Recurrent Problems

ITT9132 Concrete Mathematics
 Lecture 3 - 11 February 2019

```
Chapter One
    Binary representation
    Generalization
    The repertoire method
Chapter Two
    Sums and Recurrences
    Notation
    The perturbation method
    Summation factors
```


Contents

1 Binary representation of the Josephus function
2 Generalization of Josephus function
3 Intermezzo: The repertoire method
4 Binary representation of generalized Josephus function
5 Sequences
6 Notations for sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Next section

1 Binary representation of the Josephus function
2 Generalization of Josephus function
3 Intermezzo: The repertoire method
4 Binary representation of generalized Jos ephus function
5 Sequences
6 Notations for sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Binary expansion of $n=2^{m}+\ell$

Denote

$$
n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

where $b_{i} \in\{0,1\}$ and $b_{m}=1$.

This notation stands for

$$
n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

For example

$$
20=(10100)_{2} \text { and } 83=(1010011)_{2}
$$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Observations:
$1 \ell=\left(0 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$.
$22 \ell=\left(b_{m-1} \ldots b_{1} b_{0} 0\right)_{2}$.
$32^{m}=(10 \ldots 00)_{2}$ and $1=(00 \ldots 01)_{2}$.
$4 n=2^{m}+\ell=\left(1 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$.
5 $2 \ell+1=\left(b_{m-1} \ldots b_{1} b_{0} 1\right)_{2}$

Corollary

$$
J\left(\left(\boxed{1} b_{m-1} \ldots b_{1} b_{0}\right)_{2}=\left(b_{m-1} \ldots b_{1} b_{0} \boxed{1}\right)_{2}\right.
$$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Observations:
$1 \quad \ell=\left(0 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$.
$22 \ell=\left(b_{m-1} \ldots b_{1} b_{0} 0\right)_{2}$.
$32^{m}=(10 \ldots 00)_{2}$ and $1=(00 \ldots 01)_{2}$.
$4 n=2^{m}+\ell=\left(1 b_{m-1} \ldots b_{1} b_{0}\right)_{2}$.
$52 \ell+1=\left(b_{m-1} \ldots b_{1} b_{0} 1\right)_{2}$

Corollary

$$
\begin{gathered}
J\left(\left(\begin{array}{|cc}
1 & \left.b_{m-1} \ldots b_{1} b_{0}\right)_{2}=\left(b_{m-1} \ldots b_{1} b_{0}\right. \\
\hline 1
\end{array}\right)_{2}\right. \\
\text { shift }
\end{gathered}
$$

Binary expansion of $n=2^{m}+\ell$, where $0 \leqslant \ell<2^{m}$

Example

$$
\begin{aligned}
100 & =64+32+4 \\
J(100) & =J\left((1100100)_{2}\right)=(1001001)_{2} \\
J(100) & =64+8+1=73
\end{aligned}
$$

Iterating the Josephus function

Consider a sequence $x_{0}, x_{1}, \ldots, x_{k}, \ldots$ where:

- $x_{0}=n$ is an arbitrary positive integer; and
- $x_{k}=J\left(x_{k-1}\right)$ for every $k \geq 1$.

Questions:
1 Will the sequence reach a fixed point?
That is: will $x_{k+1}=x_{k}$ for every k large enough?
2 If so: what are the possible fixed points?

Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence defined by:

$$
\begin{aligned}
& x_{0}=n \\
& x_{k}=J\left(x_{k-1}\right) \forall k \geqslant 1
\end{aligned}
$$

reaches the fixed point $2^{v(n)}-1$, where $v(n)$ is the number of bits equal to 1 in the binary representation of n.

Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence defined by:

$$
\begin{aligned}
& x_{0}=n, \\
& x_{k}=J\left(x_{k-1}\right) \forall k \geqslant 1
\end{aligned}
$$

reaches the fixed point $2^{v(n)}-1$, where $v(n)$ is the number of bits equal to 1 in the binary representation of n.

Proof that x_{n} reaches a fixed point:

- For every $n=2^{m}+\ell$ we have $J(n)=2 \ell+1 \leqslant n$.
- Then the sequence x_{k} is nonincreasing in k : If $k \leqslant m$, then $x_{k} \geqslant x_{m}$.
- But a nonincreasing sequence of positive integers is ultimately constant.

Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence defined by:

$$
\begin{aligned}
& x_{0}=n, \\
& x_{k}=J\left(x_{k-1}\right) \forall k \geqslant 1
\end{aligned}
$$

reaches the fixed point $2^{v(n)}-1$, where $v(n)$ is the number of bits equal to 1 in the binary representation of n.

Proof that the fixed point is $2^{v(n)}-1$:

- The binary representation of $J(n)$ is obtained from that of n by a circular permutation.
■ But after such a permutation, a leading 0 disappears, while a leading 1 is preserved.
- Then the binary writing of any fixed point must be made entirely of 1 s .

Next section

1 Binary representation of the Josephus function
2 Generalization of Josephus function
3 Intermezzo: The repertoire method
4 Binary representation of generalized Josephus function
5 Sequances
6 Notations for sums
7 Sums and Deculunces

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Generalization

Josephus function $J: \mathbb{N} \longrightarrow \mathbb{N}$

was defined using recurrences:

$$
\begin{aligned}
J(1) & =1 ; \\
J(2 n) & =2 J(n)-1 \text { for } n \geqslant 1 ; \\
J(2 n+1) & =2 J(n)+1 \text { for } n \geqslant 1 .
\end{aligned}
$$

Introducing integer constants α, β and γ, generalize it as follows:

$$
\begin{aligned}
J(1) & =\alpha ; \\
J(2 n) & =2 J(n)+\beta \text { for } n \geqslant 1 ; \\
J(2 n+1) & =2 J(n)+\gamma \text { for } n \geqslant 1 .
\end{aligned}
$$

Our $J(n)$ corresponds to $\alpha=1, \beta=-1, \gamma=1$.

The repertoire method

To find closed form of a function f :
Step 1 Find few initial values for f.
Step 2 Find (or guess) closed formula from the values found by Step 1 :
examine a repertoire of cases and combine them to find general closed formula.
Step 3 Verify the closed formula constructed as the result of Step 2.

The idea is to examine a repertoire of cases and use it to find a general closed formula for the recurrently defined function.

Repertoire method for generalized f : STEP 1

n	$f(n)$	Calculation
1	α	$f(1)=\alpha$
2	$2 \alpha+\beta$	$f(2)=2 f(1)+\beta$
3	$2 \alpha+\quad \gamma$	$f(3)=2 f(1)+\gamma$
4	$4 \alpha+3 \beta$	$f(4)=2 f(2)+\beta$
5	$4 \alpha+2 \beta+\gamma$	$f(5)=2 f(2)+\gamma$
6	$4 \alpha+\beta+2 \gamma$	$f(6)=2 f(3)+\beta$
7	$4 \alpha+\quad 3 \gamma$	$f(7)=2 f(3)+\gamma$
8	$8 \alpha+7 \beta$	$f(8)=2 f(4)+\beta$
9	$8 \alpha+6 \beta+\gamma$	$f(9)=2 f(4)+\gamma$

Repertoire method for generalized f : STEP 2

Observations:

For $n=1,2, \ldots, 9$, taking $n=2^{k}+\ell$:

- The coefficient of α is 2^{k};
- The coefficient of β is $2^{k}-1-\ell$;
- The coefficient of γ is ℓ.

Repertoire method for generalized f : STEP 3

Proposition

If the function f is defined by the recurrence formula:

$$
\begin{aligned}
f(1) & =\alpha \\
f(2 n) & =2 J(n)+\beta \text { for } n \geqslant 1 \\
f(2 n+1) & =2 J(n)+\gamma \text { for } n \geqslant 1
\end{aligned}
$$

then letting $n=2^{k}+\ell$,

$$
f(n)=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

where:

$$
\begin{aligned}
& A(n)=2^{k} \\
& B(n)=2^{k}-1-\ell \\
& C(n)=\ell
\end{aligned}
$$

Proof of the Proposition (1)

Lemma 1. $A(n)=2^{k}$, where $n=2^{k}+\ell$ and $0 \leqslant \ell<2^{k}$.

Proof.

