Concrete Mathematics Exercises from Week 15

Silvio Capobianco

Exercise 9.1

Prove or disprove: if $f_1(n) \prec g_1(n)$ and $f_2(n) \prec g_2(n)$, then $f_1(n) + f_2(n) \prec g_1(n) + g_2(n)$.

Solution. The thesis holds if all the functions above are positive. But if it is not so, then it might be that $f_2(n)$ and $g_2(n)$ remove the components of $f_1(n)$ and $g_1(n)$ which made $f_1(n) \prec g_1(n)!$ As an immediate example, take $f_1(n) = n^2 + n$, $f_2(n) = -n^2$, $g_1(n) = n^3 + n$, and $g_2(n) = -n^3$.

Exercise 9.2

Which function grows faster:

- 1. $n^{\ln n}$ or $(\ln n)^n$?
- 2. $n^{\ln \ln \ln n}$ or $(\ln n)!?$
- 3. (n!)! or $((n-1)!)!(n-1)!^{n!}?$
- 4. $F_{\lceil H_n \rceil}^2$ or H_{F_n} ?

Solution. Recall that, if $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = +\infty$, then $f(n) \prec g(n)$ if and only if $\lim_{n\to\infty} (\ln f(n) - \ln g(n)) = -\infty$. As a corollary, if f(n) and g(n) are both positive and $\ln f(n) \prec \ln g(n)$, then $f(n) \prec g(n)$. The vice versa is not true: $\lim_{n\to\infty} \frac{n!}{n^n} = 0$ but $\lim_{n\to\infty} \frac{\ln n!}{n \ln n} = 1$ by Stirling's approximation.

1. We have $\ln(n^{\ln n}) = (\ln n)^2$ and $\ln((\ln n)^n) = n \ln \ln n$: as $(\ln n)^2 \prec n \ln \ln n$, it is $n^{\ln n} \prec (\ln n)^n$.

- 2. If we switch to natural logarithms, then on the one hand, $\ln n^{\ln \ln \ln n} = \ln n \ln \ln \ln \ln n$, and on the other hand, $\ln(\ln n)!) \approx \ln n \ln \ln n$: as clearly $\lim_{n\to\infty} \ln n \ln \ln \ln \ln n \ln n \ln \ln \ln n = -\infty$, switching back to exponentials yields $n^{\ln \ln \ln n} \prec (\ln n)!$.
- 3. If we switch to logarithms and use Stirling's approximation, on the one hand,

$$\ln((n!)!) \asymp n! \ln n! \asymp n! \cdot n \ln n \, ,$$

and on the other hand,

$$\begin{aligned} \ln(((n-1)!)!(n-1)!^{n!}) &= (n-1)!\ln(n-1)! - (n-1)! \\ &+ n!\ln(n-1)! \\ &+ O(1/(n-1)!) \\ &= (n-1)!\left((n-1)\ln(n-1) - (n-1) + O(1/n)\right) \\ &+ n!\left((n-1)\ln(n-1) - (n-1) + O(1/n)\right) \\ &+ O(1/(n-1)!) \\ &\asymp (n-1)! \cdot (n-1)\ln(n-1) .\end{aligned}$$

Then,

$$\ln((n-1)!)!(n-1)!^{n!} - \ln(n!)!$$

$$\approx (n-1)! \cdot (n-1) \ln(n-1) - n! \cdot n \ln n$$

$$= (n-1)!((n-1)\ln(n-1) - n^2 \ln n)$$

$$\to -\infty \text{ for } n \to \infty,$$

whence $((n-1)!)!(n-1)!^{n!} \prec (n!)!$.

4. We know that $F_n \simeq \phi^n$ and $H_n \simeq \ln n$. Then, on the one hand,

$$F_{\lceil H_n\rceil}^2 \asymp \phi^{2\ln n} = e^{2\ln n \ln \phi} = n^{2\ln \phi};$$

and on the other hand,

$$H_{F_n} \simeq \ln \phi^n = n \ln \phi \simeq n$$
.

But $\phi^2 = \phi + 1 = 2.618 \dots < 2.718 \dots = e$: therefore, $2 \ln \phi < 1$, and $F^2_{\lceil H_n \rceil} \prec H_{F_n}$.

