ITT9132 Concrete Mathematics Exercises from Week 9

Silvio Capobianco

Exercise 1

Solve the recurrence:

$$
\begin{align*}
& T_{0}=1 \\
& T_{n}=2 T_{n-1}+\left(\frac{3}{2}\right)^{n}+2^{n} H_{n} \quad \forall n \geqslant 1 \tag{1}
\end{align*}
$$

Solution. The system (1) has the form

$$
\begin{aligned}
a_{0} T_{0} & =1 ; \\
a_{n} T_{n} & =b_{n} T_{n-1}+c_{n} \quad \forall n \geqslant 1
\end{aligned}
$$

with

$$
a_{n}=1 ; b_{n}=2 ; c_{n}=\left(\frac{3}{2}\right)^{n}+H_{n}
$$

This suggests using a summation factor:

$$
s_{0}=1 ; s_{n}=\prod_{j=1}^{n} \frac{a_{j-1}}{b_{j}}=\frac{1}{2^{n}} \forall n \geqslant 1 .
$$

Then, by putting $U_{n}=s_{n} a_{n} T_{n}=T_{n} / 2^{n}$ and simplifying, we get

$$
\begin{aligned}
U_{0} & =1 \\
U_{n} & =U_{n-1}+\left(\frac{3}{4}\right)^{n}+H_{n} \quad \forall n \geqslant 1:
\end{aligned}
$$

which clearly has the solution

$$
\begin{aligned}
U_{n} & =1+\sum_{k=1}^{n}\left(\left(\frac{3}{4}\right)^{k}+H_{k}\right) \\
& =\sum_{k=0}^{n}\left(\frac{3}{4}\right)^{k}+\sum_{k=1}^{n} H_{k} \\
& =\frac{4^{n+1}-3^{n+1}}{4^{n}}+(n+1) H_{n}-n
\end{aligned}
$$

In the end, the solution to (1) is:

$$
T_{n}=\frac{4^{n+1}-3^{n+1}}{2^{n}}+2^{n} \cdot\left((n+1) H_{n}-n\right) .
$$

Exercise 2

Solve the recurrence:

$$
\begin{align*}
T_{0} & =1 ; \\
n T_{n} & =2 T_{n-1}+\frac{2^{n}}{n!}\left(1+\frac{n}{3^{n}}\right) \quad \forall n \geqslant 1 . \tag{2}
\end{align*}
$$

Solution. Equation (2) has the form

$$
a_{n} T_{n}=b_{n} T_{n-1}+c_{n}
$$

with:

$$
a_{0}=1 ; \quad a_{n}=n \text { for every } n \geqslant 1 ; \quad b_{n}=2 ; \quad c_{n}=\frac{2^{n}}{n!}\left(1+\frac{n}{3^{n}}\right) .
$$

This suggests using a summation factor s_{n} such that $s_{n} b_{n}=s_{n-1} a_{n-1}$ for every $n \geqslant 1$. We must be a bit careful, because $a_{n}=n$ only for $n \geqslant 1$, while $a_{0}=1$; so we have to determine separately not only s_{0}, but also s_{1}. We have:

$$
s_{0}=1 ; \quad s_{1}=\frac{a_{0}}{b_{1}}=\frac{1}{2} ; \quad s_{n}=s_{n-1} \cdot \frac{a_{n-1}}{b_{n}}=s_{n-1} \cdot \frac{n-1}{2} \text { for every } n \geqslant 2 .
$$

The last recurrence has the solution $s_{n}=(n-1)!/ 2^{n}$, which also holds for $n=1$ as $0!=1$. By multiplying (2) by s_{n} and putting

$$
U_{n}=s_{n} a_{n} T_{n}=\frac{(n-1)!}{2^{n}} n T_{n}=\frac{n!}{2^{n}} T_{n}
$$

we get:

$$
\begin{aligned}
u_{0} & =1 ; \\
U_{n} & =U_{n-1}+\frac{(n-1)!}{2^{n}} \cdot \frac{2^{n}}{n!}\left(1+\frac{n}{3^{n}}\right) \\
& =U_{n-1}+\frac{1}{n}\left(1+\frac{n}{3^{n}}\right) \\
& =U_{n-1}+\frac{1}{n}+\frac{1}{3^{n}}
\end{aligned}
$$

which has the solution:

$$
\begin{aligned}
U_{n} & =1+\sum_{k=1}^{n}\left(\frac{1}{k}+\frac{1}{3^{k}}\right) \\
& =\sum_{k=1}^{n} \frac{1}{k}+\sum_{k=0}^{n} \frac{1}{3^{k}} \\
& =H_{n}+\frac{1-(1 / 3)^{n+1}}{1-1 / 3} \\
& =H_{n}+\frac{1}{2} \cdot\left(3-\frac{1}{3^{n}}\right) .
\end{aligned}
$$

Then the solution of our original recurrence is:

$$
T_{n}=\frac{2^{n}}{n!} U_{n}=\frac{2^{n}}{n!} H_{n}+\frac{2^{n-1}}{n!} \cdot\left(3-\frac{1}{3^{n}}\right) .
$$

