
Concrete Mathematics
Exercises from Week 13

Silvio Capobianco

Exercise 7.1

Consider a strip of n × 2 (n in horizontal, 2 in vertical) square units. To
tile such a strip we have a certain number of domino (1 × 2) tiles, red and
blue. Red tiles can only be laid horizontally, while blue tiles can only be laid
vertically.

1. Let tn be the number of ways in which an n × 2 strip can be tiled.
Prove that tn = fn+1 for every n > 0, where fn is the nth Fibonacci
number.

2. An eccentric collector of n × 2 domino tilings pays $4 for each blue
domino and $1 for each red domino. How many tilings are worth ex-
actly $m by this criterion? For example, when m = 6 there are three
solutions: one blue and two red, two red and a blue, and six red.

Solution. First, let’s compute the first values of tn:

• t0 = 1, because the only way to tile an empty 0 × 2 strip is by doing
nothing.

• t1 = 1, because the only way to tile a 1× 2 strip is to put a blue tile.

• t2 = 2, because the only ways to tile a 1 × 2 strip are with either two
blue tiles, or two red.

• t2 = 3, because the only ways to tile a 1× 2 strip are with either three
blue tiles, or one blue and two red, or two red and one blue.
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This finite sequence 〈1, 1, 2, 3〉 is the same as that of the first four Fibonacci
numbers with positive integers, so the thesis of point 1 doesn’t peregrine. If
we manage to prove that tn = tn−1 + tn−2 for every n > 2, then the thesis
will be proved because of the uniqueness of the solution of a linear recurrence
with given initial condition. But for n > 2 we have two mutually exclusive
ways of constructing an n× 2 tiling:

1. either by taking an (n−1)×2 tiling and putting a blue tile at the end,

2. or by taking an (n− 2)× 2 tiling and putting two red tiles at the end.

We have thus shown that tn = tn−1 + tn−2 for every n > 2, which together
with t0 = 1 = f1 and t1 = 1 = f2 proves tn = fn+1 for every n > 0.

Now, let un be the number of tilings which are paid n dollars and let
U(z) be the generating function of the sequence 〈un〉. As any tiling must
have evenly many red tiles, and the only tiling which is not paid is the empty
one,it is um = 0 for every m odd, and we expect U(z) = T (z2) for some
function T (z), and U(0) = um = 0.

So let’s simplify the counting and put vn = u2n. The first values are
v0 = 1, because we can only make 0 dollars by not doing anything, and
v1 = 1, because we can only make 2 dollars with a 2× 2 tiling made of two
horizontal tiles. For n > 2 the only ways to make 2n dollars is to either take
a tiling worth 2n− 2 dollars and add two red tiles at the end, or take a tiling
worth 2n− 4 dollars and add one red tile at the end: that is,

vn = vn−1 + vn−2 ∀n > 2

But this is again the Fibonacci recurrence with initial condition t0 = 1 = f1
and t1 = 1 = f2: which has the solution vn = fn+1. Then:

un =

{
fm+1 if n = 2m,
0 if n = 2m+ 1

= fbn/2c+1 · [n is even] ,

because if b is a bit and n = 2m+ b, then m = bm/2c.
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Exercise 7.6

Solve the recurrence (7.32):

g0 = 1 ,

g1 = 1 ,

gn = gn−1 + 2gn−2 + (−1)n ∀n > 2 .

in two different ways:

1. using generating functions and the Rational Expansion Theorem;

2. by the repertoire method.

Solution. Let us start with point 1. If we use the convention that gn = 0
for n < 0, the recurrence will have the form:

gn = gn−1 + 2gn−2 + (−1)n · [n > 0] + correction terms ∀n ∈ Z .

