
ITT9132 Concrete Mathematics
Exercises from Week 14

Silvio Capobianco

Exercise RET2

Solve the recurrence

gn = 6gn−1 − 9gn−2 ∀n > 2 (1)

with the initial conditions g0 = 1, g1 = 9.

Solution. Let G(z) be the generating function of the sequence 〈gn〉, with the
convention that gn = 0 if n < 0. The recurrence gnz

n = 6gn−1z
n − 9gn−2z

n

holds for every n < 0 and n > 2; for n = 0 we must have 1 = g0 =
6g−1 − 9gn−2 + 1; for n = 1 we must have 9 = g1 = 6g0 − 9g−1 + 3. Then,∑

n

gnz
n = 6

∑
n

gn−1z
n − 9

∑
n

gn−2z
n +

∑
n

[n = 0] zn + 3
∑
n

[n = 1] zn ,

that is,
G(z) = 6zG(z)− 9z2G(z) + 1 + 3z :

which yields

G(z) =
1 + 3z

1− 6z + 9z2
=

1 + 3z

(1− 3z)2
.

In the notation of the Rational Expansion Theorem, we have P (z) = 1 + 3z,
Q(z) = (1− 3z)2, ρ1 = 3, d1 = 2. Therefore, Q′(z) = −6 + 18z, Q′′(z) = 18,
and gn = (a1n+ c1) · 3n, where

a1 =
(−3)2 · (1 + 3/3) · 2

18
= 2 .

For n = 0 we find 1 = g0 = (0 + c1) · 1, yielding c1 = 1. Therefore,

gn = (2n+ 1) · 3n .
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Exercise RET3

Solve the recurrence

gn = 3gn−1 − 4gn−3 ∀n > 3 (2)

with the initial conditions g0 = 0, g1 = 1, g2 = 3.

Solution. Observe that (2) is a recurrence of the third order, since gn de-
pends on gn−1 and gn−3: therefore, we need three initial conditions.

Let G(z) be the generating function of the sequence 〈gn〉, with the con-
vention that gn = 0 if n < 0. The recurrence gn = 3gn−1 − 4gn−3 holds for
every n < 0 and n > 3; for n = 0 we have 0 = g0 = 3g−1−4g−3; for n = 1 we
have 1 = g1 = 3g0 − 4g−2 + 1; for n = 2 we have 3 = g2 = 3g1 − 4g−1. Then,∑

n

gnz
n = 3

∑
n

gn−1z
n − 4

∑
n

gn−3z
n +

∑
n

[n = 1] zn ,

that is,
G(z) = 3zG(z)− 4z3G(z) + z :

which yields

G(z) =
z

1− 3z + 4z3
.

We observe that Q(1/2) = Q(−1) = 0: and in fact, if we divide Q(z) by
1 + z, we get 1− 4z + 4z2 = (1− 2z)2. Therefore,

G(z) =
z

(1 + z)(1− 2z)2
.

In the notation of the Rational Expansion Theorem, we have ρ1 = −1, d1 = 1,
ρ2 = 2, d2 = 2; also, P (z) = z and

Q(z) = 1− 3z + 4z3 ,

from which Q′(z) = −3 + 12z2 and Q′′(z) = 24z. Then gn = a1 · (−1)n +
(a2n+ c2) · 2n for suitable a1, a2, c2, where

a1 =
11 · (−1)

−3 + 12
= −1

9

and

a2 =
(−2)2 · (1/2) · 2

24 · 1/2
=

1

3
.

For n = 0 we find 0 = − (−1)0
9

+ (0 + c2) · 1, yielding c2 = 1/9. Therefore,

gn =
(−1)n+1

9
+

(
n

3
+

1

9

)
2n =

(−1)n+1

9
+

3n+ 1

9
· 2n .
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Exercise 7.7

Solve the recurrence:

g0 = 1

gn = gn−1 + 2gn−2 + . . .+ ng0

Solution. LetG(z) be the generating function of the sequence 〈g0, g1, g2, . . .〉.
The recurrence above tells us that G(z) is the convolution of itself with the
generating function of the sequence 〈0, 1, 2, . . .〉, which is z/(1− z)2: except
for the first term, which is 1 instead of 0 = 0 · g0. Hence,

G(z) = 1 +
zG(z)

(1− z)2

which rewrites as

(1− z)2G(z) = (1− z)2 + zG(z)

which yields
(1− 3z + z2)G(z) = (1− z)2

that is,

G(z) =
1− 2z + z2

1− 3z + z2
= 1 +

z

1− 3z + z2

The first summand on the right-hand side is clearly the generating function
of 〈[n = 0]〉; the second one is the generating function of 〈f2n〉, where fn is
the nth Fibonacci number. Therefore, gn = f2n + [n = 0].

Bonus

Prove that ∑
k>0

f2kz
k =

z

1− 3z + z2
(3)

Solution. We know that ∑
k>0

fkz
k =

z

1− z − z2
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Now, ifG(z) =
∑

n>0 anz
n, thenG(−z) =

∑
n>0 an(−z)n =

∑
n>0((−1)nan)zn.