Exercise 3

Express $\sum_{1 \leqslant k \leqslant n} k \cdot 2^{-k}$ as a function of n, and evaluate $\sum_{k \geqslant 1} k \cdot 2^{-k}$.
Solution. We can compute $\sum_{1 \leqslant k \leqslant n} k \cdot 2^{-k}$ in two different ways:

- Perturbation method:

Let $S_{n}=\sum_{1 \leqslant k \leqslant n} k \cdot 2^{-k}$: then

$$
\begin{aligned}
S_{n}+(n+1) \cdot 2^{-n-1} & =\frac{1}{2}+\sum_{k=2}^{n+1} k \cdot 2^{-k} \\
& =\frac{1}{2}+\sum_{k=1}^{n}(k+1) \cdot 2^{-k-1} \\
& =\frac{1}{2}+\frac{1}{2}\left(\sum_{k=1}^{n} k \cdot 2^{-k}+\sum_{k=1}^{n} 2^{-k}\right)
\end{aligned}
$$

so that by multiplying both sides by 2 we get

$$
\begin{equation*}
2 S_{n}+(n+1) \cdot 2^{-n}=1+S_{n}+\sum_{k=1}^{n} 2^{-k} \tag{3}
\end{equation*}
$$

As the last summand on the right-hand side of (3) is $1-2^{-n}$, we get

$$
S_{n}=2-(n+2) \cdot 2^{-n}
$$

- Discrete calculus:

We look at $k \cdot 2^{-k}$ as an object of the form $u \Delta v$, where $u(x)=x$ (so that $\Delta u(x)=1)$ and $\Delta v(x)=2^{-x}$. Recall that $\Delta c^{x}=(c-1) c^{x}$ for $c>0$: which means that

$$
\Delta 2^{-x}=\Delta\left(\frac{1}{2}\right)^{x}=\left(\frac{1}{2}-1\right)\left(\frac{1}{2}\right)^{x}=-\frac{1}{2} \cdot 2^{-x} .
$$

To have $\Delta v(x)=2^{-x}$ we must then set $v(x)=-2 \cdot 2^{-x}$. If we make the additional observation that $\sum_{1 \leqslant k \leqslant n} k \cdot 2^{-k}=\sum_{0 \leqslant k \leqslant n} k \cdot 2^{-k}$, we
can compute:

$$
\begin{aligned}
\sum_{1 \leqslant k \leqslant n} k \cdot 2^{-k} & =\sum_{0}^{n+1} x \cdot\left(\frac{1}{2}\right)^{x} \delta x \\
& =-\left.2 x \cdot 2^{-x}\right|_{0} ^{n+1}-\sum_{0}^{n+1}(-2)\left(\frac{1}{2}\right)^{x+1} \delta x \\
& =-(n+1) \cdot 2^{-n}+\sum_{0}^{n+1}\left(\frac{1}{2}\right)^{x+1} \delta x \\
& =-(n+1) \cdot 2^{-n}+\sum_{k=0}^{n} 2^{-k} \\
& =-(n+1) \cdot 2^{-n}+\left(1+\sum_{k=1}^{n} 2^{-k}\right) \\
& =-(n+1) \cdot 2^{-n}+1+1-2^{-n} \\
& =2-(n+2) \cdot 2^{-n}
\end{aligned}
$$

which is the same result we had found by the perturbation method.
Then $\sum_{k \geqslant 1} k \cdot 2^{-k}=\lim _{n \rightarrow \infty} \sum_{1 \leqslant k \leqslant n} k \cdot 2^{-k}=2$.

Exercise 4

1. Prove that, for every $n \geqslant 1$,

$$
\begin{equation*}
H_{n} \leqslant 1+\lfloor\lg n\rfloor, \tag{4}
\end{equation*}
$$

where \lg is the base-2 logarithm.
2. Use the inequality (4) to evaluate the infinite sum:

$$
\begin{equation*}
\sum_{k \geqslant 1} k=-2 H_{k} . \tag{5}
\end{equation*}
$$

Important: Point 2 can be solved without having solved point 1 , as it only asks to use the inequality (4), not to have proven it.

Solution. For $n \geqslant 1$ let $m=\lfloor\lg n\rfloor$, so that $2^{m} \leqslant n \leqslant 2^{m+1}-1$. Then

$$
\begin{aligned}
H_{n} & \leqslant \sum_{k=1}^{2^{m+1}-1} \frac{1}{k} \\
& =\sum_{j=0}^{m} \sum_{k=2^{j}}^{2^{j+1}-1} \frac{1}{k} \\
& \leqslant \sum_{j=0}^{m} \sum_{k=2^{j}}^{2^{j+1}-1} \frac{1}{2^{j}} \\
& =\sum_{j=0}^{m} 1=m+1=1+\lfloor\lg n\rfloor
\end{aligned}
$$

