ITT9132 Concrete Mathematics Exercises from Week 11

Silvio Capobianco

Exercise 6.2

There are m^n functions from a set of n elements to a set of m elements. How many of them range over exactly k different function values?

Solution. Suppose A has n elements, B has m, and $f : A \to B$ takes exactly k values b_1, \ldots, b_k . Then $P = \{f^{-1}(b_i) \mid 1 \leq i \leq k\}$ is a partition of A in k nonempty subsets; moreover, f is completely determined by P and the b_i 's.

We have $\binom{n}{k}$ ways of choosing P. We have $m^{\underline{k}}$ ways of choosing the b_i 's. Therefore, we have

$$\binom{n}{k} \cdot m^{\underline{k}}$$

ways of constructing f.

Exercise 6.11

Compute $\sum_{k} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix}$.

Solution. We know from the textbook that

$$\sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} x^k = x^{\overline{n}}$$

For x = -1 we get

$$\sum_{k} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix} = (-1)^{\overline{n}}$$

This is 1 for n = 0, -1 for n = 1, and 0 otherwise. A one-liner is:

$$\sum_{k} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix} = [n = 0] - [n = 1] .$$

Exercise 6.16

What is the general solution of the double recurrence

$$A_{n,0} = a_n [n \ge 0]; \qquad A_{0,k} = 0, \quad \text{if } k > 0; A_{n,k} = k A_{n-1,k} + A_{n-1,k-1}, \qquad k, n \in \mathbb{Z},$$
(1)

when k and n range over the set of *all* integers?

Solution. The double recurrence (1) is linear in the following sense: if $A_{n,k} = U_{n,k}$ is the solution for $a_n = u_n$ and $A_{n,k} = W_{n,k}$ is the solution for $a_n = w_n$, then $A_{n,k} = \lambda U_{n,k} + \mu W_{n,k}$ is the solution for $a_n = \lambda u_n + \mu w_n$. We also know that $A_{n,k} = {n \\ k}$ is the solution for $a_n = [n = 0]$: by linearity, $A_{n,k} = a \cdot {n \\ k}$ is the solution for $a_n = a [n = 0]$.

Let us search for the solution of (1) in the more general case $a_n = [n = j]$, where j is an arbitrary integer. This seems difficult, but we observe that (1) displays the following property: if $U_{n,k}$ is the solution for $a_n = u_n$, and j > 0, then $A_{n,k} = U_{n-j,k}$ is the solution for $a_n = u_{n-j}$ $[n \ge j]$: hence, $A_{n,k} = {n-j \\ k}$ is the solution for $a_n = [n = j]$. By linearity, we can conclude that, if $a_n \ne 0$ only for finitely many values of n, then

$$A_{n,k} = \sum_{j \ge 0} a_j \begin{Bmatrix} n-j \\ k \end{Bmatrix}$$
⁽²⁾

is the solution to (1).

Can we conclude that (2) is the solution to (1) also when infinitely many of the values a_n are nonzero? Yes, because ${m \atop k}$ is zero if k > m, thus only the values a_j with $0 \le j \le n-k$ contribute to the sum.

Exercise 6.28

For n integer, define the nth Lucas number as $L_n = f_{n+1} + f_{n-1}$:

n	$\left 0 \right $	1	2	3	4	5	6	7	8	9	10	11	12	13	
L_n	2	1	3	4	7	11	18	29	47	76	123	199	322	521	

1. Use the repertoire method to find the general solution to the recurrence:

$$Q_0 = \alpha$$

 $Q_1 = \beta$
 $Q_2 = Q_{n-1} + Q_{n-2} , n > 1$

2. Find a closed form for L_n in terms of ϕ and $\hat{\phi}$.

Solution. Point 1. The Fibonacci numbers satisfy the recurrence with $\alpha = 0, \beta = 1$. The Lucas numbers also satisfy the recurrence:

$$L_{n-1} + L_{n-2} = f_n + f_{n-2} + f_{n-1} + f_{n-3} = f_{n+1} + f_{n-1} = L_n$$

We thus only need to reconstruct the initial condition through the system

$$xf_0 + yL_0 = \alpha$$
$$xf_1 + yL_1 = \beta$$

that is,

$$\begin{array}{rcl} 2y &=& \alpha \\ x+y &=& \beta \end{array}$$

which yields $y = \alpha/2, x = \beta - \alpha/2$. Therefore,

$$Q_n = xf_n + yL_n = \frac{\alpha}{2}(L_n - f_n) + \beta f_n$$

Point 2. We know that $f_n = (\phi^n - \hat{\phi}^n)/\sqrt{5}$. Then,

$$L_n = \frac{\phi^{n+1} - \hat{\phi}^{n+1}}{\sqrt{5}} + \frac{\phi^{n-1} - \hat{\phi}^{n-1}}{\sqrt{5}}$$
$$= \frac{\phi^{n-1}(\phi^2 + 1) - \hat{\phi}^{n-1}(\hat{\phi}^2 + 1)}{\sqrt{5}}$$

But

$$\phi^2 + 1 = \frac{6 + 2\sqrt{5}}{4} + 1 = \frac{5 + \sqrt{5}}{2} = \phi\sqrt{5}$$

and similarly,

$$\hat{\phi}^2 + 1 = \frac{6 - 2\sqrt{5}}{4} + 1 = \frac{5 - \sqrt{5}}{2} = -\hat{\phi}\sqrt{5}$$

Consequently,

$$L_n = \frac{\phi^{n-1}(\phi\sqrt{5}) - \hat{\phi}^{n-1}(-\hat{\phi}\sqrt{5})}{\sqrt{5}} = \phi^n + \hat{\phi}^n$$

Fibonacci number system

Prove Zeckendorf's theorem: every positive integer n has a unique writing

$$n = f_{k_1} + f_{k_2} + \ldots + f_{k_r}$$

as a sum of Fibonacci numbers such that:

- 1. $k_1 > k_2 > \ldots > k_r \ge 2$, and
- 2. no two k_i s are consecutive, that is, for no *i* it is $k_i = k_{i+1} + 1$.

Solution. The thesis is true for $n = 1 = f_2$, $n = 2 = f_3$, $n = 3 = f_4$, and $n = 4 = 3 + 1 = f_4 + f_2$, so we have a good base to proceed with a proof by strong induction.

Suppose the thesis is true for every positive integer m < n. Let k_1 be the largest integer such that $f_{k_1} \leq n$: as n > 0, $k_1 \geq 2$. If $n = f_{k_1}$ we are done, while if $n = f_{k_1} + 1$ we put $k_2 = 2$ and we are done. Otherwise, $m = n - f_{k_1} < n$ is positive, so by inductive hypothesis it has a unique writing:

$$m = f_{k_2} + f_{k_3} + \ldots + f_{k_r}$$

satisfying our two conditions. Then k_1 and k_2 are not consecutive: if they were, then $k_2 = k_1 - 1$, and

$$n = f_{k_1} + f_{k_1-1} + f_{k_3} + \ldots + f_{k_r}$$

= $f_{k_1+1} + f_{k_3} + \ldots + f_{k_r}$,

against our hypothesis that k_1 is maximum such that $f_{k_1} \leq n$.