ITT9132 Concrete Mathematics Exercises from Week 11

Silvio Capobianco

Exercise 6.2

There are m^{n} functions from a set of n elements to a set of m elements. How many of them range over exactly k different function values?

Solution. Suppose A has n elements, B has m, and $f: A \rightarrow B$ takes exactly k values b_{1}, \ldots, b_{k}. Then $P=\left\{f^{-1}\left(b_{i}\right) \mid 1 \leqslant i \leqslant k\right\}$ is a partition of A in k nonempty subsets; moreover, f is completely determined by P and the b_{i} 's.

We have $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ ways of choosing P. We have $m^{\underline{k}}$ ways of choosing the b_{i} 's. Therefore, we have

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \cdot m^{\underline{k}}
$$

ways of constructing f.

Exercise 6.11

Compute $\sum_{k}(-1)^{k}\left[\begin{array}{l}n \\ k\end{array}\right]$.
Solution. We know from the textbook that

$$
\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}=x^{\bar{n}}
$$

For $x=-1$ we get

$$
\sum_{k}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]=(-1)^{\bar{n}}
$$

This is 1 for $n=0,-1$ for $n=1$, and 0 otherwise. A one-liner is:

$$
\sum_{k}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]=[n=0]-[n=1]
$$

Exercise 6.16

What is the general solution of the double recurrence

$$
\begin{array}{lll}
A_{n, 0}=a_{n}[n \geqslant 0] ; & A_{0, k}=0, & \text { if } k>0 \\
A_{n, k}=k A_{n-1, k}+A_{n-1, k-1}, & & k, n \in \mathbb{Z} \tag{1}
\end{array}
$$

when k and n range over the set of all integers?
Solution. The double recurrence (1) is linear in the following sense: if $A_{n, k}=$ $U_{n, k}$ is the solution for $a_{n}=u_{n}$ and $A_{n, k}=W_{n, k}$ is the solution for $a_{n}=w_{n}$, then $A_{n, k}=\lambda U_{n, k}+\mu W_{n, k}$ is the solution for $a_{n}=\lambda u_{n}+\mu w_{n}$. We also know that $A_{n, k}=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the solution for $a_{n}=[n=0]$: by linearity, $A_{n, k}=a \cdot\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is the solution for $a_{n}=a[n=0]$.

Let us search for the solution of (1) in the more general case $a_{n}=[n=j]$, where j is an arbitrary integer. This seems difficult, but we observe that (1) displays the following property: if $U_{n, k}$ is the solution for $a_{n}=u_{n}$, and $j>0$, then $A_{n, k}=U_{n-j, k}$ is the solution for $a_{n}=u_{n-j}[n \geqslant j]$: hence, $A_{n, k}=\left\{\begin{array}{c}n-j \\ k\end{array}\right\}$ is the solution for $a_{n}=[n=j]$. By linearity, we can conclude that, if $a_{n} \neq 0$ only for finitely many values of n, then

$$
A_{n, k}=\sum_{j \geqslant 0} a_{j}\left\{\begin{array}{c}
n-j \tag{2}\\
k
\end{array}\right\}
$$

is the solution to (1).
Can we conclude that (2) is the solution to (1) also when infinitely many of the values a_{n} are nonzero? Yes, because $\left\{\begin{array}{c}m \\ k\end{array}\right\}$ is zero if $k>m$, thus only the values a_{j} with $0 \leqslant j \leqslant n-k$ contribute to the sum.

