Concrete Mathematics Exercises from Week 15

Silvio Capobianco

Exercise 9.1

Prove or disprove: if $f_{1}(n) \prec g_{1}(n)$ and $f_{2}(n) \prec g_{2}(n)$, then $f_{1}(n)+f_{2}(n) \prec$ $g_{1}(n)+g_{2}(n)$.

Solution. The thesis holds if all the functions above are positive. But if it is not so, then it might be that $f_{2}(n)$ and $g_{2}(n)$ remove the components of $f_{1}(n)$ and $g_{1}(n)$ which made $f_{1}(n) \prec g_{1}(n)$! As an immediate example, take $f_{1}(n)=n^{2}+n, f_{2}(n)=-n^{2}, g_{1}(n)=n^{3}+n$, and $g_{2}(n)=-n^{3}$.

Exercise 9.2

Which function grows faster:

1. $n^{\ln n}$ or $(\ln n)^{n}$?
2. $n^{\ln \ln \ln n}$ or $(\ln n)!$?
3. $(n!)$! or $((n-1)!)!(n-1)!$!n!?
4. $F_{\left\lceil H_{n}\right\rceil}^{2}$ or $H_{F_{n}}$?

Solution. Recall that, if $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=+\infty$, then $f(n) \prec$ $g(n)$ if and only if $\lim _{n \rightarrow \infty}(\ln f(n)-\ln g(n))=-\infty$. As a corollary, if $f(n)$ and $g(n)$ are both positive and $\ln f(n) \prec \ln g(n)$, then $f(n) \prec g(n)$. The vice versa is not true: $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$ but $\lim _{n \rightarrow \infty} \frac{\ln n!}{n \ln n}=1$ by Stirling's approximation.

1. We have $\ln \left(n^{\ln n}\right)=(\ln n)^{2}$ and $\ln \left((\ln n)^{n}\right)=n \ln \ln n$: as $(\ln n)^{2} \prec$ $n \ln \ln n$, it is $n^{\ln n} \prec(\ln n)^{n}$.
2. If we switch to natural logarithms, then on the one hand, $\ln n^{\ln \ln \ln n}=$ $\ln n \ln \ln \ln n$, and on the other hand, $\ln (\ln n)!) \asymp \ln n \ln \ln n$: as clearly $\lim _{n \rightarrow \infty} \ln n \ln \ln \ln n-\ln n \ln \ln n=-\infty$, switching back to exponentials yields $n^{\ln \ln \ln n} \prec(\ln n)$!.
3. If we switch to logarithms and use Stirling's approximation, on the one hand,

$$
\ln ((n!)!) \asymp n!\ln n!\asymp n!\cdot n \ln n
$$

and on the other hand,

$$
\begin{aligned}
\ln \left(((n-1)!)!(n-1)!^{n!}\right)= & (n-1)!\ln (n-1)!-(n-1)! \\
& +n!\ln (n-1)! \\
& +O(1 /(n-1)!) \\
= & (n-1)!((n-1) \ln (n-1)-(n-1)+O(1 / n)) \\
& +n!((n-1) \ln (n-1)-(n-1)+O(1 / n)) \\
& +O(1 /(n-1)!) \\
\asymp & (n-1)!\cdot(n-1) \ln (n-1) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \ln ((n-1)!)!(n-1)!^{n!}-\ln (n!)! \\
\asymp & (n-1)!\cdot(n-1) \ln (n-1)-n!\cdot n \ln n \\
= & (n-1)!\left((n-1) \ln (n-1)-n^{2} \ln n\right) \\
\rightarrow & -\infty \text { for } n \rightarrow \infty,
\end{aligned}
$$

whence $((n-1)!)!(n-1)!^{n!} \prec(n!)!$.
4. We know that $F_{n} \asymp \phi^{n}$ and $H_{n} \asymp \ln n$. Then, on the one hand,

$$
F_{\left\lceil H_{n}\right\rceil}^{2} \asymp \phi^{2 \ln n}=e^{2 \ln n \ln \phi}=n^{2 \ln \phi} ;
$$

and on the other hand,

$$
H_{F_{n}} \asymp \ln \phi^{n}=n \ln \phi \asymp n .
$$

But $\phi^{2}=\phi+1=2.618 \ldots<2.718 \ldots=e$: therefore, $2 \ln \phi<1$, and $F_{\left\lceil H_{n}\right\rceil}^{2} \prec H_{F_{n}}$.

Exercise 9.3

What's wrong with the following argument? "Since $n=O(n)$ and $2 n=O(n)$ and so on, we have $\sum_{k=1}^{n} k n=\sum_{k=1}^{n} O(n)=O\left(n^{2}\right)$."