Exercise 9.3

What's wrong with the following argument? "Since n = O(n) and 2n = O(n)and so on, we have $\sum_{k=1}^{n} kn = \sum_{k=1}^{n} O(n) = O(n^2)$."

Solution. The conclusion is false, because:

$$\sum_{k=1}^{n} kn = n \cdot \sum_{k=1}^{n} k = n \cdot \frac{n(n+1)}{2} = O(n^3),$$

so something must have gone wrong. What happened is that the functions kn are O(n) as functions of n: not as functions of k. In addition, the multiplicative constants hidden in the O-notation are different as k varies. The kn are actually functions of two variables, k and n: not of the single variable n. However, as the sum is from k from 1 to n, it is k = O(n), so the correct argument is:

$$\sum_{k=1}^{n} kn = \sum_{k=1}^{n} O(n) \cdot n = \sum_{k=1}^{n} O(n^2) = O(n^3).$$

Exercise 9.7

Estimate $\sum_{k \ge 0} e^{-k/n}$ with absolute error $O(n^{-1})$.

Solution. Since for $n \ge 1$ it is $e^{-k/n} = (e^{-1/n})^k$ and $e^{-1/n} < 1$, we have:

$$\sum_{k \ge 0} e^{-k/n} = \frac{1}{1 - e^{-1/n}}$$
$$= n \cdot \frac{-1/n}{e^{-1/n} - 1}$$
$$= n \cdot \sum_{k \ge 0} \frac{B_k}{k!} \left(-\frac{1}{n}\right)^k$$
$$= n \cdot \left(B_0 - \frac{B_1}{n} + O\left(\frac{1}{n^2}\right)\right)$$
$$= n + \frac{1}{2} + O\left(\frac{1}{n}\right).$$

Exercise 9.8

Give an example of functions f(n) and g(n) such that none of the three relations $f(n) \prec g(n), g(n) \prec f(n), f(n) \approx g(n)$ is valid, although f(n) and g(n) both increase monotonically to ∞ .

Solution. The idea is to find f(n) and g(n) such that $\liminf_{n\to\infty} \frac{f(n)}{g(n)} = 0$ and $\limsup_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$. Let's try:

$$f(n) = (\lfloor n/2 \rfloor!)^2 + n,$$

$$g(n) = (\lceil n/2 \rceil - 1)! \lceil n/2 \rceil! + n$$

Note how the summand n makes the functions strictly increasing. If n = 2m is even, then:

$$\frac{f(n)}{g(n)} = \frac{(m!)^2 + 2m}{(m-1)!m! + 2m} = m \cdot \Theta(1),$$

so $f(n) \not\prec g(n)$; if n = 2m + 1 is odd, then:

$$\frac{f(n)}{g(n)} = \frac{(m!)^2 + 2m + 1}{m!(m+1)! + 2m + 1} = \frac{1}{m+1} \cdot \Theta(1) \,,$$

so $g(n) \not\prec f(n)$ either. Since both functions are ultimately positive and the ratio $\frac{f(n)}{g(n)} = \frac{|f(n)|}{|g(n)|}$ becomes both arbitrarily small and arbitrarily large, it cannot be $f(n) \simeq g(n)$ either.

Exercise 9.11

Prove or disprove: $O(x+y)^2 = O(x^2) + O(y^2)$.

Solution. This time, we have a complication in that the big-O notation depends on two variables, not one. However, it must be either $|x| \leq |y|$ or $|y| \leq |x|$, and since the roles of x and y are symmetric, we can consider only one of the two cases.

So suppose $|x| \leq |y|$. Then $|x+y|^2 \leq 4|y|^2$, so surely $(x+y)^2 = O(y^2) = O(x^2) + O(y^2)$. (Recall that we use O(f(x)) = O(g(x)) as a shortcut for

 $O(f(x)) \subseteq O(g(x))$.) Then:

$$O(x+y)^2 = O((x+y)^2)$$

= $O((O(x^2) + O(y^2))$
= $O(O(x^2)) + O(O(y^2))$
= $O(x^2) + O(y^2)$.