Let $\alpha=1$ and $\beta=\gamma=0$. Then $f(n)=A(n)$ and:

$$
A(1)=1 ; \quad A(2 n)=2 A(n) \text { for } n>0 ; A(2 n+1)=2 A(n) \text { for } n>0 .
$$

Proof by induction over k :
Basis: If $k=0$, then $n=2^{0}+\ell$ and $0 \leqslant \ell<1$. Thus $n=1$ and

$$
A(1)=2^{0}=1 .
$$

Step: Let us assume that $A\left(2^{k-1}+t\right)=2^{k-1}$, where $0 \leqslant t<2^{k-1}$ Two cases:

- If n is even, then ℓ is even and $\ell / 2<2^{k-1}$, thus

$$
A(n)=A\left(2^{k}+\ell\right)=2 A\left(2^{k-1}+\ell / 2\right)=2 \cdot 2^{k-1}=2^{k}
$$

- If n is odd, then $\ell-1$ is even and $(\ell-1) / 2<2^{k-1}$, thus

$$
A(n)=A\left(2^{k}+\ell\right)=2 A\left(2^{k-1}+(\ell-1) / 2\right)=2 \cdot 2^{k-1}=2^{k}
$$

Proof of the Proposition (2)

Lemma 2. $A(n)-B(n)-C(n)=1$, for all $n \in \mathbb{N}$.

Proof.

Let f be the constant function $f(n)=1$. Then:

$$
f(1)=\alpha ; \quad f(2 n)=2 f(n)+\beta ; \quad f(2 n+1)=2 f(n)+\gamma
$$

or equivalently,

$$
1=\alpha ; \quad 1=2+\beta ; \quad 1=2+\gamma .
$$

As this must hold for every $n \geq 1$, it must be $\alpha=1$ and $\beta=\gamma=-1$.

Proof of the Proposition (3)

Lemma 3. $A(n)+C(n)=n$, for all $n \in \mathbb{N}$.

Proof.

Let $f(n)=n$. Then:

$$
f(1)=\alpha ; \quad f(2 n)=2 f(n)+\beta ; \quad f(2 n+1)=2 f(n)+\gamma
$$

or equivalently,

$$
1=\alpha ; \quad 2 n=2 n+\beta ; \quad 2 n+1=2 n+\gamma .
$$

As this must hold for every $n \geq 1$, it must be $\alpha=1, \beta=0$ and $\gamma=1$.

Proof of the Proposition (4)

From Lemma 3 and Lemma 1 we can conclude:

$$
2^{k}+C(n)=A(n)+C(n)=n=2^{k}+\ell,
$$

which gives:

$$
C(n)=\ell
$$

From Lemma 2 follows:

$$
B(n)=A(n)-1-C(n)=2^{k}-1-\ell .
$$

Next section

1 Binary representation of the Josephus function
2 Camauali-ation of Incamhurn function
3 Intermezzo: The repertoire method
4 Binary representation of generalized Josephus function
5 Sequences
6 niotations four sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

The repertoire method: Basic ideas

Let the recursion scheme

$$
\begin{aligned}
g(0) & =\alpha \\
g(n+1) & =\Phi(g(n))+\Psi(n ; \beta, \gamma, \ldots) \text { for } n \geq 0 .
\end{aligned}
$$

have the following properties:
1Φ is linear in g : if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$, then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.
No hypotheses are made on the dependence of g on n.
2Ψ is linear in each of the $m-1$ parameters β, γ, \ldots
No hypotheses are made on the dependence of Ψ on n.
Then the whole system is linear in the parameters $\alpha, \beta, \gamma, \ldots$ We can then look for a general solution of the form

$$
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\ldots
$$

The repertoire method: Description

Suppose we have a repertoire of m pairs of the form $\left(\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right), g_{i}(n)\right)$ satisfying the following conditions:
1 For every $i=1,2, \ldots, m, g_{i}(n)$ is the solution of the system corresponding to the values $\alpha=\alpha_{i}, \beta=\beta_{i}, \gamma=\gamma_{i}, \ldots$
2 The m-tuples $\left(\alpha_{i}, \beta_{i}, \gamma_{i}, \ldots\right)$ are linearly independent.
Then the functions $A(n), B(n), C(n), \ldots$ are uniquely determined.
The reason is that, for every fixed n,

$$
\begin{aligned}
\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\ldots & =g_{1}(n) \\
\vdots & \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\ldots & =g_{m}(n)
\end{aligned}
$$

is a system of m linear equations in the m unknowns $A(n), B(n), C(n), \ldots$ whose coefficients matrix is invertible.