Let now $u(x)=H_{x}$ and $v(x)=-x \underline{-1}=-1 /(x+1)$, so that $\Delta u(x)=\frac{1}{x+1}=$ $x-\frac{1}{-1}$ and $\Delta v(x)=x \underline{-2}$. Then for every $n \geqslant 2$:

$$
\begin{aligned}
\sum_{1 \leqslant k<n} k^{-2} H_{k} & =\sum_{1}^{n} u(x) \Delta v(x) \delta x \\
& =-\left.x^{-1} H_{x}\right|_{1} ^{n}-\sum_{1}^{n} E v(x) \Delta u(x) \delta x \\
& =-\frac{1}{n+1} \cdot H_{n}+\frac{1}{2}+\sum_{1}^{n}(x+1)^{-1} x-\frac{-1}{} \delta x \\
& =\frac{1}{2}-\frac{H_{n}}{n+1}+\sum_{1}^{n} x^{-2} \delta x \\
& =\frac{1}{2}-\frac{H_{n}}{n+1}-\left.x^{-2}\right|_{1} ^{n} \\
& =\frac{1}{2}-\frac{H_{n}}{n+1}-\frac{1}{n+1}+\frac{1}{2} \\
& =1-\frac{H_{n}+1}{n+1} .
\end{aligned}
$$

Because of the inequality (4), the second summand vanishes for $n \rightarrow \infty$. We can then conclude that:

$$
\sum_{k \geqslant 1} k \underline{-2} H_{k}=1 .
$$

Exercise 5

Prove that $\left\lceil x-\frac{1}{2}\right\rceil \leqslant\left\lfloor x+\frac{1}{2}\right\rfloor$ for every $x \in \mathbb{R}$, and give a closed formula for the difference.

Solution. The closed interval $\left[x-\frac{1}{2}, x+\frac{1}{2}\right]$ contains two integers if $\{x\}=$ $x-\lfloor x\rfloor=\frac{1}{2}$, otherwise it contains a single integer. In this second case, such single integer must be the common value of $\left\lceil x-\frac{1}{2}\right\rceil$ and $\left\lfloor x+\frac{1}{2}\right\rfloor$; otherwise, $x-\frac{1}{2}$ and $x+\frac{1}{2}$ are both integer, so they coincide with both their floors and their ceilings, and the former is smaller than the latter. Then

$$
\left\lfloor x+\frac{1}{2}\right\rfloor-\left\lceil x-\frac{1}{2}\right\rceil=\left\lceil x-\lfloor x\rfloor=\frac{1}{2}\right] .
$$

Exercise 6

Prove that $n^{13}-n$ is divisible by 105 for every positive integer n.
Solution. As $105=3 \cdot 5 \cdot 7$ as a product of (powers of) primes, $n^{13}-n$ is divisible by 105 if and only if it is divisible by 3,5 , and 7 . Write $n^{13}-n=$ $n \cdot\left(n^{12}-1\right)$: to apply Fermat's little theorem with prime p, we must collect a factor $n^{p}-n$ from $n^{13}-n$, or equivalently, a factor $n^{p-1}-1$ from $n^{12}-1$. For $p=3$ we must show that $n^{12}-1$ is divisible by $n^{2}-1$: but this is true, because

$$
n^{12}-1=\left(n^{2}\right)^{6}-1=\left(n^{2}-1\right)\left(n^{10}+n^{8}+n^{6}+n^{4}+n^{2}+1\right)
$$

Similarly, for $p=5$ we must show that $n^{12}-1$ is divisible by $n^{4}-1$: which is the case, because

$$
n^{12}-1=\left(n^{4}\right)^{3}-1=\left(n^{4}-1\right)\left(n^{8}+n^{4}+1\right)
$$

Finally, for $p=7$ we must show that $n^{12}-1$ is divisible by $n^{6}-1$: which is true, because $n^{12}-1=\left(n^{6}-1\right)\left(n^{6}+1\right)$.

Exercise 7

Prove that $n^{21}-n^{19}-n^{3}+n$ is divisible by 114 for every integer $n \geqslant 1$.

Solution. As $114=2 \cdot 3 \cdot 19$ as a product of (powers of) primes, we must prove that $n^{21}-n^{19}-n^{3}+n$ is divisible by 2,3 , and 19 for every $n \geqslant 1$. Factoring the polynomial, we get:

$$
n^{21}-n^{19}-n^{3}+n=n \cdot\left(n^{20}-n^{18}-n^{2}+1\right)=n \cdot\left(n^{18}-1\right) \cdot\left(n^{2}-1\right) .
$$

This decomposition tells us that $n^{21}-n^{19}-n^{3}+n$ is divisible by $n^{19}-n$, which in turn is divisible by 19 because of Fermat's last theorem. Moreover, as $n^{2}-1=(n-1)(n+1)$, the number $n^{21}-n^{19}-n^{3}+n$ always has the three consecutive factors $n-1, n$, and $n+1$: of those, exactly one is a multiple of 3 , and at least one is even.

