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Next section

Binary representation of the Josephus function
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Binary expansion of n =2m+/

n= (bmbm_l...blbo)g
where b; € {0,1} and b, = 1.

This notation stands for

n=bm2" + bm 12" 1 +...+ b2+ by

For example

20 = (10100); and 83 = (1010011),
TAL
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Binary expansion of n =2" 4/  where 0 </ < 2™

Observations:
0= (0bm_1...b1bo)2.
20 = (bm-1...b1bo0)32.
2m = (10...00), and 1 = (00...01),.
n=2"+{=(1bm_1...b1by)2.
20+1=(bm-1...b1bpl)>

J(([] br-r-- - brbo)2 = (bm-1- .- brbo [1])2
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Binary expansion of n =2" 4/  where 0 </ < 2™

Observations:
0= (0bm_1...b1bo)2.
20 = (bm-1...b1bo0)32.
2m = (10...00), and 1 = (00...01),.
n=2"+{=(1bm_1...b1by)2.
20+1=(bm-1...b1bpl)>

J(([] br-r - brbo)2 = (bm-1- .- brbo [1])2

| shift 1
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Binary expansion of n =2" 4/  where 0 </ < 2™

100 = 64+32+4
J(100) = J((1100100),) = (1001001),
J(100) = 64+8+1=73
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lterating the Josephus function

Consider a sequence xp, X1, ..., Xk, ... where:
B Xxp = n is an arbitrary positive integer; and
m xx = J(xk_1) for every k> 1.

Questions:

Will the sequence reach a fixed point?
That is: will xx1 = xx for every k large enough?

If so: what are the possible fixed points?

TAL
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lterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence defined by:

Xo = n,

Xk = J(Xk_l) Vk} 1

reaches the fixed point 2V(") —1, where v(n) is the number of bits
equal to 1 in the binary representation of n.
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lterating the Josephus function: the answer

For every positive integer n, the sequence defined by:

Xo — n,
Xk = J(kal) Vk}l

reaches the fixed point 2V(") —1, where v(n) is the number of bits
equal to 1 in the binary representation of n.

Proof that x, reaches a fixed point:

m For every n=2"+/( we have J(n) =2(+1 < n.

m Then the sequence xi is nonincreasing in k:
If Kk < m, then xx > x,.

m But a nonincreasing sequence of positive integers is ultimately TAL
constant. TECH



lterating the Josephus function: the answer

For every positive integer n, the sequence defined by:

Xo — n,
Xk = J(kal) Vk>1

reaches the fixed point 2V(") —1, where v(n) is the number of bits
equal to 1 in the binary representation of n.

Proof that the fixed point is 2V(") — 1:
m The binary representation of J(n) is obtained from that of n
by a circular permutation.
m But after such a permutation, a leading 0 disappears, while a
leading 1 is preserved.
m Then the binary writing of any fixed point must be made TAL
entirely of 1s. TECH



Next section

Generalization of Josephus function
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Generalization

Josephus function J: N — N

was defined using recurrences:

J1) = 1;
J(2n) = 2J(n)—1 forn>1;
J(2n+1) = 2J(n)+1 forn>1.

Introducing integer constants &, B and 7, generalize it as follows:

J1) = «a;
J(2n) = 2J(n)+p forn>1;
J2n+1) = 2J(n)+7y forn>1.

Our J(n) corresponds to . =1, B =—1, y=1. TECH



The repertoire method

To find closed form of a function f:

Step 1 Find few initial values for f.

Step 2 Find (or guess) closed formula from the values found
by Step 1:
examine a repertoire of cases and combine them to
find general closed formula.

Step 3 Verify the closed formula constructed as the result of
Step 2.

