
Concrete Mathematics
Exercises from Week 15

Silvio Capobianco

Exercise 9.1

Prove or disprove: if f1(n) ≺ g1(n) and f2(n) ≺ g2(n), then f1(n) + f2(n) ≺
g1(n) + g2(n).

Solution. The thesis holds if all the functions above are positive. But if it
is not so, then it might be that f2(n) and g2(n) remove the components of
f1(n) and g1(n) which made f1(n) ≺ g1(n)! As an immediate example, take
f1(n) = n2 + n, f2(n) = −n2, g1(n) = n3 + n, and g2(n) = −n3.

Exercise 9.2

Which function grows faster:

1. nlnn or (lnn)n?

2. nln ln lnn or (lnn)!?

3. (n!)! or ((n− 1)!)!(n− 1)!n!?

4. F 2
dHne or HFn?

Solution. Recall that, if limn→∞ f(n) = limn→∞ g(n) = +∞, then f(n) ≺
g(n) if and only if limn→∞ (ln f(n)− ln g(n)) = −∞. As a corollary, if f(n)
and g(n) are both positive and ln f(n) ≺ ln g(n), then f(n) ≺ g(n). The

vice versa is not true: limn→∞
n!

nn
= 0 but limn→∞

lnn!

n lnn
= 1 by Stirling’s

approximation.

1. We have ln
(
nlnn

)
= (lnn)2 and ln ((lnn)n) = n ln lnn: as (lnn)2 ≺

n ln lnn, it is nlnn ≺ (lnn)n.
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2. If we switch to natural logarithms, then on the one hand, lnnln ln lnn =
lnn ln ln lnn, and on the other hand, ln(lnn)!) � lnn ln lnn: as clearly
limn→∞ lnn ln ln lnn − lnn ln lnn = −∞, switching back to exponen-
tials yields nln ln lnn ≺ (lnn)!.

3. If we switch to logarithms and use Stirling’s approximation, on the one
hand,

ln((n!)!) � n! lnn! � n! · n lnn ,

and on the other hand,

ln(((n− 1)!)!(n− 1)!n!) = (n− 1)! ln(n− 1)!− (n− 1)!

+n! ln(n− 1)!

+O(1/(n− 1)!)

= (n− 1)! ((n− 1) ln(n− 1)− (n− 1) +O(1/n))

+n! ((n− 1) ln(n− 1)− (n− 1) +O(1/n))

+O(1/(n− 1)!)

� (n− 1)! · (n− 1) ln(n− 1) .

Then,

ln((n− 1)!)!(n− 1)!n! − ln(n!)!

� (n− 1)! · (n− 1) ln(n− 1)− n! · n lnn

= (n− 1)!((n− 1) ln(n− 1)− n2 lnn)

→ −∞ for n→∞ ,

whence ((n− 1)!)!(n− 1)!n! ≺ (n!)!.

4. We know that Fn � φn and Hn � lnn. Then, on the one hand,

F 2
dHne � φ2 lnn = e2 lnn lnφ = n2 lnφ ;

and on the other hand,

HFn � lnφn = n lnφ � n .

But φ2 = φ + 1 = 2.618 . . . < 2.718 . . . = e: therefore, 2 lnφ < 1, and
F 2
dHne ≺ HFn .
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Exercise 9.3

What’s wrong with the following argument? “Since n = O(n) and 2n = O(n)
and so on, we have

∑n
k=1 kn =

∑n
k=1O(n) = O(n2).”

Solution. The conclusion is false, because:

n∑
k=1

kn = n ·
n∑
k=1

k = n · n(n+ 1)

2
= O(n3) ,

so something must have gone wrong. What happened is that the functions
kn are O(n) as functions of n: not as functions of k. In addition, the mul-
tiplicative constants hidden in the O-notation are different as k varies. The
kn are actually functions of two variables, k and n: not of the single variable
n. However, as the sum is from k from 1 to n, it is k = O(n), so the correct
argument is:

n∑
k=1

kn =
n∑
k=1

O(n) · n =
n∑
k=1

O(n2) = O(n3) .

Exercise 9.7

Estimate
∑

k>0 e
−k/n with absolute error O(n−1).

Solution. Since for n > 1 it is e−k/n =
(
e−1/n

)k
and e−1/n < 1, we have:∑

k>0

e−k/n =
1

1− e−1/n

= n · −1/n

e−1/n − 1

= n ·
∑
k>0

Bk

k!

(
− 1

n

)k
= n ·

(
B0 −

B1

n
+O

(
1

n2

))
= n+

1

2
+O

(
1

n

)
.
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Exercise 9.8

Give an example of functions f(n) and g(n) such that none of the three
relations f(n) ≺ g(n), g(n) ≺ f(n), f(n) � g(n) is valid, although f(n) and
g(n) both increase monotonically to ∞.

