx

= −x−1Hx

∣∣n
1
−

n∑
1

Ev(x) ∆u(x) δx

= − 1

n+ 1
·Hn +

1

2
+

n∑
1

(x+ 1)−1 x−1 δx

=
1

2
− Hn

n+ 1
+

n∑
1

x−2 δx

=
1

2
− Hn

n+ 1
− x−2

∣∣n
1

=
1

2
− Hn

n+ 1
− 1

n+ 1
+

1

2

= 1− Hn + 1

n+ 1
.

Because of the inequality (4), the second summand vanishes for n→∞. We
can then conclude that: ∑

k>1

k−2Hk = 1 .
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Exercise 5

Prove that
⌈
x− 1

2

⌉
6
⌊
x+ 1

2

⌋
for every x ∈ R, and give a closed formula for

the difference.

Solution. The closed interval
[
x− 1

2
, x+ 1

2

]
contains two integers if {x} =

x− bxc = 1
2
, otherwise it contains a single integer. In this second case, such

single integer must be the common value of
⌈
x− 1

2

⌉
and

⌊
x+ 1

2

⌋
; otherwise,

x− 1
2

and x+ 1
2

are both integer, so they coincide with both their floors and
their ceilings, and the former is smaller than the latter. Then⌊

x+
1

2

⌋
−
⌈
x− 1

2

⌉
=

[
x− bxc =

1

2

]
.

Exercise 6

Prove that n13 − n is divisible by 105 for every positive integer n.

Solution. As 105 = 3 · 5 · 7 as a product of (powers of) primes, n13 − n is
divisible by 105 if and only if it is divisible by 3, 5, and 7. Write n13 − n =
n · (n12 − 1): to apply Fermat’s little theorem with prime p, we must collect
a factor np − n from n13 − n, or equivalently, a factor np−1 − 1 from n12 − 1.
For p = 3 we must show that n12 − 1 is divisible by n2 − 1: but this is true,
because

n12 − 1 = (n2)6 − 1 = (n2 − 1)(n10 + n8 + n6 + n4 + n2 + 1) .

Similarly, for p = 5 we must show that n12 − 1 is divisible by n4 − 1: which
is the case, because

n12 − 1 = (n4)3 − 1 = (n4 − 1)(n8 + n4 + 1) .

Finally, for p = 7 we must show that n12 − 1 is divisible by n6 − 1: which is
true, because n12 − 1 = (n6 − 1)(n6 + 1).

Exercise 7

Prove that n21 − n19 − n3 + n is divisible by 114 for every integer n > 1.
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Solution. As 114 = 2 · 3 · 19 as a product of (powers of) primes, we must
prove that n21 − n19 − n3 + n is divisible by 2, 3, and 19 for every n > 1.
Factoring the polynomial, we get:

n21 − n19 − n3 + n = n · (n20 − n18 − n2 + 1) = n · (n18 − 1) · (n2 − 1) .

This decomposition tells us that n21 − n19 − n3 + n is divisible by n19 − n,
which in turn is divisible by 19 because of Fermat’s last theorem. Moreover,
as n2−1 = (n−1)(n+1), the number n21−n19−n3 +n always has the three
consecutive factors n− 1, n, and n+ 1: of those, exactly one is a multiple of
3, and at least one is even.
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