The idea is to examine a repertoire of cases and use it to find
a general closed formula for the recurrently defined function.
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Repertoire method for generalized f: STEP 1

‘ Calculation
o f(l)=
20+ f(2)_2f(1)+
20+ Yy | f(3)=2f(1)+
4o+ 3P f(4)=2f(2)+
da+2B+vy | f(5)=2f(2)+
do+ B+2y | f(6)=2f(3)+

) )+

) )+

) )+

\h
—

S
~

I3

Ao+ 3y | f(7)=2f(3
8o+ 7P F(8) =2f(4
8a+6B+y | f(9)=2f(4

ﬁ

O V|| ~N O 01 &||W NS

<AL
TECH



Repertoire method for generalized f: STEP 2

For n=1,2,...,9, taking n =2k 4+ ¢:
m The coefficient of « is 2X;
m The coefficient of B is ok _1—¢;
m The coefficient of y is /.
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Repertoire method for generalized f: STEP 3

If the function f is defined by the recurrence formula:

f(1) = a;
f(2n) = 2J(n)+p forn>1;
f(2n+1) = 2J(n)+yforn>1.

then letting n= 2k 40,

f(n) = A(n)a+ B(n)B + C(n)y,

where:
A(n) = 2k
B(n) = 2k—1-—y;
C(n) = .

[AL
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Proof of the Proposition (1)

Lemma 1. A(n) =2k, where n=2k+/¢ and 0 < ¢ < 2.

Proof.
Let o =1 and B =y=0. Then f(n) = A(n) and:
A(l)=1; A(2n)=2A(n) forn>0;A(2n+1)=2A(n) forn>0.
Proof by induction over k:
Basis: If k=0, then n=2°4+/¢and 0</<1. Thus n=1 and
A(1)=2°=1.

Step: Let us assume that A(2K~1 +t) =2k~ where 0 < t <251 Two
cases:

m If nis even, then ¢ is even and ¢/2 < 2k=1 thus
A(n) = AQRK+0) =242 +¢/2) =2.2k"1 =2k
m If nis odd, then £—1 is even and (£—1)/2 < 2K~1, thus
A(n) = A +0) =2A@K + (¢ -1)/2) = 2.2k =2k
TAL
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Proof of the Proposition (2)

Lemma 2. A(n)— B(n)— C(n)=1, for all ne N.
Proof.
Let f be the constant function f(n) = 1. Then:
Fl)=a; F@n)=2f(n)+B; F(2n+1)=2f(n)+7

or equivalently,
l=a; 1=2+f; 1=2+y.

As this must hold for every n>1, it must be x =1 and f =y=—1. O
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Proof of the Proposition (3)

Lemma 3. A(n)+ C(n)=n, for all n€ N.
Proof.
Let f(n) = n. Then:
Fl)=a; FQn)=2f(n)+B; F(2n+1)=2f(n)+7

or equivalently,
l=a; 2n=2n+pf; 2n+1=2n+y.

As this must hold for every n>1, it must be ¢ =1, f =0 and y=1. O
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Proof of the Proposition (4)

From Lemma 3 and Lemma 1 we can conclude:
2K+ C(n)=A(n)+C(n)=n=2 42,

which gives:

C(n)="¢.

From Lemma 2 follows:

B(n)=A(n)—1—C(n)=2Kk-1—-¢.

TAL
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Next section

Intermezzo: The repertoire method
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The repertoire method: Basic ideas

Let the recursion scheme

g0) = «a,
g(n+1) = o(g(n))+V¥(mB,y,...) for n>0.

have the following properties:

o is linear in g: if g(n) = A181(n) + A2g2(n), then
®(g(n)) = 119(g1(n)) + 229(g2(n)).
No hypotheses are made on the dependence of g on n.
WV is linear in each of the m—1 parameters f3,7,...
No hypotheses are made on the dependence of W on n.

Then the whole system is linear in the parameters a, 3,7, ...
We can then look for a general solution of the form

g(n)=aA(n)+BB(n)+yC(n)+... TAL
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The repertoire method: Description

Suppose we have a repertoire of m pairs of the form
(i, Bis%is---),gi(n)) satisfying the following conditions:

For every i =1,2,...,m, gi(n) is the solution of the system
corresponding to the values ¢ = ;, =B,y =7, --

The m m-tuples (o, B;,7;,...) are linearly independent.

