
Concrete Mathematics
Exercises from Week 12

Silvio Capobianco

Exercise 6.4

Express 1 + 1/3 + . . . + 1/(2n + 1) in terms of harmonic numbers.

Solution. If the summands 1/2, 1/4, . . . , 1/2n were present, that would be
H2n+1. But they are not there, thus their sum, which is Hn/2, has been
subtracted from the total. Then 1 + 1/3 + . . . + 1/(2n + 1) = H2n+1 − 1

2
Hn.

Exercise 6.20

Find a closed form for
∑n

k=1H
(2)
k .

Solution. We rewrite:

n∑
k=1

H
(2)
k =

n∑
k=1

k∑
j=1

1

j2

=
n∑

j=1

n∑
k=j

1

j2

=
n∑

j=1

n + 1− j

j2

= (n + 1)
n∑

j=1

1

j2
−

n∑
j=1

1

j

= (n + 1)H(2)
n −Hn .

Observe the similarity with
∑n

k=1Hk = (n + 1)Hn − n.
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Exercise 6.21

Show that if Hn = an/bn where an and bn are integers, the denominator bn
is a multiple of 2blgnc. Hint: consider the number 2blgnc−1Hn − 1

2
.

Solution. Call m = blg nc for brevity. Split Hn as follows:

Hn =
2m−1∑
k=1

1

k
+

1

2m
+

n∑
k=2m+1

1

k
.

In both summations, the maximum power of 2 which divides k is 2m−1: hence,
2m−1Hn is the sum of n − 1 rational numbers with odd divisors, plus 1/2.
The writing of 2m−1Hn as an irreducible fraction a/b must then have t = 2d
for some d odd: consequently, the writing of Hn as an irreducible fraction
must have denominator 2md. The denominator in any writing of Hn as a
fraction (not necessarily an irreducible one) must then be a multiple of 2m.

Exercise 6.22

Let z be a complex number. Consider the sum∑
k>1

(
1

k
− 1

k + z

)
(1)

1. Prove that (1) converges for every complex number z except the nega-
tive integers.

2. Observe that (1) equals Hn when z = n is a positive integer.

Solution. If z is a negative integer, then some of the summands are unde-
fined. Otherwise, the general term is

ak =
1

k
− 1

k + z
=

k + z − k

k(k + z)
=

z

k2 + kz

By the second triangle inequality, |a− b| > ||a|− |b|| : for a = k, b = −z, and
k > |z| we have |k2 +kz| > k · |k−|z|| > (k−|z|)2. Then

∑
k>1 |ak| converges

by comparison, and (1) converges.
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If z = n is a positive integer, then the m-th partial sum is

m∑
k=1

(
1

k
− 1

k + n

)
=

m∑
k=1

1

k
−

n+m∑
j=n+1

1

j

= Hm − (Hm+n −Hn)

= Hn − (Hm+n −Hm)

= Hn −
1

m + 1
− 1

m + 2
− . . .− 1

m + n
,

that is, Hn minus n summands that vanish for m→∞.

Exercise 6.23

Equation (6.81) gives the coefficients of z/(ez−1), when expanded in powers
of z. What are the coefficients of z/(ez + 1)? Hint: Consider the identity
(ez + 1)(ez − 1) = e2z − 1.

Solution. We use the hint to find coefficients A and B such that:

1

e2z − 1
=

A

ez + 1
+

B

ez − 1
=

(A + B)ez + (B − A)

e2z − 1
.

This yields A + B = 0 and B − A = 1, so A = −1/2 and B = 1/2, and:

1

e2z − 1
= −1

2
· 1

ez + 1
+

1

2
· 1

ez − 1
,

which in turn yields:

z

ez + 1
=

z

ez − 1
− 2z

e2z − 1
.

This is especially convenient, because the second summand on the right-hand
side is simply the first one computed in 2z instead of z. Then:

z

ez + 1
=

∑
n>0

Bn

n!
zn −

∑
n>0

Bn

n!
(2z)n

=
∑
n>0

(1− 2n)Bn

n!
zn .
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Exercise 6.27

Prove the gcd law (6.111) for the Fibonacci numbers.

Solution. We are required to prove that, for positive m and n,

gcd(fm, fn) = fgcd(m,n) . (2)

We first prove (2) for n = m + 1. As fm+1 = fm + fm−1, a common divisor
d of fm+1 and fm should also divide fm−1: then it would also divide fm−2 =
fm− fm−1, and fm−3 as well, and so on up to f1 = 1. Thus, gcd(fm, fm+1) =
1 = f1 = fgcd(m,m+1).

Let us now prove the general case. Suppose for convenience n > m. By
the generalized Cassini identity, fn = fmfn−m+1 + fm−1fn−m: then,

gcd(fm, fn) = gcd(fn mod fm, fm) = gcd(fm−1fn−m, fm) = gcd(fn−m, fm) ,

because consecutive Fibonacci numbers are relatively prime. But we can
continue subtracting m until n− km becomes smaller than m, that is, until
k = bn/mc and n− km = nmodm: then

gcd(fm, fn) = gcd(fnmodm, fm) .

But the equality above means precisely that we can run the Euclidean al-
gorithm on the indices of the Fibonacci numbers, instead of the Fibonacci
numbers themselves! The thesis clearly follows.
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