
Recurrent Problems
ITT9132 Concrete Mathematics
Lecture 2 � 4 February 2019

Chapter One

The Tower of Hanoi

Lines in the Plane

The Josephus Problem



Contents

1 The Tower of Hanoi

2 Lines in the Plane

3 The Josephus Problem

4 Intermezzo: Structural induction

5 Binary representation



Next section

1 The Tower of Hanoi

2 Lines in the Plane

3 The Josephus Problem

4 Intermezzo: Structural induction

5 Binary representation



The Tower of Hanoi: Description

The Tower of Hanoi puzzle was invented by the French
mathematician Édouard Lucas in 1883.

The board has three pegs.

The tiles are n disks, all of di�erent sizes, with a hole in the
middle so that they can be put on the pegs.

At the beginning of the game, the disks are all on the �rst
peg, in decreasing order from bottom to top (larger at the
bottom, smaller at the top)..

The aim of the game is to put all the disks on the third peg,
using the second peg as a help, so that at no time a disk is
above a smaller disk.



The Tower of Hanoi: Solution

Using mathematical induction the following can be proved:

For the Tower of Hanoi puzzle with n > 0, the
minimum number of moves needed is:

Tn = 2n−1 .

Let's look at the example borrowed from Martin Hofmann and
Berteun Damman.
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The Principle of Mathematical Induction

Let P(n) be a predicate whose truth or falsehood depends on the
value taken by a variable n in the set N of nonnegative integers.
Suppose the following happen:

1 For some k ∈ N, P(k) is true.
2 For every n > k , the implication P(n)−→ P(n+1) holds:

that is, if P(n) is true, then P(n+1) is also true.

Then P(n) is true for every n > k .



A recursive solution in Python

#!/usr/bin/env python3

import os

def hanoi(n, start='1', step='2', stop='3'):

'''Solve the Hanoi tower with n disks , from start

peg to stop peg , using step peg as a spool '''

if n > 0:

hanoi(n-1, start , stop , step)

move(n, start , stop)

hanoi(n-1, step , start , stop)

def move(n, start , stop):

'''Display move of disk n from start to stop '''

print("Disk %d: %s -> %s" % (n, start , stop))

if __name__ == '__main__ ':

n = int(input('How many disks? '))

hanoi(n, '1', '2', '3')



A recursive solution in Python

#!/usr/bin/env python3

import os

def hanoi(n, start='1', step='2', stop='3'):

'''Solve the Hanoi tower with n disks , from start

peg to stop peg , using step peg as a spool '''

if n > 0:

hanoi(n-1, start , stop , step)

move(n, start , stop)

hanoi(n-1, step , start , stop)

def move(n, start , stop):

'''Display move of disk n from start to stop '''

print("Disk %d: %s -> %s" % (n, start , stop))

if __name__ == '__main__ ':

n = int(input('How many disks? '))

hanoi(n, '1', '2', '3')

Question: why does this program show that Tn = 2n−1?



Tower of Hanoi: Running time

Base case: n = 1.

Then the Python script only performs move('1', '3'), so
T1 = 1= 21−1.

Inductive step: n disks require 2n−1 steps.
Then the Python script performs:

hanoi(n, '1', '3', '2')

move('1', '3')

hanoi(n, '2', '1', '3')

which, by inductive hypothesis, requires:

Tn+1 = (2n−1)+1+(2n−1) = 2n+1−1

moves.



Warmup: What is wrong with this �proof by induction�?

Theorem

All children have the same color of eyes.

�Proof�

The thesis is clearly true for n = 1, so let n > 1.

1 Put the n children on a line.

2 By inductive hypothesis, the n−1 leftmost children have the
same color of eyes, and so do the n−1 rightmost children.

3 Then the n−2 children in the middle have the same color of
eyes.

4 The �rst and last child must then have that color of eyes.



Warmup: What is wrong with this �proof by induction�?

Theorem

All children have the same color of eyes.

Solution

The problem is with:

Then the n−2 children in the middle have the same color of
eyes.

For n = 2 there are no �n−2 children in the middle�.
So the implication P(n)−→ P(n+1) is not true for every n ≥ 1.
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Lines in the Plane

Problem

Popularly: How many slices of pizza can a person obtain by
making n straight cuts with a pizza knife?

Academically: What is the maximum number Ln of regions de�ned
by n lines in the plane?

Solved �rst in 1826, by the Swiss mathematician Jacob Steiner .



Lines in the Plane � small cases
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Lines in the Plane � generalization

Observation:

The n-th line (for n > 0) increases the number of
regions by k

i� it splits k of the �old regions�

i� it hits the previous lines in k−1 di�erent places.



