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Final exam of 3 January 2017

Exercise 1

(12 points) Solve the recurrence:

g0 = 0 ; g1 = 2 ;

gn =
5

2
gn−1 − gn−2 ∀n > 2 .

(1)

Solution. The recurrence (1) is easily solved with generating functions via
the Rational Expansion Theorem. Let us follow the method step by step:

1. We rewrite (1) so that it holds for every n ∈ Z, with the convention
that gn = 0 if n < 0. We have to check the cases n = 0 and n = 1:

• For n = 0 we have g0 = 0 and 5
2
g−1 − g−2 = 0. Thus, we need no

correction summand.

• For n = 1 we have g1 = 2 but 5
2
g0 − g−1 = 0. Thus, we need to

add a correction summand 2.

The equation (1) rewritten for arbitrary n ∈ Z becomes:

gn =
5

2
gn−1 − gn−2 + 2 [n = 1] ∀n ∈ Z . (2)
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2. Let G(z) =
∑

n gnz
n be the generating function of the sequence 〈gn〉.

By multiplying (2) by zn for every n ∈ Z and summing over n we
obtain:

G(z) =
∑
n

gnz
n

=
5

2

∑
n

gn−1zn −
∑
n

gn−2z
n + 2

∑
n

[n = 1] zn

=
5

2

∑
n

gnz
n+1 −

∑
n

gnz
n+2 + 2z

=
5

2
z G(z)− z2G(z) + 2z .

3. By solving the above with respect to G(z) we get

G(z) ·
(

1− 5

2
z + z2

)
= 2z ,

which yields

G(z) =
2z

1− 5
2
z + z2

. (3)

4. Equation (3) has the form G(z) = P (z)/Q(z) where P (z) = 2z and
Q(z) = 1 − 5

2
z + z2 = (1 − 2z)(1 − z/2). We can then apply the

Rational Expansion Theorem with ρ1 = 2, ρ2 = 1/2, and d1 = d2 = 1.
As Q′(z) = 2z − 5

2
, we find

a1 =
(−2) · (2 · 1/2)

2 · 1/2− 5/2
=
−2

−3/2
=

4

3

and

a2 =
(−1/2) · (2 · 2)

2 · 2− 5/2
=
−2

3/2
= −4

3
.

Alternatively:

a1 =
2 · 1/2

0!(1− (1/2)/2)
=

1

1− 1/4
=

4

3
and a2 =

2 · 1/(1/2)

0!(1− 2 · 1/(1/2))
=

4

1− 4
= −4

3
.

We can thus conclude:

gn =
4

3

(
2n − 1

2n

)
.
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Exercise 2

(10 points) For n ∈ N and r, s ∈ R compute

Sn =
n∑

k=0

(−1)k
(
r + k

k

)(
s

n− k

)
.

Solution. The sequence 〈Sn〉 is the convolution of the sequences
〈
(−1)n

(
r+n
n

)〉
and

〈(
s
n

)〉
. We know that

∑
n>0

(
r+n
n

)
zn = 1/(1 − z)r+1 and

∑
n>0

(
s
n

)
=

(1 + z)s: by replacing z with −z in the first power series, we obtain∑
n>0

(−1)n
(
r + n

n

)
zn =

1

(1 + z)r+1
.

(Alternatively, since cn = (−1)n(−c)n = (−1)n(n− 1− c)n for every c ∈ R,
by putting c = r + n we obtain (−1)n

(
r+n
n

)
=
(−r−1

n

)
, which yields the same

generating function.) Then the generating function of 〈Sn〉 is

S(z) =
(1 + z)s

(1 + z)r+1
= (1 + z)s−r−1 :

it follows immediately that
n∑

k=0

(−1)k
(
r + k

k

)(
s

n− k

)
=

(
s− r − 1

n

)
.

Exercise 3

(8 points) Determine for which integer values of n the number n13− 2n7 + n
is divisible by 98.

