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Higher order differences

Recall the definition of the forward difference:

∆f(x) = f(x + 1)− f(x)

What will be the difference of the difference? Well:

∆2f(x) = (∆f)(x + 1)− (∆f)(x)

= (f(x + 1 + 1)− f(x + 1))− (f(x + 1)− f(x))

= f(x + 2)− 2f(x + 1) + f(x)

And the difference of the above? We now know the trick:

∆3f(x) = (∆2f)(x + 1)− (∆2f)(x)

= (f(x + 2 + 1)− 2f(x + 1 + 1) + f(x + 1))

−(f(x + 2)− 2f(x + 1) + f(x))

= f(x + 3)− 3f(x + 2) + 3f(x + 1)− f(x)

However, this is dangerously similar to a class of equations we already know:

(x− 1)2 = x2 − 2x + 1

(x− 1)3 = x3 − 3x2 + 3x− 1

and so on. In fact, the following can be proved by induction:

∆nf(x) =
n∑

k=0

(
n

k

)
(−1)n−kf(x + k) (1)
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The formula is true for n = 1, 2, 3. Suppose it is true for a given n > 1: then,

∆n+1f(x) = ∆ (∆nf(x))

= ∆

(
n∑

k=0

(
n

k

)
(−1)n−kf(x + k)

)

=
n∑

k=0

(
n

k

)
(−1)n−kf(x + k + 1)−

n∑
k=0

(
n

k

)
(−1)n−kf(x + k)

=

(
n

n

)
f(x + n + 1) +

n−1∑
k=0

(
n

k

)
(−1)n−kf(x + k + 1)

−
n−1∑
k=0

(
n

k

)
(−1)n−kf(x + k)−

(
n

0

)
(−1)nf(x)

=

(
n + 1

n + 1

)
f(x + n + 1)

+
n∑

k=1

((
n

k − 1

)
(−1)n−(k−1) −

(
n

k

)
(−1)n−k

)
f(x + k)

+

(
n + 1

0

)
(−1)n+1f(x)

=

(
n + 1

n + 1

)
f(x + n + 1)

+
n∑

k=1

((
n

k − 1

)
(−1)n+1−k +

(
n

k

)
(−1)n+1−k

)
f(x + k)

+

(
n + 1

0

)
(−1)n+1f(x)

=

(
n + 1

n + 1

)
f(x + n + 1)

+
n∑

k=1

(
n + 1

k

)
(−1)n+1−kf(x + k)

+

(
n + 1

0

)
(−1)n+1f(x)

=
n+1∑
k=0

(
n + 1

k

)
(−1)n+1−kf(x + k)
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Exercise 5.1

Explain why it is easy to evaluate 114 for those who know binomial coeffi-
cients.
Solution. 11 = 1 + 10, so by the binomial theorem

114 = (1 + 10)4

=

(
4

0

)
· 10 · 104−0 +

(
4

1

)
· 11 · 104−1 +

(
4

2

)
· 12 · 104−2

+

(
4

3

)
· 13 · 104−3 +

(
4

4

)
· 14 · 104−4

= 10000 + 4000 + 600 + 40 + 1

= 14641

Exercise 5.2

Find the values of k for which
(
n
k

)
is a maximum. Prove the answer.

Solution. Let f(k) =
(
n
k

)
. Then

∆f(k) =

(
n

k + 1

)
−
(
n

k

)
=

n− k

k + 1

(
n

k

)
−
(
n

k

)
=

(
n− k

k + 1
− 1

)(
n

k

)
The right-hand side has the sign of the term in parentheses, which is the
same as that of n − 1 − 2k. This means that

(
n

k+1

)
is greater than

(
n
k

)
if

k < (n− 1)/2, and smaller than
(
n
k

)
if k > (n− 1)/2. Therefore f(k) =

(
n
k

)
is maximum when k is either bn/2c or dn/2e.

The same result can be achieved by considering the ratio
(

n
k+1

)
/
(
n
k

)
instead
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of the difference
(

n
k+1

)
−
(
n
k

)
. In this case:

(
n

k+1

)(
n
k

) =

nk+1

(k + 1)!

nk

k!

=
nk+1

nk
· k!

(k + 1)!

=
nk · (n− k)

nk
· k!

(k + 1)k!

=
n− k

k + 1
.

Similarly to the difference, such ratio is larger than 1 if and only if n− k >
k + 1, that is, k < (n− 1)/2.

Exercise 5.5

Let p be a prime. Prove that
(
p
k

)
≡ 0 (mod p) for 0 < k < p. Find a

consequence about
(
p−1
k

)
.

Solution. Recall that a ≡ b (mod m) means that a − b is a multiple of m.
By definition: (

p

k

)
=

p(p− 1) · · · (p− k + 1)

k!
.

If p is prime and k is neither 0 nor p, there is no way to make the p at
numerator disappear by dividing by k!.

