ITT9132 Concrete Mathematics Final exam

First date, 22 May 2019

Full name:

Code:

- 1. Take note of the code near your full name: it will be used to display the results.
- 2. Write your solutions under the corresponding exercise or question. For Exercises 1, 2 and 3, explain your reasoning.
- 3. You may use any formula seen in classroom or appearing in the selfevaluation tests.
- 4. You may use the additional paper to draft your answers. However, only what is written in the exercises' pages will be evaluated.
- 5. Partially completed exercises may receive a fraction of the total score.
- 6. Only handwritten notes are allowed.
- 7. Electronic devices, including mobile phones must be turned off. Using a pocket or tabletop calculator is allowed as the only exception.
- 8. It is permitted to leave the room once, for a maximum of 5 minutes, one at a time, handing the assignment to the instructor, who will give it back on return.

Exercise 1 (12 points)

Solve the recurrence

 $g_n = 5g_{n-1} - 6g_{n-2}$ for every $n \ge 2$

with the initial conditions $g_0 = 0, g_1 = 3$.

Solution. The recurrence is a second-order homogenoeus linear recurrence, which is solved easily with generating functions and the Rational Expansion Theorem. Let us follow step by step:

1. We rewrite the recurrence so that it holds for every n integer, with the convention that $g_n = 0$ if n < 0. We expect some correction terms in correspondence of the initial conditions, so our recurrence will take the form:

$$g_n = 5g_{n-1} - 6g_{n-2} + a_0 [n = 0] + a_1 [n = 1]$$
 for every $n \in \mathbb{Z}$

for suitable a_0 and a_1 . Now:

- For n = 0 it is $g_0 = 0$ and $5g_{-1} 6g_{-2} = 0$. Hence, $a_0 = 0$.
- For n = 1 it is $g_1 = 3$ but $5g_0 6g_{-1} = 0$. Hence, $a_1 = 3$.

Summarizing:

$$g_n = 5g_{n-1} - 6g_{n-2} + 3[n=1]$$
 for every $n \in \mathbb{Z}$

2. By multiplying by z^n and summing over $n \in \mathbb{Z}$ we obtain:

$$\sum_{n} g_{n} z^{n} = 5 \sum_{n} g_{n-1} z^{n} - 6 \sum_{n} g_{n-1} z^{n} + 3 \sum_{n} [n=1] z^{n}.$$

Calling G(z) the left-hand side, the above can be rewritten:

$$G(z) = 5zG(z) - 6z^2G(z) + 3z;$$

carrying all the terms with G(z) to the left-hand side we obtain:

$$G(z) \cdot (1 - 5z + 6z^2) = 3z,$$

which gives the following expression for the generating function:

$$G(z) = \frac{3z}{1 - 5z + 6z^2}.$$

3. Let P(z) and Q(z) be the numerator and denominator in the expression of G(z). The reflected polynomial of the denominator is $Q^{R}(z) = z^{2} - 5z + 6$, which has the roots z = 2 and z = 3: consequently, Q(z) = (1-2z)(1-3z) is the product of two factors of the first degree. The Rational Expansion Theorem gives $\rho_{1} = 2$, $\rho_{2} = 3$ and $d_{1} = d_{2} = 1$, so:

$$g_n = a_1 \cdot 2^n + a_2 \cdot 3^n$$
 for every $n \ge 0$,

where the coefficients a_1 and a_2 are computed as:

$$a_1 = \frac{3 \cdot 1/2}{1 - 3 \cdot 1/2} = \frac{3/2}{-1/2} = -3;$$

$$a_2 = \frac{3 \cdot 1/3}{1 - 2 \cdot 1/3} = \frac{1}{1/3} = 3.$$

4. We can now conclude:

$$g_n = 3 \cdot (3^n - 2^n)$$
 for every $n \ge 0$.