Then the functions A(n), B(n), C(n),... are uniquely determined.
The reason is that, for every fixed n,

wA(n) +BiB(n) +nC(n) +.. = &(n)

OmA(n) +BnB(n) +¥mC(n) +... = gm(n)

is a system of m linear equations in the m unknowns

A(n),B(n),C(n),... whose coefficients matrix is invertible. TAL
TECH



Next section

Binary representation of generalized Josephus function

TAL
TECH



Binary representation of generalized Josephus function

The generalized Josephus function (GJ-function) is defined
for a, Bo, B1 as follows:

fll) = «
f(2n+j) = 2f(n)+B; forj=0,1and n>0.

We obtain the definition used before if to select fo = and B = 7.

TAL
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Binary representation of generalized Josephus function (2)

Case A: Argument is even

If 2n = 2" 4/, then the binary notation is
2n= (bmbm,]_ oco b]_ b0)2

or
2n = bm2" + by 12" +...+ b12+ by
where b; € {0,1}, bp =0 and b, =1.
Hence
n:bm2m71+bm—12m72+~--+b22+b1

or
n= (bmbm_l ...b1)2

TAL
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Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1=2™+4/, then the binary notation is
2n+1= (bmbm,1 ..‘blbo)z

or
2n+1=bn2™+ bm_12™ 1+ ...+ 512+ bo

where b; € {0,1}, bp =1 and b, =1.

We get
= Int1l = bp2" 4 by 12" 4 b241
2n = bm2M+ by 12 .+ b2
n = bp2" 4 by 2™ 24+ b2+ b

or
n= (bmbm,1 ...b1)2

[AL
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Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1=2™M+/, then the binary notation is
2n+1 =(bmbm,1...b1b0)2
or
2n+1=bm2" +bn 12" " +...+ b12+ by
where b; € {0,1}, bp =1 and by, =1.

We get
s In+1 = bp2™+ by 12" . 4 b2 41

2n bm2™ 4+ bp12™ L+ 4 by2
n bm2™ £ by 12™ 2+ ba2+ by

Same results for cases A and B indicates that we don’t need to consider even
and odd cases separately.
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Binary representation of generalized Josephus function (4)

Let's evaluate:

f((bmsbm-1,-..,b1,b0)2) = 2f((bm;bm-1,-.-,b1)2)+ Bp,
2'(2f((bm7bm*1""7b2)2)+Bb1)+ﬁbo
= 4f((bm,bmfl,...,b2)2)+2ﬁb1+ﬁb°

= F((bm)2)2™ +Bbp 2™ 1.+ Boy 2+ Boo
= f(1)2"+ B, 1 2™ ..+ By 2+ Bry
= 02"+ By, 2" .+ By 2+ Bog s

where

_[Bi, ifb=1
ﬁbf‘{ﬁo if ;=10

AL
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Binary representation of generalized Josephus function (4)

Let's evaluate:

f((bmsbm-1,-..,b1,b0)2) = 2f((bm;bm-1,-.-,b1)2)+ Bp,
2'(2f((bm7bm*1""7b2)2)+Bb1)+ﬁbo
= 4f((bm,bmfl,...,b2)2)+2ﬁb1+ﬁb°

= F((bm)2)2™ +Bbp 2™ 1.+ Boy 2+ Boo
= F(1)2" 4+ B, 42"+ A+ By 2+ Bro
= Q2" +Bp, 12"+ ...+ Boy 2+ Bro

where

_[Bi, ifb=1
ﬁbf‘{ﬁo if ;=10

f((bmbm-1-..b1b0)2) = (0Bby, 4 Bbm 2 - - By Bro)2 E(L:H



Example

Original Josephus function: a =1, fp=—1, f1 =1 i.e.

fll1) = 1
f(2n) = 2f(n)—1
f2n+1) = 2f(n)+1

f((bmbm—1...b1bo)2) = (B, Bb,, 5 ---Bby By )2

£(100) = £((1100100),) = (1,1,—1,—1,1,—1,—1),
64+32—16—8+4—2—1=73
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Generalized Josephus function: Multiple bases

Let c,d > 2 be integers.
Consider the following recurrent problem:

fg) = o forl <j<d;
f(dn+j) = cf(n)+p; for0<j<dandn>1.

