# ITT9132 Concrete Mathematics Exercises from Week 10 

Silvio Capobianco

## Higher order differences

Recall the definition of the forward difference:

$$
\Delta f(x)=f(x+1)-f(x)
$$

What will be the difference of the difference? Well:

$$
\begin{aligned}
\Delta^{2} f(x) & =(\Delta f)(x+1)-(\Delta f)(x) \\
& =(f(x+1+1)-f(x+1))-(f(x+1)-f(x)) \\
& =f(x+2)-2 f(x+1)+f(x)
\end{aligned}
$$

And the difference of the above? We now know the trick:

$$
\begin{aligned}
\Delta^{3} f(x)= & \left(\Delta^{2} f\right)(x+1)-\left(\Delta^{2} f\right)(x) \\
= & (f(x+2+1)-2 f(x+1+1)+f(x+1)) \\
& -(f(x+2)-2 f(x+1)+f(x)) \\
= & f(x+3)-3 f(x+2)+3 f(x+1)-f(x)
\end{aligned}
$$

However, this is dangerously similar to a class of equations we already know:

$$
\begin{aligned}
& (x-1)^{2}=x^{2}-2 x+1 \\
& (x-1)^{3}=x^{3}-3 x^{2}+3 x-1
\end{aligned}
$$

and so on. In fact, the following can be proved by induction:

$$
\begin{equation*}
\Delta^{n} f(x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} f(x+k) \tag{1}
\end{equation*}
$$

The formula is true for $n=1,2,3$. Suppose it is true for a given $n \geqslant 1$ : then,

$$
\left.\begin{array}{rl}
\Delta^{n+1} f(x)= & \Delta\left(\Delta^{n} f(x)\right) \\
= & \Delta\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} f(x+k)\right) \\
= & \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} f(x+k+1)-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} f(x+k) \\
= & \binom{n}{n} f(x+n+1)+\sum_{k=0}^{n-1}\binom{n}{k}(-1)^{n-k} f(x+k+1) \\
& -\sum_{k=0}^{n-1}\binom{n}{k}(-1)^{n-k} f(x+k)-\binom{n}{0}(-1)^{n} f(x) \\
= & \binom{n+1}{n+1} f(x+n+1) \\
& +\sum_{k=1}^{n}\left(\binom{n}{k-1}(-1)^{n-(k-1)}-\binom{n}{k}(-1)^{n-k}\right) f(x+k) \\
& +\binom{n+1}{0}(-1)^{n+1} f(x) \\
= & \binom{n+1}{n+1} f(x+n+1) \\
& +\sum_{k=1}^{n}\left(\binom{n}{k-1}(-1)^{n+1-k}+\binom{n}{k}(-1)^{n+1-k}\right) f(x+k) \\
& +\binom{n+1}{0}(-1)^{n+1} f(x) \\
= & \binom{n+1}{n+1} f(x+n+1) \\
& +\sum_{k=1}^{n}\binom{n+1}{k}(-1)^{n+1-k} f(x+k) \\
& +\binom{n+1}{0}(-1)^{n+1} f(x) \\
= & \sum_{k=0}^{n+1}\binom{n+1}{k}(-1)^{n+1-k} f(x+k) \\
k+1
\end{array}\right)(x)
$$

## Exercise 5.1

Explain why it is easy to evaluate $11^{4}$ for those who know binomial coefficients.
Solution. $11=1+10$, so by the binomial theorem

$$
\begin{aligned}
11^{4}= & (1+10)^{4} \\
= & \binom{4}{0} \cdot 1^{0} \cdot 10^{4-0}+\binom{4}{1} \cdot 1^{1} \cdot 10^{4-1}+\binom{4}{2} \cdot 1^{2} \cdot 10^{4-2} \\
& +\binom{4}{3} \cdot 1^{3} \cdot 10^{4-3}+\binom{4}{4} \cdot 1^{4} \cdot 10^{4-4} \\
= & 10000+4000+600+40+1 \\
= & 14641
\end{aligned}
$$

## Exercise 5.2

Find the values of $k$ for which $\binom{n}{k}$ is a maximum. Prove the answer.
Solution. Let $f(k)=\binom{n}{k}$. Then

$$
\begin{aligned}
\Delta f(k) & =\binom{n}{k+1}-\binom{n}{k} \\
& =\frac{n-k}{k+1}\binom{n}{k}-\binom{n}{k} \\
& =\left(\frac{n-k}{k+1}-1\right)\binom{n}{k}
\end{aligned}
$$

The right-hand side has the sign of the term in parentheses, which is the same as that of $n-1-2 k$. This means that $\binom{n}{k+1}$ is greater than $\binom{n}{k}$ if $k<(n-1) / 2$, and smaller than $\binom{n}{k}$ if $k>(n-1) / 2$. Therefore $f(k)=\binom{n}{k}$ is maximum when $k$ is either $\lfloor n / 2\rfloor$ or $\lceil n / 2\rceil$.