Exercise 2 (10 points)

For $n, m \ge 0$ integers compute:

$$S_n = \sum_{k=0}^n (-1)^k \binom{k+m}{m} \binom{n-k+m}{m}.$$

Solution. The sequence $\langle S_n \rangle$ is the convolution of the sequences $\langle (-1)^n \binom{n+m}{m} \rangle$ and $\langle \binom{n+m}{m} \rangle$. The generating function of the latter is

$$\sum_{n \ge 0} \binom{n+m}{m} z^n = \sum_{n \ge 0} \binom{n+m}{n} z^n = \frac{1}{(1-z)^{m+1}},$$

because *m* is integer; for the other, we observe that multiplying the *n*th term by $(-1)^n$ corresponds to evaluating the generating function in -z instead of z, so $\sum_{n \ge 0} (-1)^n \binom{n+m}{m} z^n = \frac{1}{(1+z)^{m+1}}$. Then the generating function of the

sequence $\langle S_n \rangle$ is:

$$S(z) = \frac{1}{(1+z)^{m+1}} \cdot \frac{1}{(1-z)^{m+1}}$$
$$= \frac{1}{(1-z^2)^{m+1}}$$
$$= \sum_{n \ge 0} \binom{n+m}{m} z^{2n}$$
$$= \sum_{n \ge 0} \binom{\lfloor n/2 \rfloor + m}{m} [n \text{ is even}] z^n$$

By comparing the coefficients, we obtain:

$$S_n = {\binom{\lfloor n/2 \rfloor + m}{m}} [n \text{ is even}].$$

Exercise 3 (8 points)

Determine for which integer values $n \ge 0$ the number $n^{21} - 2n^{11} + n$ is divisible by 242.

Solution. As $242 = 2 \cdot 11^2$ as a product of primes, $n^{21} - 2n^{11} + n$ is divisible by 242 if and only if it is even and divisible by 121. The first part is easy: of the three summands, the middle one is even, and the other two are either both even or both odd, so the sum is even. Now:

$$n^{21} - 2n^{11} + n = n \cdot (n^{20} - 2n^{10} + 1) = n \cdot (n^{10} - 1)^2$$

If n is not divisible by 11, then $n^{10} - 1$ is by Fermat's little theorem, and as there are two such factors, $n^{21} - 2n^{11} + n$ is divisible by 121; if n is divisible by 11, then $n^{10} - 1$ is not, so it is n which must be divisible by 121. In conclusion, $n^{21} - 2n^{11} + n$ is divisible by 242 if and only if n is either not divisible by 11, or divisible by 121.

Exercise 4 (1 point each, 20 points total)

1. Twenty people are sitting in circle and every second one is eliminated. Who remains last?

The ninth one: 20 = 16 + 4 and $2 \cdot 4 + 1 = 9$.

2. Describe the perturbation method.

Given a sum of the form $S_n = \sum_{0 \le k \le n} a_k$, we rewrite S_{n+1} as $S_n + a_{n+1}$ on one side and $a_0 + \sum_{1 \le k \le n+1} a_k$ on the other, and solve with respect to S_n .

- 3. Write a function u(x) such that $\Delta u(x) = \left(\frac{5}{2}\right)^x$. $u(x) = \frac{2}{3} \cdot \left(\frac{5}{2}\right)^x$. Then, $\Delta u(x) = \frac{2}{3} \cdot \left(\frac{5}{2}\right)^x \cdot \left(\frac{5}{2} - 1\right) = \left(\frac{5}{2}\right)^x$.
- 4. Let $\sum_{n\geq 0} a_n$ be an infinite sum and let p be a permutation of \mathbb{N} . What is a sufficient condition to have $\sum_{n\geq 0} a_n = \sum_{n\geq 0} a_{p(n)}$? That $\sum_{n\geq 0} a_n$ converges absolutely, that is, $\sum_{n\geq 0} |a_n| < \infty$.
- 5. True or false: for every x > 0, $\left\lfloor \sqrt{x/10} \right\rfloor = \left\lfloor \sqrt{\lfloor x \rfloor / 10} \right\rfloor$. True: the function $f(x) = \sqrt{x/10}$ is continuous and strict

True: the function $f(x) = \sqrt{x/10}$ is continuous and strictly increasing on the positive reals and if f(x) = k is integer, so is $x = 10k^2$.