How can we compute f(n) for an arbitrary positive integer n,
without having to go through the entire iterative process?

TAL
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Multiple bases representation

We can actually use the same technique!

Let (bmbm—-1...b1bg)g be the base-d writing of n. Then by, # 0 and:

f((bm;bm-1,-..,b1,b0)q) cf ((bm, bm—1,---,b1)d) + Bpy
c-(cf((bm,bm-1,--.,b2)a) + By ) + Bbo

= PF((bm,bm-1,-...b2)a) + Bpy + Beo

= " f(bm)+c Bhy, 1+t By + Bro
= "0, +c" By, 4 +...+ Py +Bho

TAL
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Multiple bases representation

We can actually use the same technique!

Let (bmbm—1...b1bg)y be the base-d writing of n. Then b, # 0 and:

f((bm;bm—1,---,b1,b0)q) cf ((bm, bm=1,---,b1)d) + Boy
c-(cf((bmybm-1,---,b2)a) 4+ Bby ) + Bho

= 2f((bmsbm-1,---,b2)d) + By + Boe

= " f(bm)+ " Boyy + -+ Bby + By
= CmOCbm +Cm71ﬁbm71 +...+Cﬁb1 +ﬁbo

With a slight abuse of notation: (the B;'s need not be base-c digits)

f((bmbm-1---b1bo)d) = (Cb,,Bby 1 Bop_2 - - - Bba Bbo )

AL
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Multiple bases representation

We can actually use the same technique!

Let (bmbm-1...b1bo)g be the base-d writing of n. Then b, # 0 and:

f((bm,bm—l,m,bl,bo)d) Cf((bmybmflw--,bl)d) +Bb°
= C’(Cf((bn%bmfl)"'7b2)d)+ﬁb1)+ﬁbo

= 2f((bm:bm—1.---:b2)d) + By + B

= Cm‘f(bm)+cm71ﬁbm71 +"’+Cﬁb1 +ﬁbo
= ", + " By g -+ By +Bro

Or, more precisely:

f((bmbm-1-.-b1bg)a) = p(c) where p(x) = 0tp, x™ + Bp, s x™ 2+ ...+ Boy X+ Bog

AL
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Next section

Sequences
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Sequences

A sequence of elements of a set A is a function f: N — A,
where N is the set of natural numbers.

Notations used:
m f={a,}, where a, = f(n);
u {an}nGN;
m (ap,a1,a2,as,...).
an is called the nth term of the sequence f

TAL
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Sequences

A sequence of elements of a set A is a function f : N — A,
where N is the set of natural numbers.

Notations used:
m f={a,}, where a, = f(n);
® {an}nen;
m (ap,a1,a2,as,...).
ap is called the nth term of the sequence f

2 3

ap=0,a = 2=, B=

1
2.3’
o

or

2 n
7E:“‘7m,‘“> %&H

Sl w

1
767

o =




Sequences

A sequence of elements of a set A is a function f : N — A,
where N is the set of natural numbers.

Notations used:
m f={a,}, where a, = f(n);
® {an}nen;
m (ap,a1,a2,as,...).
ap is called the nth term of the sequence f

n
fln)= —2
(n) (n+1)(n+2)
or

n

= mr D)

AL
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Sets of indices

m N — set of indices of the sequence f = {ap}nen

TAL
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Sets of indices

m N — set of indices of the sequence f = {ap}nen

m Any countably infinite set can be used as an index set.
Examples of other frequently used indices are:
s Nt =N—{0} ~N,
m N— K, where K is any finite subset of N.
m The set Z of relative integers.
= {1,3,5,7,...} = Odd.
m {0,2,4,6,...} =Even.

TAL
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Sets of indices

m N — set of indices of the sequence f = {a,}en

m Any countably infinite set can be used as an index set.
Examples of other frequently used indices are:
s Nt =N— {0} ~N.
m N— K, where K is any finite subset of N.
m The set Z of relative integers.
= {1,3,5,7,...} = 0dd.
m {0,2,4,6,...} =Even.

A ~ B denotes that sets A and B are of the same cardinality,
ie. |Al=|B].