Next section

1 Binary representation of the Josephus function
2 Generalization of josephus funcion
3 Intermezzo: The repertoire method
4 Binary representation of generalized Josephus function
5 Sequences
6 Notations for sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Binary representation of generalized Josephus function

Definition

The generalized Josephus function (GJ-function) is defined for $\alpha, \beta_{0}, \beta_{1}$ as follows:

$$
\begin{aligned}
f(1) & =\alpha \\
f(2 n+j) & =2 f(n)+\beta_{j} \text { for } j=0,1 \text { and } n>0
\end{aligned}
$$

We obtain the definition used before if to select $\beta_{0}=\beta$ and $\beta_{1}=\gamma$.

Binary representation of generalized Josephus function (2)

Case A: Argument is even

If $2 n=2^{m}+\ell$, then the binary notation is

$$
2 n=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=0$ and $b_{m}=1$.

Hence

$$
n=b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
$$

or

$$
n=\left(b_{m} b_{m-1} \ldots b_{1}\right)_{2}
$$

Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If $2 n+1=2^{m}+\ell$, then the binary notation is

$$
2 n+1=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n+1=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=1$ and $b_{m}=1$.

We get

$$
\begin{aligned}
2 n+1 & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+1 \\
2 n & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2 \\
n & =b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
\end{aligned}
$$

or

$$
n=\left(b_{m} b_{m-1} \ldots b_{1}\right)_{2}
$$

Binary representation of generalized Josephus function (3)

Case B : Argument is odd

If $2 n+1=2^{m}+\ell$, then the binary notation is

$$
2 n+1=\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}
$$

or

$$
2 n+1=b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+b_{0}
$$

where $b_{i} \in\{0,1\}, b_{0}=1$ and $b_{m}=1$.

We get

$$
\begin{aligned}
2 n+1 & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2+1 \\
2 n & =b_{m} 2^{m}+b_{m-1} 2^{m-1}+\ldots+b_{1} 2 \\
n & =b_{m} 2^{m-1}+b_{m-1} 2^{m-2}+\ldots+b_{2} 2+b_{1}
\end{aligned}
$$

Same results for cases A and B indicates that we don't need to consider even and odd cases separately.

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
& =2 \cdot\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =f\left(\left(b_{m}\right)_{2}\right) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =f(1) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =\alpha 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}}
\end{aligned}
$$

where

$$
\beta_{b_{j}}= \begin{cases}\beta_{1}, & \text { if } b_{j}=1 \\ \beta_{0} & \text { if } b_{j}=0\end{cases}
$$

Binary representation of generalized Josephus function (4)

Let's evaluate:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{2}\right) & =2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{2}\right)+\beta_{b_{0}} \\
& =2 \cdot\left(2 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =4 f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{2}\right)+2 \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =f\left(\left(b_{m}\right)_{2}\right) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =f(1) 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}} \\
& =\alpha 2^{m}+\beta_{b_{m-1}} 2^{m-1}+\ldots+\beta_{b_{1}} 2+\beta_{b_{0}}
\end{aligned}
$$

where

$$
\beta_{b_{j}}= \begin{cases}\beta_{1}, & \text { if } b_{j}=1 \\ \beta_{0} & \text { if } b_{j}=0\end{cases}
$$

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right)=\left(\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{2}
$$

Example

Original Josephus function: $\alpha=1, \beta_{0}=-1, \beta_{1}=1$ i.e.

$$
\begin{aligned}
f(1) & =1 \\
f(2 n) & =2 f(n)-1 \\
f(2 n+1) & =2 f(n)+1
\end{aligned}
$$

Compute

$$
\begin{aligned}
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{2}\right) & =\left(\alpha \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{2} \\
f(100)=f\left((1100100)_{2}\right)= & (1,1,-1,-1,1,-1,-1)_{2} \\
& =64+32-16-8+4-2-1=73
\end{aligned}
$$

Generalized Josephus function: Multiple bases

Let $c, d \geqslant 2$ be integers.
Consider the following recurrent problem:

$$
\begin{aligned}
f(j) & =\alpha_{j} & & \text { for } 1 \leqslant j<d ; \\
f(d n+j) & =c f(n)+\beta_{j} & & \text { for } 0 \leqslant j<d \text { and } n \geqslant 1 .
\end{aligned}
$$

How can we compute $f(n)$ for an arbitrary positive integer n, without having to go through the entire iterative process?

