
ITT9132 Concrete Mathematics
Final exam

First date, 22 May 2019

Full name: Code:

1. Take note of the code near your full name: it will be used to display
the results.

2. Write your solutions under the corresponding exercise or question. For
Exercises 1, 2 and 3, explain your reasoning.

3. You may use any formula seen in classroom or appearing in the self-
evaluation tests.

4. You may use the additional paper to draft your answers. However, only
what is written in the exercises’ pages will be evaluated.

5. Partially completed exercises may receive a fraction of the total score.

6. Only handwritten notes are allowed.

7. Electronic devices, including mobile phones must be turned off. Using
a pocket or tabletop calculator is allowed as the only exception.

8. It is permitted to leave the room once, for a maximum of 5 minutes,
one at a time, handing the assignment to the instructor, who will give
it back on return.
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Exercise 1 (12 points)

Solve the recurrence

gn = 5gn−1 − 6gn−2 for every n > 2

with the initial conditions g0 = 0, g1 = 3.

Solution. The recurrence is a second-order homogenoeus linear recurrence,
which is solved easily with generating functions and the Rational Expansion
Theorem. Let us follow step by step:

1. We rewrite the recurrence so that it holds for every n integer, with the
convention that gn = 0 if n < 0. We expect some correction terms in
correspondence of the initial conditions, so our recurrence will take the
form:

gn = 5gn−1 − 6gn−2 + a0 [n = 0] + a1 [n = 1] for every n ∈ Z

for suitable a0 and a1. Now:

• For n = 0 it is g0 = 0 and 5g−1 − 6g−2 = 0. Hence, a0 = 0.

• For n = 1 it is g1 = 3 but 5g0 − 6g−1 = 0. Hence, a1 = 3.

Summarizing:

gn = 5gn−1 − 6gn−2 + 3 [n = 1] for every n ∈ Z

2. By multiplying by zn and summing over n ∈ Z we obtain:∑
n

gnz
n = 5

∑
n

gn−1z
n − 6

∑
n

gn−1z
n + 3

∑
n

[n = 1] zn .

Calling G(z) the left-hand side, the above can be rewritten:

G(z) = 5zG(z)− 6z2G(z) + 3z ;

carrying all the terms with G(z) to the left-hand side we obtain:

G(z) · (1− 5z + 6z2) = 3z ,

which gives the following expression for the generating function:

G(z) =
3z

1− 5z + 6z2
.
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3. Let P (z) and Q(z) be the numerator and denominator in the expression
of G(z). The reflected polynomial of the denominator is QR(z) =
z2 − 5z + 6, which has the roots z = 2 and z = 3: consequently,
Q(z) = (1−2z)(1−3z) is the product of two factors of the first degree.
The Rational Expansion Theorem gives ρ1 = 2, ρ2 = 3 and d1 = d2 = 1,
so:

gn = a1 · 2n + a2 · 3n for every n > 0 ,

where the coefficients a1 and a2 are computed as:

a1 =
3 · 1/2

1− 3 · 1/2
=

3/2

−1/2
= −3 ;

a2 =
3 · 1/3

1− 2 · 1/3
=

1

1/3
= 3 .

4. We can now conclude:

gn = 3 · (3n − 2n) for every n > 0 .

Exercise 2 (10 points)

For n,m > 0 integers compute:

Sn =
n∑

k=0

(−1)k
(
k +m

m

)(
n− k +m

m

)
.

Solution. The sequence 〈Sn〉 is the convolution of the sequences
〈
(−1)n

(
n+m
m

)〉
and

〈(
n+m
m

)〉
. The generating function of the latter is

∑
n>0

(
n+m

m

)
zn =

∑
n>0

(
n+m

n

)
zn =

1

(1− z)m+1
,

because m is integer; for the other, we observe that multiplying the nth term
by (−1)n corresponds to evaluating the generating function in −z instead of

z, so
∑

n>0(−1)n
(
n+m
m

)
zn =

1

(1 + z)m+1
. Then the generating function of the
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sequence 〈Sn〉 is:

S(z) =
1

(1 + z)m+1
· 1

(1− z)m+1

=
1

(1− z2)m+1

=
∑
n>0

(
n+m

m

)
z2n

=
∑
n>0

(
bn/2c+m

m

)
[n is even] zn .

By comparing the coefficients, we obtain:

Sn =

(
bn/2c+m

m

)
[n is even] .

Exercise 3 (8 points)

Determine for which integer values n > 0 the number n21−2n11+n is divisible
by 242.

Solution. As 242 = 2 · 112 as a product of primes, n21− 2n11 +n is divisible
by 242 if and only if it is even and divisible by 121. The first part is easy:
of the three summands, the middle one is even, and the other two are either
both even or both odd, so the sum is even. Now:

n21 − 2n11 + n = n · (n20 − 2n10 + 1) = n · (n10 − 1)2 .