Solution. The idea is to find f(n) and g(n) such that lim infn→∞
f(n)

g(n)
= 0

and lim supn→∞
f(n)

g(n)
= +∞. Let’s try:

f(n) = (bn/2c!)2 + n ,

g(n) = (dn/2e − 1)! dn/2e! + n .

Note how the summand n makes the functions strictly increasing. If n = 2m
is even, then:

f(n)

g(n)
=

(m!)2 + 2m

(m− 1)!m! + 2m
= m ·Θ(1) ,

so f(n) 6≺ g(n); if n = 2m+ 1 is odd, then:

f(n)

g(n)
=

(m!)2 + 2m+ 1

m!(m+ 1)! + 2m+ 1
=

1

m+ 1
·Θ(1) ,

so g(n) 6≺ f(n) either. Since both functions are ultimately positive and the

ratio
f(n)

g(n)
=
|f(n)|
|g(n)|

becomes both arbitrarily small and arbitrarily large, it

cannot be f(n) � g(n) either.

Exercise 9.11

Prove or disprove: O(x+ y)2 = O(x2) +O(y2).

Solution. This time, we have a complication in that the big-O notation
depends on two variables, not one. However, it must be either |x| 6 |y| or
|y| 6 |x|, and since the roles of x and y are symmetric, we can consider only
one of the two cases.

So suppose |x| 6 |y|. Then |x+ y|2 6 4|y|2, so surely (x+ y)2 = O(y2) =
O(x2) + O(y2). (Recall that we use O(f(x)) = O(g(x)) as a shortcut for
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O(f(x)) ⊆ O(g(x)).) Then:

O(x+ y)2 = O((x+ y)2)

= O((O(x2) +O(y2))

= O(O(x2)) +O(O(y2))

= O(x2) +O(y2) .

Exercise 9.12

Prove that

1 +
2

n
+O(n−2) =

(
1 +

2

n

)
(1 +O(n−2)) ,

as n→∞.

Solution. The deduction is not immediate: if we isolate a factor 1 +
2

n
, all

we can conclude is that

1 +
2

n
+O(n−2) =

(
1 +

2

n

)
·
(

1 +
1

1 + 2
n

·O(n−2)

)

However, for n > 1 it is 1 +
2

n
> 1, so clearly (1 + 2/n)−1 = O(1): we can

then conclude

1 +
2

n
+O(n−2) =

(
1 +

2

n

)
·
(
1 +O(1) ·O(n−2)

)
=

(
1 +

2

n

)
·
(
1 +O(1 · n−2)

)
=

(
1 +

2

n

)
· (1 +O(n−2)) .

Exercise 9.13

Evaluate (n+ 2 +O(1/n))n with a relative error O(1/n).

Solution. This time, we are looking for a relative error, that is, some ex-
pression h(n) such that (n + 2 + O(1/n))n = h(n) · (1 + O(1/n)). The first
idea is to take out a factor nn:

(n+ 2 +O(1/n))n = nn · (1 + 2/n+O(1/n2))n .
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Does this help? A bit, because 1 + 2/n + O(1/n2) is an approximation for
e2/n+O(1/n2), so we can substitute:

nn · (1 + 2/n+O(1/n2))n = nn · e(2/n+O(1/n2))·n

= nn · e2+O(1/n)

= nn · (e2 +O(1/n))

= e2nn(1 +O(1/n))

because clearly e2·O(1/n) = O(1/n). Alternatively: nn·(1+2/n+O(1/n2))n =
e2nn +O(nn−1).

Exercise 9.14

Show that (n+ α)n+β = nn+βeα
(

1 + α
β − α/2

n
+O

(
1

n2

))
.

Solution. As (n+ α)n+β = nn+β
(

1 +
α

n

)n+β
, we only need to prove:(

1 +
α

n

)n+β
= eα

(
1 + α

β − α/2
n

+O

(
1

n2

))
.

But (
1 +

α

n

)n+β
= e(n+β) ln(1+

α
n) ,

and we can work on the argument of the exponential:

(n+ β) ln
(

1 +
α

n

)
= (n+ β) ·

(
α

n
− α2

2n2
+O

(
1

n3

))
= α +

1

n
·
(
βα− α2

2

)
+O

(
1

n2

)
= α + α

β − α/2
n

+O

(
1

n2

)
.

Then, as ef(n) = 1 + f(n) +O((f(n))2) when f(n) = O(1):

e(n+β) ln(1+
α
n) = eα · eα

β−α/2
n

+O( 1
n2

)

= eα
(

1 + α
β − α/2

n
+O

(
1

n2

))
,

which concludes our proof.
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