Multiple bases representation

We can actually use the same technique!

Let $\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}$ be the base- d writing of n. Then $b_{m} \neq 0$ and:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{d}\right) & =c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{d}\right)+\beta_{b_{0}} \\
& =c \cdot\left(c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{d}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =c^{2} f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{d}\right)+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =c^{m} \cdot f\left(b_{m}\right)+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =c^{m} \alpha_{b_{m}}+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}}
\end{aligned}
$$

Multiple bases representation

We can actually use the same technique!

Let $\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}$ be the base- d writing of n. Then $b_{m} \neq 0$ and:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{d}\right) & =c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{d}\right)+\beta_{b_{0}} \\
& =c \cdot\left(c f\left(\left(b_{m}, b_{m-\mathbf{1}}, \ldots, b_{2}\right)_{d}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =c^{2} f\left(\left(b_{m}, b_{m-\mathbf{1}}, \ldots, b_{2}\right)_{d}\right)+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =c^{m} \cdot f\left(b_{m}\right)+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =c^{m} \alpha_{b_{m}}+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}}
\end{aligned}
$$

With a slight abuse of notation: (the β_{i} 's need not be base- c digits)

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}\right)=\left(\alpha_{b_{m}} \beta_{b_{m-1}} \beta_{b_{m-2}} \ldots \beta_{b_{1}} \beta_{b_{0}}\right)_{c}
$$

Multiple bases representation

We can actually use the same technique!

Let $\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}$ be the base- d writing of n. Then $b_{m} \neq 0$ and:

$$
\begin{aligned}
f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}, b_{0}\right)_{d}\right) & =c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{1}\right)_{d}\right)+\beta_{b_{0}} \\
& =c \cdot\left(c f\left(\left(b_{m}, b_{m-1}, \ldots, b_{2}\right)_{d}\right)+\beta_{b_{1}}\right)+\beta_{b_{0}} \\
& =c^{2} f\left(\left(b_{m}, b_{m-\mathbf{1}}, \ldots, b_{2}\right)_{d}\right)+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =\vdots \\
& =c^{m} \cdot f\left(b_{m}\right)+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}} \\
& =c^{m} \alpha_{b_{m}}+c^{m-1} \beta_{b_{m-1}}+\ldots+c \beta_{b_{1}}+\beta_{b_{0}}
\end{aligned}
$$

Or, more precisely:

$$
f\left(\left(b_{m} b_{m-1} \ldots b_{1} b_{0}\right)_{d}\right)=p(c) \text { where } p(x)=\alpha_{b_{m}} x^{m}+\beta_{b_{m-1}} x^{m-1}+\ldots+\beta_{b_{1}} x+\beta_{b_{0}}
$$

Next section

1 Binary representation of the Josephus function
2 Camaualimation of Inemahure fumation
3 Intermezzo: The repertoire method
4 Dinam. ammeamatation of mamaualized iesephus function
5 Sequences
6 Notations for sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Sequences

Definition

A sequence of elements of a set A is a function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is the set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$;
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$;
- $\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$.
a_{n} is called the nth term of the sequence f

Sequences

Definition

A sequence of elements of a set A is a function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is the set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$;
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$;
$\square\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$.
a_{n} is called the nth term of the sequence f

Example

$$
\begin{gathered}
a_{0}=0, a_{1}=\frac{1}{2 \cdot 3}, a_{2}=\frac{2}{3 \cdot 4}, a_{3}=\frac{3}{4 \cdot 5}, \cdots \\
\text { or } \\
\left\langle 0, \frac{1}{6}, \frac{1}{6}, \frac{3}{20}, \frac{2}{15}, \cdots, \frac{n}{(n+1)(n+2)}, \cdots\right\rangle
\end{gathered}
$$

Sequences

Definition

A sequence of elements of a set A is a function $f: \mathbb{N} \rightarrow A$, where \mathbb{N} is the set of natural numbers.