The same result can be achieved by considering the ratio $\binom{n}{k+1} /\binom{n}{k}$ instead
of the difference $\binom{n}{k+1}-\binom{n}{k}$. In this case:

$$
\begin{aligned}
\frac{\binom{n}{k+1}}{\binom{n}{k}} & =\frac{\frac{n^{\underline{k+1}}}{(k+1)!}}{\frac{n^{\underline{k}}}{k!}} \\
& =\frac{n^{\frac{k+1}{n}}}{n^{\underline{\underline{k}}}} \cdot \frac{k!}{(k+1)!} \\
& =\frac{n^{\underline{\underline{k}}} \cdot(n-k)}{n^{\underline{k}}} \cdot \frac{k!}{(k+1) k!} \\
& =\frac{n-k}{k+1} .
\end{aligned}
$$

Similarly to the difference, such ratio is larger than 1 if and only if $n-k>$ $k+1$, that is, $k<(n-1) / 2$.

## Exercise 5.5

Let $p$ be a prime. Prove that $\binom{p}{k} \equiv 0(\bmod p)$ for $0<k<p$. Find a consequence about $\binom{p-1}{k}$.
Solution. Recall that $a \equiv b(\bmod m)$ means that $a-b$ is a multiple of $m$. By definition:

$$
\binom{p}{k}=\frac{p(p-1) \cdots(p-k+1)}{k!} .
$$

If $p$ is prime and $k$ is neither 0 nor $p$, there is no way to make the $p$ at numerator disappear by dividing by $k$ !.

Now, $\binom{p}{k}=\binom{p-1}{k}+\binom{p-1}{k-1}$ : since the left-hand side is 0 modulo $p$, going from $\binom{p-1}{k-1}$ to $\binom{p-1}{k}$ only involves a change of sign modulo $p$. Since $\binom{p-1}{0}=1$, we get:

$$
\binom{p-1}{k} \equiv(-1)^{k} \bmod p
$$

## A recurrence solved with generating functions

Use generating functions to solve the recurrence:

$$
\begin{align*}
& U_{0}=1  \tag{2}\\
& U_{n}=U_{n-1}+n+3 \text { for } n>0
\end{align*}
$$

Solution. For $n>0$ and $z \neq 0$ the recurrence equation can be rewritten:

$$
U_{n} z^{n}=U_{n-1} z^{n}+n z^{n}+3 z^{n} .
$$

Let $U(z)=\sum_{n \geqslant 0} U_{n} z^{n}$ be the generating function of the sequence $\left\langle U_{n}\right\rangle_{n \geqslant 0}$ : by summing over $n$ we get

$$
\begin{aligned}
U(z) & =1+\sum_{n \geqslant 1} U_{n} z^{n} \\
& =1+\sum_{n \geqslant 1} U_{n-1} z^{n}+\sum_{n \geqslant 1} n z^{n}+\sum_{n \geqslant 1} 3 z^{n} \\
& =1+z \sum_{n \geqslant 0} U_{n} z^{n}+\sum_{n \geqslant 1} n z^{n}+3 z \sum_{n \geqslant 0} z^{n} \\
& =1+z U(z)+\frac{z}{(1-z)^{2}}+\frac{3 z}{1-z},
\end{aligned}
$$

which can be rewritten

$$
(1-z) U(z)=1+\frac{z}{(1-z)^{2}}+3 \cdot \frac{z}{1-z},
$$

which in turn yields

$$
U(z)=\frac{1}{1-z}+\frac{z}{(1-z)^{3}}+3 \cdot \frac{z}{(1-z)^{2}}
$$

We know that $1 /(1-z)=\sum_{n \geqslant 0} z^{n}$ and $z /(1-z)^{2}=\sum_{n \geqslant 0} n z^{n}$, so we only need to express $z /(1-z)^{3}$ as a power series. But as $2 /(1-z)^{3}$ is the derivative of $1 /(1-3)^{2}$,

$$
\begin{aligned}
\frac{z}{(1-z)^{3}} & =\frac{z}{2} \frac{d}{d z} \frac{1}{(1-z)^{2}} \\
& =\frac{z}{2} \frac{d}{d z} \sum_{n \geqslant 1} n z^{n-1} \\
& =\frac{z}{2} \sum_{n \geqslant 2} n(n-1) z^{n-2} \\
& =\frac{1}{2} \sum_{n \geqslant 1} n(n-1) z^{n-1} \\
& =\frac{1}{2} \sum_{n \geqslant 0}(n+1) n z^{n}
\end{aligned}
$$

We can then rewrite our equality as:

$$
\sum_{n \geqslant 0} U_{n} z^{n}=\sum_{n \geqslant 0} z^{n}+\frac{1}{2} \sum_{n \geqslant 0} \frac{n(n+1)}{2} z^{n}+3 \sum_{n \geqslant 0} n z^{n},
$$

and conclude that $U_{n}=1+\frac{n(n+1)}{2}+3 n$ for every $n \geqslant 0$.