Lines in the Plane � generalization

Observation:

The n-th line (for n > 0) increases the number of
regions by k

i� it splits k of the �old regions�

i� it hits the previous lines in k−1 di�erent places.

Then k must be less or equal to n. � Why?



Lines in the Plane � generalization

Observation:

The n-th line (for n > 0) increases the number of
regions by k

i� it splits k of the �old regions�

i� it hits the previous lines in k−1 di�erent places.

k = 3; 2 places k = 2; 1 places



Lines in the Plane � generalization (2)

Therefore the new line can intersect the n−1 �old� lines in at most
�n−1� di�erent points, we have established the upper bound:

Ln 6 Ln−1+n for n > 0.

If n-th line is not parallel to any of the others (hence it intersects
them all), and doesn't go through any of the existing intersection
points (hence it intersects them all in di�erent places) then we get
the recurrence equation:

L0 = 1;

Ln = Ln−1+n for n > 0.

n 0 1 2 3 4 5 6 7 8 9 · · ·
Ln 1 2 4 7 11 16 22 29 37 46 · · ·



Lines in the Plane � solving recurrence

Observation:

Ln = Ln−1+n

= Ln−2+(n−1)+n

= Ln−3+(n−2)+(n−1)+n

= · · ·
= L0+1+2+ . . .+(n−2)+(n−1)+n

= 1+Sn ,

where Sn = 1+2+3+ . . .+(n−1)+n.



Lines in the Plane � solving recurrence (2)

Evaluation of Sn = 1+2+ · · ·+(n−1)+n.

Recurrent equation:

S0 = 0 ;

Sn = Sn−1+n ∀n ≥ 1 .

Solution (Gauss, 1786):

Sn = 1 + 2 + . . . + (n−1) + n
+Sn = n + (n−1) + . . . + 2 + 1
2Sn = (n+1) + (n+1) + . . . + (n+1) + (n+1)

Then 2Sn = n · (n−1), so that Sn =
n(n+1)

2
.



Lines in the Plane � solving recurrence (2)

Evaluation of Sn = 1+2+ · · ·+(n−1)+n.

Recurrent equation:

S0 = 0 ;

Sn = Sn−1+n ∀n ≥ 1 .
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Lines in the Plane � solving recurrence (3)

Theorem: Closed formula for Ln

Ln =
n(n+1)

2
+1 forn > 0 .

Proof (by induction ).

Basis: L0 =
0(0+1)

2
+1= 1.

Step: Let assume Ln =
n(n+1)

2
+1 and evaluate

Ln+1 = Ln+n+1

=
n(n+1)

2
+1+n+1

=
n(n+1)+2+2n

2
+1

=
n(n+1)+2(n+1)

2
+1

=
(n+1)(n+2)

2
+1 . Q.E .D.
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The Josephus Problem

Legend:

During the Jewish-Roman war, Flavius Josephus, a famous
historian of the �rst century, was among a band of 41 Jewish
rebels trapped in a cave by the Romans. Preferring suicide to
capture, the rebels decided to form a circle and, proceeding
around it, to kill every third remaining person until no one
was left. But Josephus, together with his friend, wanted to
avoid being killed. So he quickly calculated where he and his

friend should stand in the vicious circle



The Josephus Problem

Our variation of the problem:

We start with n people numbered 1 to n around a circle.

We eliminate every second remaining person
until only one survives.

Task is to compute the survivor's number, J(n)

Example, n = 10.

1
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3

4

5

6

7

8

9

10

The elimination order is
2, 4, 6, 8, 10, 3, 7, 1, 9 . So, we have

J(10) = 5
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Our variation of the problem:
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The Josephus Problem � small numbers

Evaluate J(n) for small n:
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

J(n) 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1 · · ·

Properties

1 J(n) is always odd;

2 Recurrence equation:

J(1) = 1 ;

J(2n) = 2J(n)−1 for n > 1 ;

J(2n+1) = 2J(n)+1 for n > 1 .

3 Closed formula:

J(2m+ `) = 2`+1 for m > 0 and 06 ` < 2m .
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The Josephus Problem � recurrent equation (1)

Case n = 2m.
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10

First trip eliminates all even numbers. Then
we change numbers and repeat:

Old number k 1 3 5 7 9
New number k' 1 2 3 4 5

or
k = 2k ′−1 .

That correspondance between �old� and
�new number� gives us that:
J(2n) = 2J(n)−1



The Josephus Problem � recurrent equation (1)

Case n = 2m.
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First trip eliminates all even numbers. Then
we change numbers and repeat:

Old number k 1 3 5 7 9
New number k' 1 2 3 4 5

or
k = 2k ′−1 .