Notations used:

- $f=\left\{a_{n}\right\}$, where $a_{n}=f(n)$;
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}$;
$\square\left\langle a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\rangle$.
a_{n} is called the nth term of the sequence f
Notation

$$
\begin{gathered}
f(n)=\frac{n}{(n+1)(n+2)} \\
\text { or } \\
a_{n}=\frac{n}{(n+1)(n+2)}
\end{gathered}
$$

Sets of indices

- \mathbb{N} - set of indices of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$

Sets of indices

- \mathbb{N} - set of indices of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used as an index set. Examples of other frequently used indices are:
- $\mathbb{N}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$.
- $\mathbb{N}-K$, where K is any finite subset of \mathbb{N}.
- The set \mathbb{Z} of relative integers.
- $\{1,3,5,7, \ldots\}=$ Odd.
- $\{0,2,4,6, \ldots\}=$ Even.

Sets of indices

- \mathbb{N} - set of indices of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used as an index set. Examples of other frequently used indices are:
- $\mathbb{N}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$.
- $\mathbb{N}-K$, where K is any finite subset of \mathbb{N}.
- The set \mathbb{Z} of relative integers.
- $\{1,3,5,7, \ldots\}=$ Odd.
- $\{0,2,4,6, \ldots\}=$ Even.
$A \sim B$ denotes that sets A and B are of the same cardinality, i.e. $|A|=|B|$.

Sets of indices

- \mathbb{N} - set of indices of the sequence $f=\left\{a_{n}\right\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used as an index set.

Examples of other frequently used indices are:

- $\mathbb{N}^{+}=\mathbb{N}-\{0\} \sim \mathbb{N}$.
- $\mathbb{N}-K$, where K is any finite subset of \mathbb{N}.
- The set \mathbb{Z} of relative integers.
- $\{1,3,5,7, \ldots\}=$ Odd.
- $\{0,2,4,6, \ldots\}=$ Even.

Two sets A and B have the same cardinality if there exists a bijection, that is, an injective and surjective function, from A to B.
(See http://www.mathsisfun.com/sets/injective-surjectivebijective.html for detailed explanation)

Finite sequences

- A finite sequence of elements of a set A is a function $f: K \rightarrow A$, where K is set a finite subset of natural numbers

For example: $f:\{1,2,3,4, \cdots, n\} \rightarrow A, n \in \mathbb{N}$
Special case: $n=0$, i.e. empty sequence: $f(\emptyset)=e$

Domain of the sequence

$$
\begin{gathered}
f: T \rightarrow A \\
a_{n}=\frac{n}{(n-2)(n-5)}
\end{gathered}
$$

The domain of f is $T=\mathbb{N}-\{2,5\}$.

Next section

1 Binary representation of the Josephus function
2 Canaualiantion of lamahion function
3 Intermezzo: The repertoire method
4 Dinam. -amueanatation of mamaualized is isephus function
5 Sequences
6 Notations for sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Notation

For a finite set $K=\{1,2, \cdots, m\}$ and a given sequence $f: K \rightarrow \mathbb{R}$ with $f(n)=a_{n}$ we write

$$
\sum_{k=1}^{m} a_{k}=a_{1}+a_{2}+\cdots+a_{m}
$$

Notation

For a finite set $K=\{1,2, \cdots, m\}$ and a given sequence $f: K \rightarrow \mathbb{R}$ with $f(n)=a_{n}$ we write

$$
\sum_{k=1}^{m} a_{k}=a_{1}+a_{2}+\cdots+a_{m}
$$

Alternative notations

$$
\sum_{k=1}^{m} a_{k}=\sum_{1 \leqslant k \leqslant m} a_{k}=\sum_{k \in\{1, \cdots, m\}} a_{k}=\sum_{K} a_{k}
$$

Warmup: What does this notation mean?

$$
\sum_{\sum_{d}^{2}}
$$

Options:
$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum$
This seems the sensible thing-but:
$2 \sum_{4<k<0} a_{k}=0$ also looks like a feasible interpretation-but:
3 If

$$
\sum_{k=m}^{n} q_{k}=\sum_{k \leq n} q_{k}-\sum_{k<m} q_{k}
$$

(provided the two sums on the right-hand side exist finite)
then $\sum_{k=4}^{0} q_{k}=\sum_{k<0} q_{k}-\sum_{k<4} q_{k}=-q_{1}-q_{2}-q_{3}$.