## Exercise 5.7

Prove equality (5.34): for every $r \in \mathbb{C}$ and $k \in \mathbb{N}$,

$$
r^{\underline{\underline{k}}}\left(r-\frac{1}{2}\right)^{\underline{k}}=\frac{(2 r)^{2 k}}{2^{2 k}}
$$

Is the equality true also when $k<0$ ?
Solution. We have:

$$
\begin{aligned}
r^{\underline{k}}\left(r-\frac{1}{2}\right)^{\underline{k}} & =r(r-1) \cdots(r-k+1)\left(r-\frac{1}{2}\right)\left(r-\frac{3}{2}\right) \cdots\left(r-\frac{2 k+1}{2}\right) \\
& =\frac{1}{2^{2 r}} 2 r(2 r-2) \cdots(2 r-2 k-2)(2 r-1)(2 r-3) \cdots(2 r-2 k-1) \\
& =\frac{1}{2^{2 r}} 2 r(2 r-1)(2 r-2)(2 r-3) \cdots(2 r-2 k-2)(2 r-2 k-1) \\
& =\frac{(2 r)^{2 k}}{2^{2 k}} .
\end{aligned}
$$

Now, for $m>0$ and $r \in \mathbb{C}$ it is:

$$
r \underline{-m}=\frac{1}{(r+1)^{\bar{m}}}=\frac{1}{(-1)^{m}(-r-1)^{\underline{m}}}=\frac{(-1)^{m}}{(-r-1)^{\underline{m}}}
$$

Then for $k<0$ and $m=-k=|k|$ equality (5.34) becomes:

$$
\frac{(-1)^{m}}{(-r-1)^{\underline{m}}} \frac{(-1)^{m}}{\left(-r+\frac{1}{2}-1\right)^{\underline{m}}}=2^{2 m} \frac{(-1)^{2 m}}{(-2 r-1)^{\underline{m}}}
$$

which is simply (5.34) with (attention!) $-r-1 / 2$ in place of $r, m=|k|$ in place of $k$, and the roles of the numerators and denominators swapped!

## Exercise 5.17

Find a simple relation between $\binom{2 n-1 / 2}{n}$ and $\binom{2 n-1 / 2}{2 n}$.
Solution. Let's follow the suggestion of the book, which tells us that:

$$
\binom{2 n-1 / 2}{n}=\frac{1}{2^{2 n}}\binom{4 n}{2 n} \text { and }\binom{2 n-1 / 2}{2 n}=\frac{1}{2^{4 n}}\binom{4 n}{2 n} .
$$

Together, the two give the formula:

$$
\binom{2 n-1 / 2}{n}=2^{2 n}\binom{2 n-1 / 2}{2 n} .
$$

But how to prove those two? Well, recall equality (5.34):

$$
r^{\underline{\underline{k}}}\left(r-\frac{1}{2}\right)^{\underline{k}}=\frac{(2 r)^{2 k}}{2^{2 k}}
$$

For $r=2 n$ and $k=n$ this becomes:

$$
(2 n)^{\underline{n}}\left(2 n-\frac{1}{2}\right)^{\underline{n}}=\frac{(4 n)^{2 n}}{2^{2 n}}
$$

that is,

$$
n!\binom{2 n}{n} \cdot n!\binom{2 n-1 / 2}{n}=\frac{(2 n)!}{2^{2 n}}\binom{4 n}{2 n}
$$

But $\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}$, so the above becomes:

$$
(2 n)!\binom{2 n-1 / 2}{n}=\frac{((2 n)!)^{2}}{2^{2 n}}\binom{4 n}{2 n}
$$

which is equivalent to the first equality of the hint. For $r=k=2 n$ we have instead:

$$
(2 n)^{\frac{2 n}{}}\left(2 n-\frac{1}{2}\right)^{\frac{2 n}{}}=\frac{(4 n)^{\frac{4 n}{}}}{2^{4 n}}
$$

Now, for every $m \geqslant 0$ it is $m^{\underline{\underline{m}}}=m!$, so we can rewrite:

$$
(2 n)!\left(2 n-\frac{1}{2}\right)^{\frac{2 n}{}}=\frac{(4 n)!}{2^{4 n}},
$$

which, by dividing both terms by $((2 n)!)^{2}$, becomes:

$$
\binom{2 n-1 / 2}{2 n}=\frac{1}{2^{4 n}}\binom{4 n}{2 n}
$$

which is the second equality from the hint.