Solution. As 98 = 2 · 72 as a product of powers of primes, we must show
that n13−2n7 +n is divisible by both 2 and 49. One part is easy: the second
summand is even, and the other two are either both even or both odd, so the
sum is even. For the other part, we factor the polynomial and obtain:

n13 − 2n7 + n = n · (n12 − 2n6 + 1) = n · (n6 − 1)2 .

If n is not a multiple of 7, then n6 − 1 is by Fermat’s little theorem, and as
there are two such factors, n13 − 2n7 + n is indeed divisible by 49. If n is a
multiple of 7, however, then n6 − 1 is not, and since we only have one factor
n, it must be n that is divisible by 49.

In conclusion, n13 − 2n7 + n is divisible by 98 if and only if n is either
divisible by 49, or not divisible by 7.
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Final exam of 17 January 2017

Exercise 1

(12 points) Solve the recurrence:

g0 = 1 ; g1 = 3 ;

gn = 4gn−1 − 4gn−2 ∀n > 2 .
(4)

Solution. The recurrence (4) is easily solved with generating functions via
the Rational Expansion Theorem. Let us follow the method step by step:

1. We must rewrite (4) so that it holds for every n ∈ Z, with the conven-
tion that gn = 0 if n < 0. We need to check the initial conditions:

• For n = 0 it is g0 = 1 but 4g−1 − 4g−2 = 0: we thus need a
correction summand 1.

• For n = 1 it is g1 = 3 but 4g0−4g−1 = 4: we thus need a correction
summand −1.

The recurrence (4) for arbitrary n ∈ Z is thus:

gn = 4gn−1 − 4gn−2 + [n = 0]− [n = 1] .

2. Let G(z) be the generating function of the sequence 〈gn〉. By multi-
plying the recurrence by zn for every n ∈ Z and summing over n we
obtain:

G(z) =
∑
n

gnz
n

= 4
∑
n

gn−1z
n − 4

∑
n

gn−2z
n +

∑
n

[n = 0] zn −
∑
n

[n = 1] zn

= 4
∑
n

gnz
n+1 − 4

∑
n

gnz
n+2 + 1− z

= 4zG(z)− 4z2G(z) + 1− z .

3. By solving the above with respect to G(z) we get

G(z) ·
(
1− 4z + 4z2

)
= 1− z ,
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which yields

G(z) =
1− z

1− 4z + 4z2
.

4. The function G(z) has the form G(z) = P (z)/Q(z) where P (z) = 1−z
and Q(z) = 1−4z+4z2 = (1−2z)2. Then the solution of the recurrence
is (an + b) · 2n for suitable a and b. To find such numbers, we use the
Rational Expansion Theorem: in our case, ρ = 2 and d = 2, so:

a =
(−2)2 · P (1/2) · 2

Q′′(1/2)
=

4 · (1/2) · 2
8

=
1

2
,

or alternatively,

a =
1− 1/2

1! · (empty product)
=

1

2
.

To find b, we compare the initial condition g0 = 1 with the value
(a · 0 + b) · 20: which yields b = 1. In conclusion,

gn =
(n

2
+ 1
)
· 2n .

Exercise 2

(10 points) For n, r, s > 0 all integers compute

Sn =
n∑

k=0

(
k

r

)(
n− k
s

)
.

Solution. The sequence 〈Sn〉 is the convolution of the sequences
〈(

n
r

)〉
and〈(

n
s

)〉
. We know that

∑
n>0

(
n
r

)
= zr

(1−z)r+1 and
∑

n>0

(
n
s

)
= zs

(1−z)s+1 : then the

generating function of 〈Sn〉 is

S(z) =
zr+s

(1− z)r+s+2
.