TAL
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Sets of indices

m N - set of indices of the sequence f = {a,}nen

m Any countably infinite set can be used as an index set.
Examples of other frequently used indices are:

Nt =N-{0} ~N.

N— K, where K is any finite subset of N.

The set Z of relative integers.

{1,3,5,7,...} = Odd.

{0,2,4,6,...} =Even.

Two sets A and B have the same cardinality if there exists a
bijection, that is, an injective and surjective function, from A to B.

(See http://www.mathsisfun.com/sets/injective-surjective-

bijective.html for detailed explanation)

TAL
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http://www.mathsisfun.com/sets/injective-surjective-bijective.html 
http://www.mathsisfun.com/sets/injective-surjective-bijective.html 

Finite sequences

m A finite sequence of elements of a set A is a function
f:K—=A,
where K is set a finite subset of natural numbers

For example: f:{1,2,3,4,--- .n} - A neN

Special case: n=0, i.e. empty sequence: f(0) =e

TAL
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Domain of the sequence

f:T—A

=25

The domain of fis T =N—-{2,5}.

TAL
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Next section

I@ Notations for sums
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Notation

For a finite set K ={1,2,--- ,m} and a given sequence
f: K — R with f(n) = a, we write

m
Ya=ata+ - +am
k=1

TAL
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Notation

For a finite set K ={1,2,--- ,m} and a given sequence
f: K — R with f(n) = a, we write

m
Ya=ata+ - +am
k=1

Alternative notations

TAL
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Warmup: What does this notation mean?
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Warmup: What does this notation mean?

Y 4Gk =qa+ s+ G+ q1+ 90 = Lke(a3210} Gk = Li—o k-
This seems the sensible thing
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Warmup: What does this notation mean?

Y 4Gk =qa+ s+ G+ q1+ 90 = Lke(a3210} Gk = Li—o k-
This seems the sensible thing—but:

Y a<k<o 9k = 0 also looks like a feasible interpretation

AL
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Warmup: What does this notation mean?

Y 4Gk =qa+ s+ G2+ q1+ 90 = Lke(a3210} Gk = Li—o k-
This seems the sensible thing—but:

Ya<k<oqk = 0 also looks like a feasible interpretation—but:
If

n
Y a=Y a— ) a,
k=m

k<n k<m

(provided the two sums on the right-hand side exist finite) F‘E‘CL:H
then Y9 _, gk = Y k<o Gk — Yk<a Gk = —G1 — G2 — q3.



Warmup: Interpreting the X-notation

Compute Z{0§k§5} EP and Z{0§k2§5} ajz2. J
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Warmup: Interpreting the X-notation

Compute Z{0§k§5} a, and Z{0§k2§5} ajz2.

{0<k<5}=1{0,1,2,3,4,5} :

thus, Yjo<k<s} @k = ao + a1+ az +as + as + as.
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Warmup: Interpreting the X-notation

Compute Z{0§k§5} a, and Z{0§k2§5} ajz2.

{0<k<5}=1{0,1,2,3,4,5} :

thus, Yjo<k<s} @k = ao + a1+ az +as + as + as.

Second sum

{0<k*<5}={0,1,2

AL
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Warmup: Interpreting the X-notation

Compute Z{0§k§5} a, and Z{0§k2§5} ajz2.

{0<k<5}=1{0,1,2,3,4,5} :

thus, Yjo<k<s} @k = ao + a1+ az +as + as + as.

Second sum

{0<k*<5}={0,1,2,-1,-2} :

thus,

Z{O§k§5} a2 = dg2 +aj2+axp+a iz ta gz=a+ 2a1 +2a». F‘E‘(L:H



Next section

Sums and Recurrences
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Sums and Recurrences

Computation of any sum

S,,:Zak

can be presented in recursive form:

50 = 4
Sn Snfl“'an

= from CHAPTER ONE can be used for finding closed formulas

for evaluating sums. TAL
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Recalling the repertoire method

m Given

g(n) = o(g(n-1))+V(B.7,

) forn>0.

where ® and W are linear, for example, if g(n) = A1g1(n) + A2g2(n) then

®(g(n)) =41 P(g1(n)) +229(g2(n)).
m Closed form is :

g(n) = aA(n)+BB(n)+yC(n)+-- (1)

m Functions A(n),B(n),C(n),... can be found from the system of equations

a1 A(n) +prB(n) +n C(n)+--

AmA(n) + BmB(n) +YmC(n) + -

where @;,f;,7;--- are constants committing (1) and
the repertoire case g;(n) and any n.