If n is not divisible by 11, then n10 − 1 is by Fermat’s little theorem, and as
there are two such factors, n21 − 2n11 + n is divisible by 121; if n is divisible
by 11, then n10 − 1 is not, so it is n which must be divisible by 121. In
conclusion, n21 − 2n11 + n is divisible by 242 if and only if n is either not
divisible by 11, or divisible by 121.

Exercise 4 (1 point each, 20 points total)

1. Twenty people are sitting in circle and every second one is eliminated.
Who remains last?

The ninth one: 20 = 16 + 4 and 2 · 4 + 1 = 9.
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2. Describe the perturbation method.

Given a sum of the form Sn =
∑

06k6n ak, we rewrite Sn+1 as Sn +an+1

on one side and a0 +
∑

16k6n+1 ak on the other, and solve with respect
to Sn.

3. Write a function u(x) such that ∆u(x) =

(
5

2

)x

.

u(x) =
2

3
·
(

5

2

)x

. Then, ∆u(x) =
2

3
·
(

5

2

)x

·
(

5

2
− 1

)
=

(
5

2

)x

.

4. Let
∑

n>0 an be an infinite sum and let p be a permutation of N. What
is a sufficient condition to have

∑
n>0 an =

∑
n>0 ap(n)?

That
∑

n>0 an converges absolutely, that is,
∑

n>0 |an| <∞.

5. True or false: for every x > 0,
⌊√

x/10
⌋

=
⌊√
bxc /10

⌋
.

True: the function f(x) =
√
x/10 is continuous and strictly increasing

on the positive reals and if f(x) = k is integer, so is x = 10k2.

6. How many integers 1 6 k 6 n are in the union of the spectra of α =
√

5

and β =
5 +
√

5

4
?

n. As α and β are both irrational and
1

α
+

1

β
=

1√
5

+
4

5 +
√

5
= 1, the

spectra of α and β form a partition of the positive integers.

7. What is a Fermat pseudoprime for base b?

A composite number n such that bn−1 ≡ 1 (mod n).

8. Is 105120 − 1 divisible by 41?

Yes: as 41 is prime and 105 = 3 ·5 ·7, 105120−1 = (10540−1) · (10580 +
10540 + 1) is divisible by 41 by Fermat’s little theorem.

9. Let n = pq be the product of two distinct primes. What is the value
φ(n) of Euler’s totient function φ on n?

(p − 1)(q − 1). As p and q are prime, φ(p) = p − 1 and φ(q) = q − 1,
and as p and q are distinct, p ⊥ q, and φ(pq) = φ(p) · φ(q).
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10. True or false: for every r complex and k nonnegative integer, (r −
k)
(
r
k

)
= r
(
r−1
k

)
.

True: the identity is easily seen to hold if r is an arbitrary positive
integer, and as both sides are polynomials of degree at most k + 1 in
the variable r, it holds for every r complex.

11. Let G(z) be a power series with center 0 and convergence radius 1. Can
it be that G(z) converges at every z such that |z| = 1?

Yes: for example, G(z) =
∑

n>1

zn

n2
converges totally on the closed unit

disk.

12. Write the recurrence equation for the Stirling numbers of the second
kind. {

n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
.

13. How many ways are there to arrange 5 objects into 2 nonempty cycles?[
5
2

]
= 4!H4 = 24 + 12 + 8 + 6 = 50.

14. By how much can a stack of cards hang out of a table without toppling?

As much as we want (provided we have enough many cards). More
precisely, a stack of n cards can hang out by Hn “half cards”. See
Lecture 12.

15. Let G(z) be the generating function of the sequence 〈gn〉. Given m > 1
integer, what is the generating function of the sequence 〈gm+n〉?
G(z)− g0 − . . .− gm−1z

m−1

zm
.

16. What is the generating function of the sequence of the natural numbers?∑
n>0 nz

n =
z

(1− z)2
.

17. Write the generating function of the sequence
〈(

c
n

)〉
, where c is a com-

plex number.∑
n>0

(
c
n

)
zn = (1 + z)c.
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18. Name a sequence 〈gn〉 which does not have an analytic generating func-
tion, but is such that 〈gn/n!〉 has.

There are many: the sequence of the Bernoulli numbers, the sequence
of the factorials, the sequence 〈nm · n!〉 where m is a fixed integer, etc.

19. True or false: for any f(n) and g(n), O(f(n)) + O(g(n)) = O(f(n) +
g(n)).

False: if f(n) = n+ 1 and g(n) = −n, then O(f(n)) +O(g(n)) = O(n)
but O(f(n) + g(n)) = O(1).

20. True or false: ln

(
1 +

1

lnn

)
=

1

lnn
− 1

2(lnn)2
+O

((
1

lnn

)3
)

.

True, because ln(1 + z) = z − z2

2
+
∑

k>3

(−1)k−1

k
zk and

1

lnn
≺ 1.

(Corrects a wrong version where O(1/ lnn) appeared on the left-hand
side in place of 1/ lnn.)
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