Concrete Mathematics Exercises from Week 13

Silvio Capobianco

Exercise 7.1

Consider a strip of $n \times 2$ (n in horizontal, 2 in vertical) square units. To tile such a strip we have a certain number of domino (1×2) tiles, red and blue. Red tiles can only be laid horizontally, while blue tiles can only be laid vertically.

1. Let t_{n} be the number of ways in which an $n \times 2$ strip can be tiled. Prove that $t_{n}=f_{n+1}$ for every $n \geqslant 0$, where f_{n} is the nth Fibonacci number.
2. An eccentric collector of $n \times 2$ domino tilings pays $\$ 4$ for each blue domino and $\$ 1$ for each red domino. How many tilings are worth exactly $\$ m$ by this criterion? For example, when $m=6$ there are three solutions: one blue and two red, two red and a blue, and six red.

Solution. First, let's compute the first values of t_{n} :

- $t_{0}=1$, because the only way to tile an empty 0×2 strip is by doing nothing.
- $t_{1}=1$, because the only way to tile a 1×2 strip is to put a blue tile.
- $t_{2}=2$, because the only ways to tile a 1×2 strip are with either two blue tiles, or two red.
- $t_{2}=3$, because the only ways to tile a 1×2 strip are with either three blue tiles, or one blue and two red, or two red and one blue.

This finite sequence $\langle 1,1,2,3\rangle$ is the same as that of the first four Fibonacci numbers with positive integers, so the thesis of point 1 doesn't peregrine. If we manage to prove that $t_{n}=t_{n-1}+t_{n-2}$ for every $n \geqslant 2$, then the thesis will be proved because of the uniqueness of the solution of a linear recurrence with given initial condition. But for $n \geqslant 2$ we have two mutually exclusive ways of constructing an $n \times 2$ tiling:

1. either by taking an $(n-1) \times 2$ tiling and putting a blue tile at the end,
2. or by taking an $(n-2) \times 2$ tiling and putting two red tiles at the end.

We have thus shown that $t_{n}=t_{n-1}+t_{n-2}$ for every $n \geqslant 2$, which together with $t_{0}=1=f_{1}$ and $t_{1}=1=f_{2}$ proves $t_{n}=f_{n+1}$ for every $n \geqslant 0$.

Now, let u_{n} be the number of tilings which are paid n dollars and let $U(z)$ be the generating function of the sequence $\left\langle u_{n}\right\rangle$. As any tiling must have evenly many red tiles, and the only tiling which is not paid is the empty one, it is $u_{m}=0$ for every m odd, and we expect $U(z)=T\left(z^{2}\right)$ for some function $T(z)$, and $U(0)=u_{m}=0$.

So let's simplify the counting and put $v_{n}=u_{2 n}$. The first values are $v_{0}=1$, because we can only make 0 dollars by not doing anything, and $v_{1}=1$, because we can only make 2 dollars with a 2×2 tiling made of two horizontal tiles. For $n \geqslant 2$ the only ways to make $2 n$ dollars is to either take a tiling worth $2 n-2$ dollars and add two red tiles at the end, or take a tiling worth $2 n-4$ dollars and add one red tile at the end: that is,

$$
v_{n}=v_{n-1}+v_{n-2} \quad \forall n \geqslant 2
$$

But this is again the Fibonacci recurrence with initial condition $t_{0}=1=f_{1}$ and $t_{1}=1=f_{2}$: which has the solution $v_{n}=f_{n+1}$. Then:

$$
\begin{aligned}
u_{n} & = \begin{cases}f_{m+1} & \text { if } n=2 m \\
0 & \text { if } n=2 m+1\end{cases} \\
& =f_{\lfloor n / 2\rfloor+1} \cdot[n \text { is even }]
\end{aligned}
$$

because if b is a bit and $n=2 m+b$, then $m=\lfloor m / 2\rfloor$.

Exercise 7.6

Solve the recurrence (7.32):

$$
\begin{aligned}
& g_{0}=1 \\
& g_{1}=1 \\
& g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n} \quad \forall n \geqslant 2 .
\end{aligned}
$$

in two different ways:

1. using generating functions and the Rational Expansion Theorem;

2 . by the repertoire method.
Solution. Let us start with point 1. If we use the convention that $g_{n}=0$ for $n<0$, the recurrence will have the form:

$$
g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n} \cdot[n \geqslant 0]+\text { correction terms } \forall n \in \mathbb{Z} .
$$

For $n=0$ we have $1=(-1)^{0}$, so we need no correction term. For $n=1$ we have $g_{1}=1$ but $g_{0}=1$ and $(-1)^{1}=-1$, so we need a correction term +1 . Then:

$$
g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n} \cdot[n \geqslant 0]+[n=1] \quad \forall n \in \mathbb{Z},
$$

and the generating function $G(z)$ satisfies the equation:

$$
G(z)=z G(z)+z^{2} G(z)+\frac{1}{1+z}+z,
$$

which yields:

$$
\begin{aligned}
G(z) & =\frac{1}{1-z-2 z^{2}} \cdot\left(\frac{1}{1+z}+z\right) \\
& =\frac{1}{(1+z)(1-2 z)} \cdot\left(\frac{1+z+z^{2}}{1+z}\right) \\
& =\frac{1+z+z^{2}}{(1-2 z)(1+z)^{2}}
\end{aligned}
$$