Solution. The conclusion is false, because:

$$
\sum_{k=1}^{n} k n=n \cdot \sum_{k=1}^{n} k=n \cdot \frac{n(n+1)}{2}=O\left(n^{3}\right),
$$

so something must have gone wrong. What happened is that the functions $k n$ are $O(n)$ as functions of n : not as functions of k. In addition, the multiplicative constants hidden in the O-notation are different as k varies. The $k n$ are actually functions of two variables, k and n : not of the single variable n. However, as the sum is from k from 1 to n, it is $k=O(n)$, so the correct argument is:

$$
\sum_{k=1}^{n} k n=\sum_{k=1}^{n} O(n) \cdot n=\sum_{k=1}^{n} O\left(n^{2}\right)=O\left(n^{3}\right) .
$$

Exercise 9.7

Estimate $\sum_{k \geqslant 0} e^{-k / n}$ with absolute error $O\left(n^{-1}\right)$.
Solution. Since for $n \geqslant 1$ it is $e^{-k / n}=\left(e^{-1 / n}\right)^{k}$ and $e^{-1 / n}<1$, we have:

$$
\begin{aligned}
\sum_{k \geqslant 0} e^{-k / n} & =\frac{1}{1-e^{-1 / n}} \\
& =n \cdot \frac{-1 / n}{e^{-1 / n}-1} \\
& =n \cdot \sum_{k \geqslant 0} \frac{B_{k}}{k!}\left(-\frac{1}{n}\right)^{k} \\
& =n \cdot\left(B_{0}-\frac{B_{1}}{n}+O\left(\frac{1}{n^{2}}\right)\right) \\
& =n+\frac{1}{2}+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

Exercise 9.8

Give an example of functions $f(n)$ and $g(n)$ such that none of the three relations $f(n) \prec g(n), g(n) \prec f(n), f(n) \asymp g(n)$ is valid, although $f(n)$ and $g(n)$ both increase monotonically to ∞.

Solution. The idea is to find $f(n)$ and $g(n)$ such that $\liminf _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ and $\lim \sup _{n \rightarrow \infty} \frac{f(n)}{g(n)}=+\infty$. Let's try:

$$
\begin{aligned}
f(n) & =(\lfloor n / 2\rfloor!)^{2}+n \\
g(n) & =(\lceil n / 2\rceil-1)!\lceil n / 2\rceil!+n .
\end{aligned}
$$

Note how the summand n makes the functions strictly increasing. If $n=2 m$ is even, then:

$$
\frac{f(n)}{g(n)}=\frac{(m!)^{2}+2 m}{(m-1)!m!+2 m}=m \cdot \Theta(1)
$$

so $f(n) \nprec g(n)$; if $n=2 m+1$ is odd, then:

$$
\frac{f(n)}{g(n)}=\frac{(m!)^{2}+2 m+1}{m!(m+1)!+2 m+1}=\frac{1}{m+1} \cdot \Theta(1)
$$

so $g(n) \nprec f(n)$ either. Since both functions are ultimately positive and the ratio $\frac{f(n)}{g(n)}=\frac{|f(n)|}{|g(n)|}$ becomes both arbitrarily small and arbitrarily large, it cannot be $f(n) \asymp g(n)$ either.

Exercise 9.11

Prove or disprove: $O(x+y)^{2}=O\left(x^{2}\right)+O\left(y^{2}\right)$.
Solution. This time, we have a complication in that the big-O notation depends on two variables, not one. However, it must be either $|x| \leqslant|y|$ or $|y| \leqslant|x|$, and since the roles of x and y are symmetric, we can consider only one of the two cases.

So suppose $|x| \leqslant|y|$. Then $|x+y|^{2} \leqslant 4|y|^{2}$, so surely $(x+y)^{2}=O\left(y^{2}\right)=$ $O\left(x^{2}\right)+O\left(y^{2}\right)$. (Recall that we use $O(f(x))=O(g(x))$ as a shortcut for
$O(f(x)) \subseteq O(g(x))$.$) Then:$

$$
\begin{aligned}
O(x+y)^{2} & =O\left((x+y)^{2}\right) \\
& =O\left(\left(O\left(x^{2}\right)+O\left(y^{2}\right)\right)\right. \\
& =O\left(O\left(x^{2}\right)\right)+O\left(O\left(y^{2}\right)\right) \\
& =O\left(x^{2}\right)+O\left(y^{2}\right) .
\end{aligned}
$$