Now,
(
p
k

)
=
(
p−1
k

)
+
(
p−1
k−1

)
: since the left-hand side is 0 modulo p, going

from
(
p−1
k−1

)
to
(
p−1
k

)
only involves a change of sign modulo p. Since

(
p−1
0

)
= 1,

we get: (
p− 1

k

)
≡ (−1)k mod p

A recurrence solved with generating functions

Use generating functions to solve the recurrence:

U0 = 1 ;
Un = Un−1 + n + 3 for n > 0 .

(2)
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Solution. For n > 0 and z 6= 0 the recurrence equation can be rewritten:

Unz
n = Un−1z

n + nzn + 3zn .

Let U(z) =
∑

n>0 Unz
n be the generating function of the sequence 〈Un〉n>0:

by summing over n we get

U(z) = 1 +
∑
n>1

Unz
n

= 1 +
∑
n>1

Un−1z
n +

∑
n>1

nzn +
∑
n>1

3zn

= 1 + z
∑
n>0

Unz
n +

∑
n>1

nzn + 3z
∑
n>0

zn

= 1 + zU(z) +
z

(1− z)2
+

3z

1− z
,

which can be rewritten

(1− z)U(z) = 1 +
z

(1− z)2
+ 3 · z

1− z
,

which in turn yields

U(z) =
1

1− z
+

z

(1− z)3
+ 3 · z

(1− z)2
.

We know that 1/(1− z) =
∑

n>0 z
n and z/(1− z)2 =

∑
n>0 nz

n, so we only
need to express z/(1−z)3 as a power series. But as 2/(1−z)3 is the derivative
of 1/(1− 3)2,

z

(1− z)3
=

z

2

d

dz

1

(1− z)2

=
z

2

d

dz

∑
n>1

nzn−1

=
z

2

∑
n>2

n(n− 1)zn−2

=
1

2

∑
n>1

n(n− 1)zn−1

=
1

2

∑
n>0

(n + 1)nzn .
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We can then rewrite our equality as:∑
n>0

Unz
n =

∑
n>0

zn +
1

2

∑
n>0

n(n + 1)

2
zn + 3

∑
n>0

nzn ,

and conclude that Un = 1 +
n(n + 1)

2
+ 3n for every n > 0.

Exercise 5.7

Prove equality (5.34): for every r ∈ C and k ∈ N,

rk
(
r − 1

2

)k

=
(2r)2k

22k

Is the equality true also when k < 0?

Solution. We have:

rk
(
r − 1

2

)k

= r(r − 1) · · · (r − k + 1)

(
r − 1

2

)(
r − 3

2

)
· · ·
(
r − 2k + 1

2

)
=

1

22r
2r(2r − 2) · · · (2r − 2k − 2)(2r − 1)(2r − 3) · · · (2r − 2k − 1)

=
1

22r
2r(2r − 1)(2r − 2)(2r − 3) · · · (2r − 2k − 2)(2r − 2k − 1)

=
(2r)2k

22k
.

Now, for m > 0 and r ∈ C it is:

r−m =
1

(r + 1)m
=

1

(−1)m(−r − 1)m
=

(−1)m

(−r − 1)m

Then for k < 0 and m = −k = |k| equality (5.34) becomes:

(−1)m

(−r − 1)m
(−1)m(

−r + 1
2
− 1
)m = 22m (−1)2m

(−2r − 1)m
,

which is simply (5.34) with (attention!) −r − 1/2 in place of r, m = |k| in
place of k, and the roles of the numerators and denominators swapped!
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Exercise 5.17

Find a simple relation between
(
2n−1/2

n

)
and

(
2n−1/2

2n

)
.

Solution. Let’s follow the suggestion of the book, which tells us that:(
2n− 1/2

n

)
=

1

22n

(
4n

2n

)
and

(
2n− 1/2

2n

)
=

1

24n

(
4n

2n

)
.

Together, the two give the formula:(
2n− 1/2

n

)
= 22n

(
2n− 1/2

2n

)
.

But how to prove those two? Well, recall equality (5.34):

rk
(
r − 1

2

)k

=
(2r)2k

22k

For r = 2n and k = n this becomes:

(2n)n
(

2n− 1

2

)n

=
(4n)2n

22n

that is,

n!

(
2n

n

)
· n!

(
2n− 1/2

n

)
=

(2n)!

22n

(
4n

2n

)
But

(
2n
n

)
= (2n)!

(n!)2
, so the above becomes:

(2n)!

(
2n− 1/2

n

)
=

((2n)!)2

22n

(
4n

2n

)
,

which is equivalent to the first equality of the hint. For r = k = 2n we have
instead:

(2n)2n
(

2n− 1

2

)2n

=
(4n)4n

24n

Now, for every m > 0 it is mm = m!, so we can rewrite:

(2n)!

(
2n− 1

2

)2n

=
(4n)!

24n
,

which, by dividing both terms by ((2n)!)2, becomes:(
2n− 1/2

2n

)
=

1

24n

(
4n

2n

)
,

which is the second equality from the hint.
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