The Rational Expansion Theorem then tells that it must be:

$$
g_{n}=a \cdot 2^{n}+(b+c n) \cdot(-1)^{n}
$$

and that, as the denominator $Q(z)=1-3 z^{2}-2 z^{3}$ has $Q^{\prime}(z)=-6 z-6 z^{2}=$ $-6 z(1+z)$ and $Q^{\prime \prime}(z)=-6+12 z$, we can immediately compute:

$$
\begin{aligned}
a & =\frac{1+1 / 2+1 / 4}{0!(1+1 / 2)^{2}} \\
& =\frac{7 / 4}{9 / 4}=\frac{7}{9} \\
c & =\frac{1-1+(-1)^{2}}{1!(1-2 /(-1))}=\frac{1}{3} .
\end{aligned}
$$

To find b, we put $n=0$ and obtain:

$$
\frac{7}{9} \cdot 2^{0}+\left(\frac{1}{3} \cdot 0+b\right)=g_{0}=1
$$

whence $b=\frac{2}{9}$. In conclusion:

$$
g_{n}=\frac{7}{9} \cdot 2^{n}+\left(\frac{n}{3}+\frac{2}{9}\right) \cdot(-1)^{n} \text { for every } n \geqslant 0
$$

Now, to the repertoire method. The recurrence (7.32) is a special case of the general recurrence:

$$
\begin{aligned}
& g_{0}=\alpha, \\
& g_{1}=\beta \\
& g_{n}=g_{n-1}+2 g_{n-2}+(-1)^{n} \cdot \gamma \forall n \geqslant 2
\end{aligned}
$$

when $\alpha=\beta=\gamma=1$. Let us look for a solution of the form

$$
g_{n}=\alpha \cdot A(n)+\beta \cdot B(n)+\gamma \cdot C(n)
$$

for suitable functions $A(n), B(n)$, and $C(n)$.
First, we try to exploit the dependence on the double of the second previous step and set $g_{n}=2^{n}$: then the recurrence becomes

$$
\begin{aligned}
& 2^{0}=\alpha \\
& 2^{1}=\beta \\
& 2^{n}=2^{n-1}+2 \cdot 2^{n-2}+(-1)^{n} \cdot \gamma \forall n \geqslant 2
\end{aligned}
$$

which is satisfied for every $n \geqslant 0$ by choosing $\alpha=1, \beta=2, \gamma=0$.
Next, we try to exploit dependence on the sign of n and set $g_{n}=(-1)^{n}$: then the recurrence becomes

$$
\begin{aligned}
1 & =\alpha \\
-1 & =\beta \\
(-1)^{n} & =(-1)^{n-1}+2 \cdot(-1)^{n-2}+(-1)^{n} \cdot \gamma \quad \forall n \geqslant 2,
\end{aligned}
$$

which is satisfied for every $n \geqslant 0$ by choosing $\alpha=1, \beta=-1, \gamma=0$, as $(-1)^{n-1}+2 \cdot(-1)^{n-2}$ can be rewritten as $(-1)^{n-1} \cdot(1-2)$, which clearly equals $(-1)^{n}$.

Finally, we try to exploit the presence of the summand $(-1)^{n}$, and set $g_{n}=(-1)^{n} \cdot n$, which is the second simplest function to depend on $(-1)^{n}$; then the recurrence becomes

$$
\begin{aligned}
0 & =\alpha \\
-1 & =\beta \\
(-1)^{n} n & =(-1)^{n-1}(n-1)+2 \cdot(-1)^{n-2}(n-2)+(-1)^{n} \cdot \gamma \quad \forall n \geqslant 2,
\end{aligned}
$$

which is satisfied for every $n \geqslant 0$ by putting $\alpha=0, \beta=-1$, and $\gamma=3$ as the recurrence equation can be rewritten as $n=(1-n)+2(n-2)+\gamma$ by dividing it by $(-1)^{n}$.

The three functions $A(n), B(n), C(n)$ are thus the solutions of the system:

$$
\begin{array}{rlcc}
A(n)+2 B(n) & & =2^{n} \\
A(n)-B(n) & & = & (-1)^{n} \\
& -B(n) & +3 C(n) & = \\
& (-1)^{n} \cdot n
\end{array}
$$

Adding twice the second equation to the first one yields

$$
A(n)=\frac{2^{n}+2 \cdot(-1)^{n}}{3}
$$

subtracting the second equation from the first one yields

$$
B(n)=\frac{2^{n}-(-1)^{n}}{3}
$$

replacing $B(n)$ in the third equation yields

$$
C(n)=\frac{2^{n}+(-1)^{n} \cdot(3 n-1)}{9}
$$

By setting $\alpha=\beta=\gamma=1$ we finally get the solution to the original recurrence:

$$
\begin{aligned}
g_{n}= & \frac{2^{n}+2 \cdot(-1)^{n}}{3} \\
& +\frac{2^{n}-(-1)^{n}}{3} \\
& +\frac{2^{n}+(-1)^{n} \cdot(3 n-1)}{9} \\
= & \frac{(3+3+1) \cdot 2^{n}+(6-3-1+3 n) \cdot(-1)^{n}}{9} \\
= & \frac{7}{9} \cdot 2^{n}+\left(\frac{n}{3}+\frac{2}{9}\right)(-1)^{n} .
\end{aligned}
$$

As a final consideration, the repertoire method is great for finding solutions of families of linear recurrences, but for single linear recurrences the Rational Expansion Theorem applied to generating functions is much more straightforward.