For n = 0 we have 1 = (−1)0, so we need no correction term. For n = 1 we
have g1 = 1 but g0 = 1 and (−1)1 = −1, so we need a correction term +1.
Then:

gn = gn−1 + 2gn−2 + (−1)n · [n > 0] + [n = 1] ∀n ∈ Z ,

and the generating function G(z) satisfies the equation:

G(z) = zG(z) + z2G(z) +
1

1 + z
+ z ,

which yields:

G(z) =
1

1− z − 2z2
·
(

1

1 + z
+ z

)
=

1

(1 + z)(1− 2z)
·
(

1 + z + z2

1 + z

)
=

1 + z + z2

(1− 2z)(1 + z)2

The Rational Expansion Theorem then tells that it must be:

gn = a · 2n + (b+ cn) · (−1)n
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and that, as the denominator Q(z) = 1− 3z2− 2z3 has Q′(z) = −6z− 6z2 =
−6z(1 + z) and Q′′(z) = −6 + 12z, we can immediately compute:

a =
1 + 1/2 + 1/4

0!(1 + 1/2)2

=
7/4

9/4
=

7

9
,

c =
1− 1 + (−1)2

1!(1− 2/(−1))
=

1

3
.

To find b, we put n = 0 and obtain:

7

9
· 20 +

(
1

3
· 0 + b

)
= g0 = 1 ,

whence b =
2

9
. In conclusion:

gn =
7

9
· 2n +

(
n

3
+

2

9

)
· (−1)n for every n > 0 .

Now, to the repertoire method. The recurrence (7.32) is a special case of the
general recurrence:

g0 = α ,

g1 = β ,

gn = gn−1 + 2gn−2 + (−1)n · γ ∀n > 2

when α = β = γ = 1. Let us look for a solution of the form

gn = α · A(n) + β ·B(n) + γ · C(n)

for suitable functions A(n), B(n), and C(n).
First, we try to exploit the dependence on the double of the second pre-

vious step and set gn = 2n: then the recurrence becomes

20 = α ,

21 = β ,

2n = 2n−1 + 2 · 2n−2 + (−1)n · γ ∀n > 2 ,
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which is satisfied for every n > 0 by choosing α = 1, β = 2, γ = 0.
Next, we try to exploit dependence on the sign of n and set gn = (−1)n:

then the recurrence becomes

1 = α ,

−1 = β ,

(−1)n = (−1)n−1 + 2 · (−1)n−2 + (−1)n · γ ∀n > 2 ,

which is satisfied for every n > 0 by choosing α = 1, β = −1, γ = 0, as
(−1)n−1 + 2 · (−1)n−2 can be rewritten as (−1)n−1 · (1 − 2), which clearly
equals (−1)n.

Finally, we try to exploit the presence of the summand (−1)n, and set
gn = (−1)n · n, which is the second simplest function to depend on (−1)n;
then the recurrence becomes

0 = α ,

−1 = β ,

(−1)nn = (−1)n−1(n− 1) + 2 · (−1)n−2(n− 2) + (−1)n · γ ∀n > 2 ,

which is satisfied for every n > 0 by putting α = 0, β = −1, and γ = 3 as
the recurrence equation can be rewritten as n = (1 − n) + 2(n − 2) + γ by
dividing it by (−1)n.

The three functions A(n), B(n), C(n) are thus the solutions of the system:

A(n) +2B(n) = 2n

A(n) −B(n) = (−1)n

−B(n) +3C(n) = (−1)n · n

Adding twice the second equation to the first one yields

A(n) =
2n + 2 · (−1)n

3
;

subtracting the second equation from the first one yields

B(n) =
2n − (−1)n

3
;

replacing B(n) in the third equation yields

C(n) =
2n + (−1)n · (3n− 1)

9
.
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By setting α = β = γ = 1 we finally get the solution to the original recur-
rence:

gn =
2n + 2 · (−1)n

3

+
2n − (−1)n

3

+
2n + (−1)n · (3n− 1)

9

=
(3 + 3 + 1) · 2n + (6− 3− 1 + 3n) · (−1)n

9

=
7

9
· 2n +

(
n

3
+

2

9

)
(−1)n .

As a final consideration, the repertoire method is great for finding solutions
of families of linear recurrences, but for single linear recurrences the Rational
Expansion Theorem applied to generating functions is much more straight-
forward.
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