Consequently,

G(z) +G(−z)

2
=

∑
n>0

1 + (−1)n

2
anz

n

=
∑
n>0

[n is even] anz
n

=
∑
n>0

a2nz
2n

Thus, ∑
k>0

f2kz
2k =

1

2

(
z

1− z − z2
+

−z
1 + z − z2

)
=

z2

1− 3z2 + z4

By replacing z2 with z we retrieve (3).

Exercise 7.11

Let an = bn = cn = 0 for n < 0, and

A(z) =
∑
n

anz
n ; B(z) =

∑
n

bnz
n ; C(z) =

∑
n

cnz
n

1. Express C(z) in terms of A(z) and B(z) when cn =
∑

j+2k6n ajbk.

2. Express A(z) in terms of B(z) when nbn =
∑n

k=0 2kak/(n− k)!

Solution. Point 1. We know that, if an = [zn]G(z), then
∑

k6n ak =

[zn]
G(z)

1− z
. Then we can solve point 1 as soon as we find G(z) such that

[zn]G(z) =
∑

j+2k=n ajbk. But the latter is the coefficient of index n of the
convolution of A with a power series whose odd-indexed coefficients are 0,
and whose coefficient of index 2k is bk: such function is precisely B(z2).
Therefore,

C(z) =
A(z)B(z2)

1− z
Point 2. We know that nbn = [zn−1]B′(z) = [zn]zB′(z). Moreover, nbn
must be the coefficient of index n of the convolution of A(2z) (because of
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the 2k factor) with a power series whose coefficient of index n is 1/n!: such
function is ez. This means

zB′(z) = ezA(2z)

and consequently

A(z) =
z

2
e−z/2B′

(z
2

)
.

Exercise 7.12

How many ways are there to put the numbers {1, 2, . . . , 2n} into a 2 × n
array so that rows and columns are in increasing order from left to right and
from top to bottom? For example, one solution when n = 5 is(

1 2 4 5 8
3 6 7 9 10

)
.

Solution. We construct a bijection from the set of 2 × n arrays satisfying
our constraints to the set of mountain chains of length 2n in the following
way: for each i from 1 to 2n, the segment i goes up if i is on the first row,
and down if i is on the second row. (This satisfies the basic sanity check that
the upper left corner of the array can only be 1, and the lower right one can
only be 2n.)

That the function is well defined, follows precisely from the fact that the
two rows and each column are in increasing order: indeed, this translates
into the jth downslope coming no sooner than j upslopes, and there being
as many upslopes as downslopes. That the function is bijective, follows from
it having an immediate inverse, constructed by writing in sequence each
i ∈ {1, . . . , 2n} in the upper row if the ith slope goes up, and in the lower
row if it goes down: this immediately ensures the rows to be sorted low to
high, while sorting the columns corresponds to the fact that in a mountain
chain the difference between upslopes and downslopes until each point is
nonnegative.

The number of ways to put the numbers {1, 2, . . . , 2n} into a 2× n array
so that rows and columns are in increasing order from left to right and from
top to bottom, is thus the same as the number of mountain chains of length
2n: which is notoriously the nth Catalan number Cn =

(
2n
n

)
1

n+1
.
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Exercise 7.35

Evaluate the sum
∑

0<k<n 1/k(n− k) in two ways:

1. Expand the summand in partial fractions.

2. Treat the sum as a convolution and use generating functions.

Solution. Expanding 1/k(n−k) in partial fractions means finding constants
A and B such that

1

k(n− k)
=
A

k
+

B

n− k
:

from
1

k
+

1

n− k
=

n

k(n− k)
we easily get A = B =

1

n
. Then:

∑
0<k<n

1

k(n− k)
=

1

n

∑
0<k<n

(
1

k
+

1

n− k

)
=

2

n
Hn−1 .

We can also observe that gn =
∑

0<k<n

1

k(n− k)
is the term of index n of the

convolution of the sequence of generic term hn = 1
n

[n > 0] with itself. Let
G(z) and H(z) be the generating functions of the sequences 〈gn〉 and 〈hn〉,
respectively: we know that H(z) = log 1

1−z , so

G(z) = H(z)2 =

(
log

1

1− z

)2

. (4)

This looks hard to manage until we remember that, if G(z) =
∑

n gnz
n, then

zG′(z) =
∑

n ngnz
n. Said, done:

zG′(z) = z
d

dz

(
log

1

1− z

)2

= z ·
(

2 log
1

1− z

)
· 1

1
1−z
· 1

(1− z)2

= 2z ·
(

1

1− z
log

1

1− z

)
.

The function in parentheses on the last line is the generating function of the
harmonic numbers. (More in general, if G(z) is the generating function of
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〈gn〉, then G(z)/(1 − z) is the generating function of
〈∑

06k6n gk
〉
. Recall

our convention that undefined · [False] = 0.) By pre-multiplying by z, Hn

becomes the coefficient of zn+1 instead of zn. Equating the power series,∑
n

ngnz
n = 2

∑
n

Hnz
n+1 = 2

∑
n

Hn−1z
n :

then ngn = 2Hn−1 for every n, which is equivalent to what we had found
before.

Lesson learned: if you need to kill a fly, don’t use a cannon!
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