6. How many integers $1 \le k \le n$ are in the union of the spectra of $\alpha = \sqrt{5}$ and $\beta = \frac{5 + \sqrt{5}}{4}$?

n. As α and β are both irrational and $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{\sqrt{5}} + \frac{4}{5+\sqrt{5}} = 1$, the spectra of α and β form a partition of the positive integers.

- 7. What is a Fermat pseudoprime for base b? A composite number n such that $b^{n-1} \equiv 1 \pmod{n}$.
- 8. Is $105^{120} 1$ divisible by 41?

Yes: as 41 is prime and $105 = 3 \cdot 5 \cdot 7$, $105^{120} - 1 = (105^{40} - 1) \cdot (105^{80} + 105^{40} + 1)$ is divisible by 41 by Fermat's little theorem.

9. Let n = pq be the product of two distinct primes. What is the value $\phi(n)$ of Euler's totient function ϕ on n?

(p-1)(q-1). As p and q are prime, $\phi(p) = p-1$ and $\phi(q) = q-1$, and as p and q are distinct, $p \perp q$, and $\phi(pq) = \phi(p) \cdot \phi(q)$. 10. True or false: for every r complex and k nonnegative integer, $(r - k)\binom{r}{k} = r\binom{r-1}{k}$.

True: the identity is easily seen to hold if r is an arbitrary positive integer, and as both sides are polynomials of degree at most k + 1 in the variable r, it holds for every r complex.

11. Let G(z) be a power series with center 0 and convergence radius 1. Can it be that G(z) converges at every z such that |z| = 1?

Yes: for example, $G(z) = \sum_{n \ge 1} \frac{z^n}{n^2}$ converges totally on the closed unit disk.

12. Write the recurrence equation for the Stirling numbers of the second kind.

$$\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}.$$

- 13. How many ways are there to arrange 5 objects into 2 nonempty cycles? $\begin{bmatrix} 5\\2 \end{bmatrix} = 4!H_4 = 24 + 12 + 8 + 6 = 50.$
- 14. By how much can a stack of cards hang out of a table without toppling? As much as we want (provided we have enough many cards). More precisely, a stack of n cards can hang out by H_n "half cards". See Lecture 12.
- 15. Let G(z) be the generating function of the sequence $\langle g_n \rangle$. Given $m \ge 1$ integer, what is the generating function of the sequence $\langle g_{m+n} \rangle$?

$$\frac{G(z)-g_0-\ldots-g_{m-1}z^{m-1}}{z^m}.$$

16. What is the generating function of the sequence of the natural numbers?

$$\sum_{n \ge 0} n z^n = \frac{z}{(1-z)^2}.$$

17. Write the generating function of the sequence $\left\langle \binom{c}{n} \right\rangle$, where c is a complex number.

$$\sum_{n \ge 0} {c \choose n} z^n = (1+z)^c.$$

18. Name a sequence $\langle g_n \rangle$ which does not have an analytic generating function, but is such that $\langle g_n/n! \rangle$ has.

There are many: the sequence of the Bernoulli numbers, the sequence of the factorials, the sequence $\langle n^m \cdot n! \rangle$ where m is a fixed integer, etc.

19. True or false: for any f(n) and g(n), O(f(n)) + O(g(n)) = O(f(n) + g(n)).

False: if f(n) = n + 1 and g(n) = -n, then O(f(n)) + O(g(n)) = O(n) but O(f(n) + g(n)) = O(1).

20. True or false:
$$\ln\left(1+\frac{1}{\ln n}\right) = \frac{1}{\ln n} - \frac{1}{2(\ln n)^2} + O\left(\left(\frac{1}{\ln n}\right)^3\right).$$

True, because $\ln(1+z) = z - \frac{z^2}{2} + \sum_{k \ge 3} \frac{(-1)^{k-1}}{k} z^k$ and $\frac{1}{\ln n} \prec 1.$

(Corrects a wrong version where $O(1/\ln n)$ appeared on the left-hand side in place of $1/\ln n$.)