That correspondance between �old� and
�new number� gives us that:
J(2n) = 2J(n)−1



The Josephus Problem � recurrent equation (2)

Case n = 2m+1.
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First trip eliminates all even numbers. Then
we change numbers and repeat:

Old number k 1 3 5 7 9 11
New number k' 0 1 2 3 4 5

or
k = 2k ′+1

That correspondence between �old� and
�new� numbers givs us that:
J(2n+1) = 2J(n)+1

.



The Josephus Problem � recurrent equation (2)
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First trip eliminates all even numbers. Then
we change numbers and repeat:

Old number k 1 3 5 7 9 11
New number k' 0 1 2 3 4 5

or
k = 2k ′+1

That correspondence between �old� and
�new� numbers givs us that:
J(2n+1) = 2J(n)+1

.



The Josephus Problem � application of recurrence

The equation

J(1) = 1 ;

J(2n) = 2J(n)−1 for n > 1 ;

J(2n+1) = 2J(n)+1 for n > 1

can be used for computing function for large arguments.

For example

J(86) = 2J(43)−1 = 45

J(43) = 2J(21)+1 = 23

J(21) = 2J(10)+1 = 11

J(10) = 5



The Josephus Problem � closed formula

Theorem

J(2m+ `) = 2`+1 for m > 0 and 06 ` < 2m .

Proof by induction over m.

Basis If m = 0 then also `= 0, and J(1) = 1.

Step If m > 0 and 2m+ `= 2n, then ` is even and:

J(2m+`)= 2J(2m−1+`/2)−1= 2(2`/2+1)−1= 2`+1 .

If 2m+ `= 2n+1, then:

J(2n+1) = 2+J(2n) = 2+2(`−1)+1= 2`+1

Q.E.D.



The Josephus Problem � closed formula (2)

Closed formula can be used for computing function J(n):

Example

We have 1030= 210+6, so J(1030) = 2 ·6+1= 13.
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Structural induction

Premises

Let S be a set having the following features:

1 A set SB of basic cases is contained in S .

2 Finitely many operations ui : Smi → S , i = 1, . . . ,n, exist such
that, if x1, . . . ,xmi ∈ S , then ui (x1, . . . ,xmi ) ∈ S .

3 Nothing else belongs to S .

Technique

Let P be a property such that:

1 Each base case x ∈ SB has property P .

2 For every i = 1, . . . ,n and every x1, . . . ,xmi ∈ S , if each value
x1, . . . ,xmi has property P , then ui (x1, . . . ,xmi ) has property P .

Then every element of S has property P .



Mathematical induction as structural induction

Premises

The set S = N of natural numbers is constructed as follows:

1 A set SB = {0} of basic cases is contained in N.
2 A single operation, the successor, s : N→ N, exists such that,

if n ∈ N, then s(n) ∈ N.
3 Nothing else belongs to N.

Technique

Let P be a property such that

1 0 has property P .

2 For every n ∈N, if n has property P , then s(n) has property P .

Then every n ∈ N has property P .



Structural induction on positive integers

The set S = Z+ of positive integers is constructed as follows:

1 A set SB = {1} of basic cases is contained in Z+.
2 Two operations:

1 doubling d : Z+→ Z+,d(n) = 2n;
2 doubling increased sd : Z+→ Z+,sd(n) = 2n+1;

exists such that, if n ∈ Z+, then d(n),sd(n) ∈ Z+.

3 Nothing else belongs to Z+.

Let P be a property such that

1 1 has property P .

2 For every n ∈ Z+, if n has property P , then d(n) and sd(n)
have property P .

Then every n ∈ Z+ has property P .
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Binary expansion of n = 2m+ `

Denote

n = (bmbm−1 . . .b1b0)2

where bi ∈ {0,1} and bm = 1.

This notation stands for

n = bm2
m+bm−12

m−1+ . . .+b12+b0

For example

20= (10100)2 and 83= (1010011)2



Binary expansion of n = 2m+ ` , where 06 ` < 2m

Observations:

1 `= (0bm−1 . . .b1b0)2.

2 2`= (bm−1 . . .b1b00)2.

3 2m = (10 . . .00)2 and 1= (00 . . .01)2.

4 n = 2m+ `= (1bm−1 . . .b1b0)2.

5 2`+1= (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2 = (bm−1 . . .b1b0 1 )2

shift
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4 n = 2m+ `= (1bm−1 . . .b1b0)2.

5 2`+1= (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2 = (bm−1 . . .b1b0 1 )2

shift



Binary expansion of n = 2m+ ` , where 06 ` < 2m

Example
100 = 64+32+4

J(100) = J((1100100)2) = (1001001)2
J(100) = 64+8+1= 73
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