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing
$2 \sum_{4 \leq k \leq 0} q_{k}=0$ also looks like a feasible interpretation-but:
3 If

(provided the two sums on the right-hand side exist finite)

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing-but:
$2 \sum_{4 \leq k \leq 0} q_{k}=0$ also looks like a feasible interpretation - but:

Warmup: What does this notation mean?

$$
\sum_{k=4}^{0} q_{k}
$$

Options:

$1 \sum_{k=4}^{0} q_{k}=q_{4}+q_{3}+q_{2}+q_{1}+q_{0}=\sum_{k \in\{4,3,2,1,0\}} q_{k}=\sum_{k=0}^{4} q_{k}$. This seems the sensible thing-but:
$2 \sum_{4 \leq k \leq 0} q_{k}=0$ also looks like a feasible interpretation-but:
3 If

$$
\sum_{k=m}^{n} q_{k}=\sum_{k \leq n} q_{k}-\sum_{k<m} q_{k}
$$

(provided the two sums on the right-hand side exist finite) then $\sum_{k=4}^{0} q_{k}=\sum_{k \leq 0} q_{k}-\sum_{k<4} q_{k}=-q_{1}-q_{2}-q_{3}$.

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leq k \leq 5\}} a_{k}$ and $\sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

Warmup: Interpreting the \sum-notation

$$
\text { Compute } \sum_{\{0 \leq k \leq 5\}} a_{k} \text { and } \sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}} \text {. }
$$

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leq k \leq 5\}} a_{k}$ and $\sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.
Second sum

$$
\left\{0 \leq k^{2} \leq 5\right\}=\{0,1,2,-1,-2\}
$$

thus,

$\sum_{\{0}$$a_{k^{2}}=a_{0}^{2}$ $+a_{1^{2}}+a_{2^{2}}+a_{(-1)^{2}}$ $+a_{(-2)}$

Warmup: Interpreting the \sum-notation

Compute $\sum_{\{0 \leq k \leq 5\}} a_{k}$ and $\sum_{\left\{0 \leq k^{2} \leq 5\right\}} a_{k^{2}}$.

First sum

$$
\{0 \leq k \leq 5\}=\{0,1,2,3,4,5\}:
$$

thus, $\sum_{\{0 \leq k \leq 5\}} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$.

Second sum

$$
\left\{0 \leq k^{2} \leq 5\right\}=\{0,1,2,-1,-2\}:
$$

thus,
$\sum_{\{0 \leq k \leq 5\}} a_{k^{2}}=a_{0^{2}}+a_{1^{2}}+a_{2^{2}}+a_{(-1)^{2}}+a_{(-2)^{2}}=a_{0}+2 a_{1}+2 a_{2}$.

Next section

1 Binary representation of the Josephus function
2 Canaualiantion of lamahion function
3 Intermezzo: The repertoire method
4 Dinam. Mamumantation of manaunlizad idsephus function
5 Sequences
6 nionations sour sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Sums and Recurrences

Computation of any sum

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

can be presented in recursive form:

$$
\begin{aligned}
& S_{0}=a_{0} \\
& S_{n}=S_{n-1}+a_{n}
\end{aligned}
$$

\Rightarrow from CHAPTER ONE can be used for finding closed formulas for evaluating sums.

Recalling the repertoire method

- Given

$$
\begin{aligned}
& g(0)=\alpha \\
& g(n)=\Phi(g(n-1))+\Psi(\beta, \gamma, \ldots) \text { for } n>0 .
\end{aligned}
$$

where Φ and Ψ are linear, for example, if $g(n)=\lambda_{1} g_{1}(n)+\lambda_{2} g_{2}(n)$ then $\Phi(g(n))=\lambda_{1} \Phi\left(g_{1}(n)\right)+\lambda_{2} \Phi\left(g_{2}(n)\right)$.

