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Exercises from Week 11

Silvio Capobianco

Exercise 6.2

There are m™ functions from a set of n elements to a set of m elements. How
many of them range over exactly k different function values?

Solution. Suppose A has n elements, B has m, and f : A — B takes exactly
k values by, ..., b,. Then P = {f1(b;) | 1 <14 < k} is a partition of A in k
nonempty subsets; moreover, f is completely determined by P and the b;’s.

We have {Z} ways of choosing P. We have m% ways of choosing the b;’s.

Therefore, we have
k

ways of constructing f.

Exercise 6.11
Compute Y, (—1)*[}].
Solution. We know from the textbook that

Sl

k

For x = —1 we get



Exercise 6.16

What is the general solution of the double recurrence

An,ozan[Tl}O]; AO,kIO, 1f]€>07 (1)
A =kAn 1+ An—15-1, k,neZ,

when k and n range over the set of all integers?

Solution. The double recurrence (1) is linear in the following sense: if A, =
U, is the solution for a,, = u,, and A, = W, is the solution for a, = wy,
then A, , = AU, i + W, is the solution for a,, = Au,, + pw,. We also know
that A, = {Z} is the solution for a,, = [n = 0]: by linearity, A, x = a - {Z}
is the solution for a, = a[n = 0].

Let us search for the solution of (1) in the more general case a,, = [n = j],
where j is an arbitrary integer. This seems difficult, but we observe that (1)
displays the following property: if U, j is the solution for a,, = u,, and 7 > 0,
then A, = U, is the solution for a,, = u,_; [n > j|: hence, A, = {”;]}
is the solution for a,, = [n = j]. By linearity, we can conclude that, if a,, # 0
only for finitely many values of n, then

A = Z{";]} @)

is the solution to (1).

Can we conclude that (2) is the solution to (1) also when infinitely many
of the values a,, are nonzero? Yes, because {’z} is zero if k > m, thus only
the values a; with 0 < j < n — k contribute to the sum.

Exercise 6.28

For n integer, define the nth Lucas number as L, = f,411 + fa_1:

n |0[1]2|3]4]5 |67 |8[9]10]11]12]|13]...
Ly [2]1]3]4[7]11]18]29]47]76]123|199 322|521 ...

1. Use the repertoire method to find the general solution to the recurrence:

Qo = «
Q=7
QQ = Qn—l + Qn—2 ,n>1

2



2. Find a closed form for L, in terms of ¢ and QAS

Solution. Point 1. The Fibonacci numbers satisfy the recurrence with
a =0, f =1. The Lucas numbers also satisfy the recurrence:

Ln—l + Ln—2 = fn + fn—2 + fn—l + fn—3 = fn+1 + fn—l = Ln
We thus only need to reconstruct the initial condition through the system

rfo+yly = «
zfi+yl, = f

that is,
2 = «
r+y = B

which yields y = a/2,x = 8 — «/2. Therefore,
Q
Point 2. We know that f, = (¢" — ¢")/+/5. Then,

B ¢n+1 _ ggn+1 CZSnfl _ qgnfl
L, = = tT &
¢n—1(¢2 + 1) _ én—l(qp + 1)
V5

But
6+ 2v5 5+ Vb
¢2+1:—\/_+1: \/_qu\/g
4 2
and similarly,
- 6 —2v5 5—VbH -
¢2+1:—\/__|_1: \/_:_¢\/5

4 2

Consequently,

0N oVE) = (=VE)
- = ="+

3

Ly,



Fibonacci number system

Prove Zeckendorf’s theorem: every positive integer n has a unique writing

n=fi + i+ ...+ fr
as a sum of Fibonacci numbers such that:
1. ki >ko>...>k, > 2, and
2. no two k;s are consecutive, that is, for no ¢ it is k; = k; 11 + 1.

Solution. The thesis is true forn =1 = fo, n =2 = f3, n =3 = f4;, and
n=4=341= f;+ fo, so we have a good base to proceed with a proof by
strong induction.

Suppose the thesis is true for every positive integer m < n. Let k; be
the largest integer such that fr, < n: asn > 0, by > 2. If n = f, we
are done, while if n = fi, + 1 we put ky = 2 and we are done. Otherwise,
m = n — fr, < n is positive, so by inductive hypothesis it has a unique
writing:

m = fiy + fos + -+ Jr,

satisfying our two conditions. Then k; and ks are not consecutive: if they
were, then ky = k1 — 1, and

n o= fot+ ot fetooo S
fk1+1+fk3+"'+fkr’

against our hypothesis that k; is maximum such that f;, <n.



