Concrete Mathematics Exercises from Week 12

Silvio Capobianco

Exercise 6.4

Express $1+1 / 3+\ldots+1 /(2 n+1)$ in terms of harmonic numbers.
Solution. If the summands $1 / 2,1 / 4, \ldots, 1 / 2 n$ were present, that would be $H_{2 n+1}$. But they are not there, thus their sum, which is $H_{n} / 2$, has been subtracted from the total. Then $1+1 / 3+\ldots+1 /(2 n+1)=H_{2 n+1}-\frac{1}{2} H_{n}$.

Exercise 6.20

Find a closed form for $\sum_{k=1}^{n} H_{k}^{(2)}$.
Solution. We rewrite:

$$
\begin{aligned}
\sum_{k=1}^{n} H_{k}^{(2)} & =\sum_{k=1}^{n} \sum_{j=1}^{k} \frac{1}{j^{2}} \\
& =\sum_{j=1}^{n} \sum_{k=j}^{n} \frac{1}{j^{2}} \\
& =\sum_{j=1}^{n} \frac{n+1-j}{j^{2}} \\
& =(n+1) \sum_{j=1}^{n} \frac{1}{j^{2}}-\sum_{j=1}^{n} \frac{1}{j} \\
& =(n+1) H_{n}^{(2)}-H_{n} .
\end{aligned}
$$

Observe the similarity with $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$.

Exercise 6.21

Show that if $H_{n}=a_{n} / b_{n}$ where a_{n} and b_{n} are integers, the denominator b_{n} is a multiple of $2^{\lfloor\lg n\rfloor}$. Hint: consider the number $2^{\lfloor\lg n\rfloor-1} H_{n}-\frac{1}{2}$.

Solution. Call $m=\lfloor\lg n\rfloor$ for brevity. Split H_{n} as follows:

$$
H_{n}=\sum_{k=1}^{2^{m}-1} \frac{1}{k}+\frac{1}{2^{m}}+\sum_{k=2^{m}+1}^{n} \frac{1}{k}
$$

In both summations, the maximum power of 2 which divides k is 2^{m-1} : hence, $2^{m-1} H_{n}$ is the sum of $n-1$ rational numbers with odd divisors, plus $1 / 2$. The writing of $2^{m-1} H_{n}$ as an irreducible fraction a / b must then have $t=2 d$ for some d odd: consequently, the writing of H_{n} as an irreducible fraction must have denominator $2^{m} d$. The denominator in any writing of H_{n} as a fraction (not necessarily an irreducible one) must then be a multiple of 2^{m}.

Exercise 6.22

Let z be a complex number. Consider the sum

$$
\begin{equation*}
\sum_{k \geqslant 1}\left(\frac{1}{k}-\frac{1}{k+z}\right) \tag{1}
\end{equation*}
$$

1. Prove that (1) converges for every complex number z except the negative integers.
2. Observe that (1) equals H_{n} when $z=n$ is a positive integer.

Solution. If z is a negative integer, then some of the summands are undefined. Otherwise, the general term is

$$
a_{k}=\frac{1}{k}-\frac{1}{k+z}=\frac{k+z-k}{k(k+z)}=\frac{z}{k^{2}+k z}
$$

By the second triangle inequality, $|a-b| \geqslant||a|-|b||$: for $a=k, b=-z$, and $k>|z|$ we have $\left|k^{2}+k z\right| \geqslant k \cdot|k-|z||>(k-|z|)^{2}$. Then $\sum_{k \geqslant 1}\left|a_{k}\right|$ converges by comparison, and (1) converges.

If $z=n$ is a positive integer, then the m-th partial sum is

$$
\begin{aligned}
\sum_{k=1}^{m}\left(\frac{1}{k}-\frac{1}{k+n}\right) & =\sum_{k=1}^{m} \frac{1}{k}-\sum_{j=n+1}^{n+m} \frac{1}{j} \\
& =H_{m}-\left(H_{m+n}-H_{n}\right) \\
& =H_{n}-\left(H_{m+n}-H_{m}\right) \\
& =H_{n}-\frac{1}{m+1}-\frac{1}{m+2}-\ldots-\frac{1}{m+n}
\end{aligned}
$$

that is, H_{n} minus n summands that vanish for $m \rightarrow \infty$.

Exercise 6.23

Equation (6.81) gives the coefficients of $z /\left(e^{z}-1\right)$, when expanded in powers of z. What are the coefficients of $z /\left(e^{z}+1\right)$? Hint: Consider the identity $\left(e^{z}+1\right)\left(e^{z}-1\right)=e^{2 z}-1$.

Solution. We use the hint to find coefficients A and B such that:

$$
\frac{1}{e^{2 z}-1}=\frac{A}{e^{z}+1}+\frac{B}{e^{z}-1}=\frac{(A+B) e^{z}+(B-A)}{e^{2 z}-1} .
$$

This yields $A+B=0$ and $B-A=1$, so $A=-1 / 2$ and $B=1 / 2$, and:

$$
\frac{1}{e^{2 z}-1}=-\frac{1}{2} \cdot \frac{1}{e^{z}+1}+\frac{1}{2} \cdot \frac{1}{e^{z}-1},
$$

which in turn yields:

$$
\frac{z}{e^{z}+1}=\frac{z}{e^{z}-1}-\frac{2 z}{e^{2 z}-1} .
$$

This is especially convenient, because the second summand on the right-hand side is simply the first one computed in $2 z$ instead of z. Then:

$$
\begin{aligned}
\frac{z}{e^{z}+1} & =\sum_{n \geqslant 0} \frac{B_{n}}{n!} z^{n}-\sum_{n \geqslant 0} \frac{B_{n}}{n!}(2 z)^{n} \\
& =\sum_{n \geqslant 0} \frac{\left(1-2^{n}\right) B_{n}}{n!} z^{n} .
\end{aligned}
$$

Exercise 6.27

Prove the gcd law (6.111) for the Fibonacci numbers.
Solution. We are required to prove that, for positive m and n,

$$
\begin{equation*}
\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)} . \tag{2}
\end{equation*}
$$

We first prove (2) for $n=m+1$. As $f_{m+1}=f_{m}+f_{m-1}$, a common divisor d of f_{m+1} and f_{m} should also divide f_{m-1} : then it would also divide $f_{m-2}=$ $f_{m}-f_{m-1}$, and f_{m-3} as well, and so on up to $f_{1}=1$. Thus, $\operatorname{gcd}\left(f_{m}, f_{m+1}\right)=$ $1=f_{1}=f_{\operatorname{gcd}(m, m+1)}$.

Let us now prove the general case. Suppose for convenience $n>m$. By the generalized Cassini identity, $f_{n}=f_{m} f_{n-m+1}+f_{m-1} f_{n-m}$: then,

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{n} \bmod f_{m}, f_{m}\right)=\operatorname{gcd}\left(f_{m-1} f_{n-m}, f_{m}\right)=\operatorname{gcd}\left(f_{n-m}, f_{m}\right),
$$

because consecutive Fibonacci numbers are relatively prime. But we can continue subtracting m until $n-k m$ becomes smaller than m, that is, until $k=\lfloor n / m\rfloor$ and $n-k m=n \bmod m$: then

$$
\operatorname{gcd}\left(f_{m}, f_{n}\right)=\operatorname{gcd}\left(f_{n \bmod m}, f_{m}\right)
$$

But the equality above means precisely that we can run the Euclidean algorithm on the indices of the Fibonacci numbers, instead of the Fibonacci numbers themselves! The thesis clearly follows.