Exercise 6.28

For n integer, define the nth Lucas number as $L_{n}=f_{n+1}+f_{n-1}$:

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
\ldots														
L_{n}	2	1	3	4	7	11	18	29	47	76	123	199	322	521

1. Use the repertoire method to find the general solution to the recurrence:

$$
\begin{aligned}
Q_{0} & =\alpha \\
Q_{1} & =\beta \\
Q_{2} & =Q_{n-1}+Q_{n-2}, n>1
\end{aligned}
$$

2. Find a closed form for L_{n} in terms of ϕ and $\hat{\phi}$.

Solution. Point 1. The Fibonacci numbers satisfy the recurrence with $\alpha=0, \beta=1$. The Lucas numbers also satisfy the recurrence:

$$
L_{n-1}+L_{n-2}=f_{n}+f_{n-2}+f_{n-1}+f_{n-3}=f_{n+1}+f_{n-1}=L_{n}
$$

We thus only need to reconstruct the initial condition through the system

$$
\begin{aligned}
& x f_{0}+y L_{0}=\alpha \\
& x f_{1}+y L_{1}=\beta
\end{aligned}
$$

that is,

$$
\begin{aligned}
2 y & =\alpha \\
x+y & =\beta
\end{aligned}
$$

which yields $y=\alpha / 2, x=\beta-\alpha / 2$. Therefore,

$$
Q_{n}=x f_{n}+y L_{n}=\frac{\alpha}{2}\left(L_{n}-f_{n}\right)+\beta f_{n}
$$

Point 2. We know that $f_{n}=\left(\phi^{n}-\hat{\phi}^{n}\right) / \sqrt{5}$. Then,

$$
\begin{aligned}
L_{n} & =\frac{\phi^{n+1}-\hat{\phi}^{n+1}}{\sqrt{5}}+\frac{\phi^{n-1}-\hat{\phi}^{n-1}}{\sqrt{5}} \\
& =\frac{\phi^{n-1}\left(\phi^{2}+1\right)-\hat{\phi}^{n-1}\left(\hat{\phi}^{2}+1\right)}{\sqrt{5}}
\end{aligned}
$$

But

$$
\phi^{2}+1=\frac{6+2 \sqrt{5}}{4}+1=\frac{5+\sqrt{5}}{2}=\phi \sqrt{5}
$$

and similarly,

$$
\hat{\phi}^{2}+1=\frac{6-2 \sqrt{5}}{4}+1=\frac{5-\sqrt{5}}{2}=-\hat{\phi} \sqrt{5}
$$

Consequently,

$$
L_{n}=\frac{\phi^{n-1}(\phi \sqrt{5})-\hat{\phi}^{n-1}(-\hat{\phi} \sqrt{5})}{\sqrt{5}}=\phi^{n}+\hat{\phi}^{n}
$$

Fibonacci number system

Prove Zeckendorf's theorem: every positive integer n has a unique writing

$$
n=f_{k_{1}}+f_{k_{2}}+\ldots+f_{k_{r}}
$$

as a sum of Fibonacci numbers such that:

1. $k_{1}>k_{2}>\ldots>k_{r} \geqslant 2$, and
2. no two k_{i} s are consecutive, that is, for no i it is $k_{i}=k_{i+1}+1$.

Solution. The thesis is true for $n=1=f_{2}, n=2=f_{3}, n=3=f_{4}$, and $n=4=3+1=f_{4}+f_{2}$, so we have a good base to proceed with a proof by strong induction.

Suppose the thesis is true for every positive integer $m<n$. Let k_{1} be the largest integer such that $f_{k_{1}} \leqslant n$: as $n>0, k_{1} \geqslant 2$. If $n=f_{k_{1}}$ we are done, while if $n=f_{k_{1}}+1$ we put $k_{2}=2$ and we are done. Otherwise, $m=n-f_{k_{1}}<n$ is positive, so by inductive hypothesis it has a unique writing:

$$
m=f_{k_{2}}+f_{k_{3}}+\ldots+f_{k_{r}}
$$

satisfying our two conditions. Then k_{1} and k_{2} are not consecutive: if they were, then $k_{2}=k_{1}-1$, and

$$
\begin{aligned}
n & =f_{k_{1}}+f_{k_{1}-1}+f_{k_{3}}+\ldots+f_{k_{r}} \\
& =f_{k_{1}+1}+f_{k_{3}}+\ldots+f_{k_{r}},
\end{aligned}
$$

against our hypothesis that k_{1} is maximum such that $f_{k_{1}} \leqslant n$.