This writing is annoying, because the right-hand side does not have the con-
venient form zm

(1−z)m+1 : which it would have if the exponent at the numerator
was r + s + 1 instead of r + s. But as r + s > 0, the constant coefficient
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of
zr+s+1

(1− z)r+s+2
=
∑

n>0

(
n

r+s+1

)
zn is

(
0

r+s+1

)
= 0: by applying the formula

G(z)− g0
z

=
∑

n>0 gn+1z
n, we get

S(z) =
1

z
·
(

zr+s+1

(1− z)r+s+2
− 0

)
=
∑
n>0

(
n+ 1

r + s+ 1

)
zn .

By comparison, we finally find:
n∑

k=0

(
k

r

)(
n− k
s

)
=

(
n+ 1

r + s+ 1

)
.

Exercise 3

(8 points) Determine the values of n > 0 such that n14 − 3n10 + 3n6 − n2 is
divisible by 250.

Solution. As 250 = 2 · 53 as a product of powers of primes, we must show
that n14 − 3n10 + 3n6 − n2 is divisible by both 2 and 125. One part is easy:
there are four summands, which are either all even or all odd, so the sum is
even. For the other part, we factor the polynomial and obtain:

n14 − 3n10 + 3n6 − n2 = n2 · (n12 − 3n8 + 3n4 − 1) = n2 · (n4 − 1)3 .

If n is not a multiple of 5, then n4 − 1 is by Fermat’s little theorem, and as
there are three such factors, n14− 3n10 + 3n6− n2 is indeed divisible by 125.
If n is a multiple of 5, however, then n4 − 1 is not, and the contributions
to divisibility by 125 must come all from n: as there are two factors n in
n14 − 3n10 + 3n6 − n2, if n is divisible by 5 but not by 25, then n14 − 3n10 +
3n6 − n2 is divisible by 25 but not by 125; while if n is divisible by 25, then
n4(n4 − 1)3 is divisible by 625, thus also by 125.

In conclusion, n14 − 3n10 + 3n6 − n2 is divisible by 250 if and only if n is
either divisible by 25, or not divisible by 5.

Exercises from Chapter 9

Exercise 9.15

Give an asymptotic formula for the “middle” trinomial coefficient
(

3n
n,n,n

)
,

correct to relative error O(n−3).
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Solution. Recall the definition of trinomial coefficient: if k1 + k2 + k3 = n,

then
(

n
k1,k2,k3

)
=

n!

k1!k2!k3!
. Having to do with factorials, we resort to Stirling’s

approximation as given in (9.91):

lnn! =

(
n+

1

2

)
lnn− n+ ln

√
2π +

1

12n
+O

(
1

n3

)
.

So:

ln

(
3n

n, n, n

)
= ln(3n)!− ln(n!)3

=

(
3n+

1

2

)
(ln 3 + lnn)− 3n+ ln

√
2π +

1

12 · 3n

−3

((
n+

1

2

)
lnn− n+ ln

√
2π +

1

12n

)
+O

(
1

n3

)
=

(
3n+

1

2

)
ln 3− lnn− ln 2π +

1

12

(
1

3
− 3

)
· 1

n
+O

(
1

n3

)
=

(
3n+

1

2

)
ln 3− lnn− ln 2π − 2

9n
+O

(
1

n3

)
.

By switching to exponentials,(
3n

n, n, n

)
=

33n+1/2

2πn
· e−2/9n+O(1/n3) :

and we are almost done, but not fully, because we need a relative error
O(1/n3), so we also need to consider the power series development of ez up
to the quadratic term. Which we do:

e−2/9n+O(1/n3) = 1− 2

9n
+O

(
1

n3

)
+

1

2
·
(
− 2

9n
+O

(
1

n3

))2

+O

(
1

n3

)
= 1 +

(
−2

9
+O

(
1

n3

))
+

(
2

81n2
+O

(
1

n4

))
+O

(
1

n3

)
= 1− 2

9
+

2

81n2
+O

(
1

n3

)
.

We can conclude:(
3n

n, n, n

)
=

33n+1/2

2πn
·
(

1− 2

9n
+

2

81n2
+O

(
1

n3

))
.
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