Exercise 9.12

Prove that

$$
1+\frac{2}{n}+O\left(n^{-2}\right)=\left(1+\frac{2}{n}\right)\left(1+O\left(n^{-2}\right)\right)
$$

as $n \rightarrow \infty$.
Solution. The deduction is not immediate: if we isolate a factor $1+\frac{2}{n}$, all we can conclude is that

$$
1+\frac{2}{n}+O\left(n^{-2}\right)=\left(1+\frac{2}{n}\right) \cdot\left(1+\frac{1}{1+\frac{2}{n}} \cdot O\left(n^{-2}\right)\right)
$$

However, for $n \geqslant 1$ it is $1+\frac{2}{n}>1$, so clearly $(1+2 / n)^{-1}=O(1)$: we can then conclude

$$
\begin{aligned}
1+\frac{2}{n}+O\left(n^{-2}\right) & =\left(1+\frac{2}{n}\right) \cdot\left(1+O(1) \cdot O\left(n^{-2}\right)\right) \\
& =\left(1+\frac{2}{n}\right) \cdot\left(1+O\left(1 \cdot n^{-2}\right)\right) \\
& =\left(1+\frac{2}{n}\right) \cdot\left(1+O\left(n^{-2}\right)\right)
\end{aligned}
$$

Exercise 9.13

Evaluate $(n+2+O(1 / n))^{n}$ with a relative error $O(1 / n)$.
Solution. This time, we are looking for a relative error, that is, some expression $h(n)$ such that $(n+2+O(1 / n))^{n}=h(n) \cdot(1+O(1 / n))$. The first idea is to take out a factor n^{n} :

$$
(n+2+O(1 / n))^{n}=n^{n} \cdot\left(1+2 / n+O\left(1 / n^{2}\right)\right)^{n} .
$$

Does this help? A bit, because $1+2 / n+O\left(1 / n^{2}\right)$ is an approximation for $e^{2 / n+O\left(1 / n^{2}\right)}$, so we can substitute:

$$
\begin{aligned}
n^{n} \cdot\left(1+2 / n+O\left(1 / n^{2}\right)\right)^{n} & =n^{n} \cdot e^{\left(2 / n+O\left(1 / n^{2}\right)\right) \cdot n} \\
& =n^{n} \cdot e^{2+O(1 / n)} \\
& =n^{n} \cdot\left(e^{2}+O(1 / n)\right) \\
& =e^{2} n^{n}(1+O(1 / n))
\end{aligned}
$$

because clearly $e^{2} \cdot O(1 / n)=O(1 / n)$. Alternatively: $n^{n} \cdot\left(1+2 / n+O\left(1 / n^{2}\right)\right)^{n}=$ $e^{2} n^{n}+O\left(n^{n-1}\right)$.

Exercise 9.14

Show that $(n+\alpha)^{n+\beta}=n^{n+\beta} e^{\alpha}\left(1+\alpha \frac{\beta-\alpha / 2}{n}+O\left(\frac{1}{n^{2}}\right)\right)$.
Solution. As $(n+\alpha)^{n+\beta}=n^{n+\beta}\left(1+\frac{\alpha}{n}\right)^{n+\beta}$, we only need to prove:

$$
\left(1+\frac{\alpha}{n}\right)^{n+\beta}=e^{\alpha}\left(1+\alpha \frac{\beta-\alpha / 2}{n}+O\left(\frac{1}{n^{2}}\right)\right) .
$$

But

$$
\left(1+\frac{\alpha}{n}\right)^{n+\beta}=e^{(n+\beta) \ln \left(1+\frac{\alpha}{n}\right)},
$$

and we can work on the argument of the exponential:

$$
\begin{aligned}
(n+\beta) \ln \left(1+\frac{\alpha}{n}\right) & =(n+\beta) \cdot\left(\frac{\alpha}{n}-\frac{\alpha^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right) \\
& =\alpha+\frac{1}{n} \cdot\left(\beta \alpha-\frac{\alpha^{2}}{2}\right)+O\left(\frac{1}{n^{2}}\right) \\
& =\alpha+\alpha \frac{\beta-\alpha / 2}{n}+O\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

Then, as $e^{f(n)}=1+f(n)+O\left((f(n))^{2}\right)$ when $f(n)=O(1)$:

$$
\begin{aligned}
e^{(n+\beta) \ln \left(1+\frac{\alpha}{n}\right)} & =e^{\alpha} \cdot e^{\alpha \frac{\beta-\alpha / 2}{n}+O\left(\frac{1}{n^{2}}\right)} \\
& =e^{\alpha}\left(1+\alpha \frac{\beta-\alpha / 2}{n}+O\left(\frac{1}{n^{2}}\right)\right)
\end{aligned}
$$

which concludes our proof.