= g(n)

= gm(n)

recurrence relationship for

AL
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Next subsection

Sums and Recurrences
m The repertoire method

TAL
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Example 1: arithmetic sequence

Arithmetic sequence: a, = a+ bn

Recurrence equation for the sum S, = ag+a; +as +---+ ap:

So = a
Sn = Sp-1+(a+bn), forn>0.

AL
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Example 1: arithmetic sequence

Arithmetic sequence: a, = a+ bn

Recurrence equation for the sum S, = ag+a; +as +---+ ap:

So = a
Sn = Sp-1+(a+bn), forn>0.

Let's find a closed form for a bit more general recurrent equation:

Ro = o
R, = Rn-1+(B+yn), forn>0.

AL
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Evaluation of terms R, = R,—1 + (3 + yn)

Rk = «
Ri = a+B+y
R, = oa+B+y+(B+2y)=a+2B+3y

R3 = a+2B+3y+(B+37)=a+3B+6y

Ra = A(n)ot+ B(n)B + C(n)y

TAL
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Evaluation of terms R, = R,—1 + (3 + yn)

Rk = «
Ri = a+B+y
R, = oa+B+y+(B+2y)=a+2B+3y

R3 = a+2B+3y+(B+37)=a+3B+6y

Ra = A(n)ot+ B(n)B + C(n)y

A(n),B(n),C(n) can be evaluated using repertoire method:
we will consider three cases

R,=1 for all n
R,=n for all n TAL
R, = n? for all n TECH



Repertoire method: case 1

Lemma 1: A(n) =1 forall n

El=Ry=«

m From R, = R,_1+ (B + vn) follows that 1 =1+ (B + yn).
This is possible only when B =y=0

Hence
1=A(n)-1+B(n)-04+C(n)-0

TAL
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Repertoire method: case 2

Lemma 2: B(n)=n for all n

lOCZRoZO

m From R, = R,_1+ (B + yn) follows that n=(n—1)+ (B + yn).
le. 1=B+vyn.
This gives B =1and y=0

Hence
n=A(n)-04+B(n)-1+C(n)-0

TAL
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Repertoire method: case 3

Lemma 3: C(n) = # for all n

ma=Ry=0%=0.

m Equation R, = R,—1+ (B +yn) can be rewritten as:
mn?=(n—-1)2+B+vyn.
mn>=n’>-2n+1+B+7yn
m 0=(1+p)+n(y—2).

This is valid iff 1+ =0and y—2=10
Hence
n? = A(n)-0+B(n)-(=1)+ C(n)-2

Due to Lemma 2 we get
n®=—n+2C(n)

AL
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Repertoire method: summing up

According to Lemma 1, 2, 3, we get:

R,=1 forall n = A(n)=1

R,=n for all n = B(n)=n

R, =n? for all n === C(n) = (n®>+n)/2
Hence,

2
R,,:()H—nﬁ—i—(n ;—n)'y

The sum for arithmetic sequence we obtain taking & = =a and y=b:

n(n+1)

nfz(a—l—bk)—(n—l-l) + b

k=0

TAL
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Next subsection

Sums and Recurrences

m Perturbation method

TAL
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Perturbation method

Finding the closed form for S, =Y o<

m Rewrite S,11 by splitting off first and last term:

Sn+ant1

aop + Z ak
1<k<n+1

= ao+ Z k41
1<k+1<n+1

= ao+ Z A1
0<k<n
m Work on last sum and express in terms of S,.
m Finally, solve for S,,.

TAL
TECH



Example 2: geometric sequence

Geometric sequence: a, = ax”

Recurrent equation for the sum S, = ag +a1 + a2 + -+ + ap = Yock<n axk:

So = a
S, Sp-1+ax", forn>0.