Exercise 9.12

Prove that

$$1 + \frac{2}{n} + O(n^{-2}) = \left(1 + \frac{2}{n}\right) \left(1 + O(n^{-2})\right),$$

as $n \to \infty$.

Solution. The deduction is not immediate: if we isolate a factor $1 + \frac{2}{n}$, all we can conclude is that

$$1 + \frac{2}{n} + O(n^{-2}) = \left(1 + \frac{2}{n}\right) \cdot \left(1 + \frac{1}{1 + \frac{2}{n}} \cdot O(n^{-2})\right)$$

However, for $n \ge 1$ it is $1 + \frac{2}{n} > 1$, so clearly $(1 + 2/n)^{-1} = O(1)$: we can then conclude

$$1 + \frac{2}{n} + O(n^{-2}) = \left(1 + \frac{2}{n}\right) \cdot \left(1 + O(1) \cdot O(n^{-2})\right)$$
$$= \left(1 + \frac{2}{n}\right) \cdot \left(1 + O(1 \cdot n^{-2})\right)$$
$$= \left(1 + \frac{2}{n}\right) \cdot \left(1 + O(n^{-2})\right).$$

Exercise 9.13

Evaluate $(n + 2 + O(1/n))^n$ with a relative error O(1/n).

Solution. This time, we are looking for a *relative* error, that is, some expression h(n) such that $(n + 2 + O(1/n))^n = h(n) \cdot (1 + O(1/n))$. The first idea is to take out a factor n^n :

$$(n+2+O(1/n))^n = n^n \cdot (1+2/n+O(1/n^2))^n$$
.

Does this help? A bit, because $1 + 2/n + O(1/n^2)$ is an approximation for $e^{2/n+O(1/n^2)}$, so we can substitute:

$$n^{n} \cdot (1 + 2/n + O(1/n^{2}))^{n} = n^{n} \cdot e^{(2/n + O(1/n^{2})) \cdot n}$$

= $n^{n} \cdot e^{2 + O(1/n)}$
= $n^{n} \cdot (e^{2} + O(1/n))$
= $e^{2}n^{n}(1 + O(1/n))$

because clearly $e^2 \cdot O(1/n) = O(1/n)$. Alternatively: $n^n \cdot (1+2/n+O(1/n^2))^n = e^2 n^n + O(n^{n-1})$.

Exercise 9.14

Show that $(n+\alpha)^{n+\beta} = n^{n+\beta}e^{\alpha}\left(1 + \alpha\frac{\beta - \alpha/2}{n} + O\left(\frac{1}{n^2}\right)\right).$

Solution. As $(n + \alpha)^{n+\beta} = n^{n+\beta} \left(1 + \frac{\alpha}{n}\right)^{n+\beta}$, we only need to prove:

$$\left(1+\frac{\alpha}{n}\right)^{n+\beta} = e^{\alpha} \left(1+\alpha \frac{\beta-\alpha/2}{n} + O\left(\frac{1}{n^2}\right)\right) \,.$$

But

$$\left(1+\frac{\alpha}{n}\right)^{n+\beta} = e^{(n+\beta)\ln\left(1+\frac{\alpha}{n}\right)},$$

and we can work on the argument of the exponential:

$$(n+\beta)\ln\left(1+\frac{\alpha}{n}\right) = (n+\beta)\cdot\left(\frac{\alpha}{n}-\frac{\alpha^2}{2n^2}+O\left(\frac{1}{n^3}\right)\right)$$
$$= \alpha+\frac{1}{n}\cdot\left(\beta\alpha-\frac{\alpha^2}{2}\right)+O\left(\frac{1}{n^2}\right)$$
$$= \alpha+\alpha\frac{\beta-\alpha/2}{n}+O\left(\frac{1}{n^2}\right).$$

Then, as $e^{f(n)} = 1 + f(n) + O((f(n))^2)$ when f(n) = O(1):

$$e^{(n+\beta)\ln\left(1+\frac{\alpha}{n}\right)} = e^{\alpha} \cdot e^{\alpha \frac{\beta-\alpha/2}{n}+O\left(\frac{1}{n^2}\right)} \\ = e^{\alpha} \left(1+\alpha \frac{\beta-\alpha/2}{n}+O\left(\frac{1}{n^2}\right)\right),$$

which concludes our proof.