TAL
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Example 2: geometric sequence

Geometric sequence: a, = ax”

Recurrent equation for the sum S, = ag+a1 +a2+---+an = Yo<k<n axk:

So = a
Sh Sp-1+ax", forn>0.

m Splitting off the first term gives
Sntaniy = a0+ Y, a1
0<k<n
= a+ Z axk+t
0<k<n
= a+x Z axk
0<k<n

= a+xS,

TAL
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Example 2: geometric sequence

Geometric sequence: a, = ax”

Recurrent equation for the sum S, = ap+a1 +a2 +---+an = Yo<k<n axk:

50 = a
S, = S,.i1+ax",forn>0.

m Hence, we have the equation
Sp+ax" = a4+ xS,

m Solution: "
a—ax"
Sp=———

1—x

TAL
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Example 2: geometric sequence

Geometric sequence: a, = ax”

Recurrent equation for the sum S, = ag + a1 + a2 + -+ + ap = Yock<n axk:

50 = a
S, = S,1+ax",forn>0.

m Hence, we have the equation
Sp+ax" = a+ xS,

m Solution: 1
a—ax"
Sp=———

1—x

Closed formula for geometric sum:

5 _ i) BeH

x—1



Next subsection

Sums and Recurrences

m Reduction to known solutions

TAL
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

To = 0
Tn = 2T,a+1

TAL
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

Thn, = 2Tp31+1

This sequence can be transformed into geometric sum using the following
manipulations:

m Divide both equalities by 2":

To/2° 0
T,/2" = Tp,1/2"t41/2"

TAL
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

Thn, = 2Tp31+1

This sequence can be transformed into geometric sum using the following
manipulations:

m Divide both equalities by 2":

To/2° = 0
T,/2" = Tp,1/2"t41/2"
m Set S, = T,/2" to have:
S = 0
Sn = Sn—l +2—n

TAL
(This is geometric sum with the parameters a=1 and x =1/2.) TECH



Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

To = 0
T, = 2T, :1+1
Hence,
n
. b5M—1
S = % (ao = 0 has been left out of the sum)

= 1-27"

T,=2"5,=2"-1

TAL
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

To = 0
Thn = 2T, 1+1
Hence,
. 571
S = % (ap = 0 has been left out of the sum)

= 1-2"

T,=2"S5,=2"-1

Just the same result we have proven by means of induction! :)) E(L:H



Next subsection

Sums and Recurrences

m Summation factors TAL
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Linear recurrence in form a, T, = by Tp—1+Cp

Here {a,}, {bn} and {c,} are arbitrary sequences and the initial value T is a constant.

The idea:
Find a summation factor s, satisfying the following property:

Spbp =sp—1ap—1 foreveryn>1

If such a factor exists, one can do following transformations:

® span Tn=5pbn Th1+5nCh=Sp-1an-1Tn-1+5SnCn.

m Set S, =s,a, T, and rewrite the equation as:

So = soaoTo
Sn = sn—l +sncn

m This yields a closed formula (!) for solution:

1 n 1 n [AL
T, = <Soao To+ Y, Skck> =— <51 biTo+ Y, Skck> FECH
Snan = Snan

k=1



Finding a summation factor

Assuming that b, # 0 for every n:
mSetsg=1

m Compute the next elements using the property
Snbn = sp_1an-1:

4o
S1 = =—
by
s S1a1 apai
2 = - = =
by b1 by
s Spap dpdiaz
3 p— —
bs b1 by b3
Sp—1dn-1 dpdy -..dn-1
Sp = =

b,  bibr...b,

(To be proved by induction!) TAL
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Example: application of summation factor

a,=c, =1 and b, =2 gives the Hanoi Tower sequence:

Evaluate the summation factor:

s — Sp—1dn—1 . apd] ...dp—1 1
= =
bn biby...bp, 2n

The solution is:

1 & no1
To= biTo+ ) = 2—— (1-27")=2"—1
" e (51 1o+ 5kck> L ok )

k=1

TAL
TECH
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