- Closed form is :

$$
\begin{equation*}
g(n)=\alpha A(n)+\beta B(n)+\gamma C(n)+\cdots \tag{1}
\end{equation*}
$$

- Functions $A(n), B(n), C(n), \ldots$ can be found from the system of equations

$$
\begin{aligned}
\alpha_{1} A(n)+\beta_{1} B(n)+\gamma_{1} C(n)+\cdots & =g_{1}(n) \\
& =\vdots \\
\alpha_{m} A(n)+\beta_{m} B(n)+\gamma_{m} C(n)+\cdots & =g_{m}(n)
\end{aligned}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_{i}(n)$ and any n.

Next subsection

1 Binary representation of the Josephus function
2 Generalization - Josephus function
3 Intermezzo: The repertoire method
4 -inary representation of generalized Josephus function
5 Sequences
\% Notaions for sums
7 Sums and Recurrences
■ The repertoire method

- Perturbation method
- Reduction to known solutions
- Summation factors

Example 1: arithmetic sequence

Arithmetic sequence: $a_{n}=a+b n$
Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+(a+b n), \text { for } n>0 .
\end{aligned}
$$

Let's find a closed form for a bit more general recurrent equation:

Example 1: arithmetic sequence

Arithmetic sequence: $a_{n}=a+b n$
Recurrence equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+(a+b n), \text { for } n>0 .
\end{aligned}
$$

Let's find a closed form for a bit more general recurrent equation:

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{n}=R_{n-1}+(\beta+\gamma n), \text { for } n>0 .
\end{aligned}
$$

Evaluation of terms $R_{n}=R_{n-1}+(\beta+\gamma n)$

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{1}=\alpha+\beta+\gamma \\
& R_{2}=\alpha+\beta+\gamma+(\beta+2 \gamma)=\alpha+2 \beta+3 \gamma \\
& R_{3}=\alpha+2 \beta+3 \gamma+(\beta+3 \gamma)=\alpha+3 \beta+6 \gamma
\end{aligned}
$$

Observation

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

Evaluation of terms $R_{n}=R_{n-1}+(\beta+\gamma n)$

$$
\begin{aligned}
& R_{0}=\alpha \\
& R_{1}=\alpha+\beta+\gamma \\
& R_{2}=\alpha+\beta+\gamma+(\beta+2 \gamma)=\alpha+2 \beta+3 \gamma \\
& R_{3}=\alpha+2 \beta+3 \gamma+(\beta+3 \gamma)=\alpha+3 \beta+6 \gamma
\end{aligned}
$$

Observation

$$
R_{n}=A(n) \alpha+B(n) \beta+C(n) \gamma
$$

$A(n), B(n), C(n)$ can be evaluated using repertoire method: we will consider three cases
$1 R_{n}=1$ for all n
$2 R_{n}=n$ for all n
$3 R_{n}=n^{2}$ for all n

Repertoire method: case 1

Lemma 1: $A(n)=1$ for all n

■ $1=R_{0}=\alpha$

- From $R_{n}=R_{n-1}+(\beta+\gamma n)$ follows that $1=1+(\beta+\gamma n)$. This is possible only when $\beta=\gamma=0$

Hence

$$
1=A(n) \cdot 1+B(n) \cdot 0+C(n) \cdot 0
$$

Repertoire method: case 2

Lemma 2: $B(n)=n$ for all n

- $\alpha=R_{0}=0$
- From $R_{n}=R_{n-1}+(\beta+\gamma n)$ follows that $n=(n-1)+(\beta+\gamma n)$.
I.e. $1=\beta+\gamma n$.

This gives $\beta=1$ and $\gamma=0$
Hence

$$
n=A(n) \cdot 0+B(n) \cdot 1+C(n) \cdot 0
$$

Repertoire method: case 3

Lemma 3: $C(n)=\frac{n^{2}+n}{2}$ for all n

- $\alpha=R_{0}=0^{2}=0$.

■ Equation $R_{n}=R_{n-1}+(\beta+\gamma n)$ can be rewritten as:

$$
\begin{aligned}
& -n^{2}=(n-1)^{2}+\beta+\gamma n . \\
& n^{2}=n^{2}-2 n+1+\beta+\gamma n . \\
& 0=(1+\beta)+n(\gamma-2) .
\end{aligned}
$$

This is valid iff $1+\beta=0$ and $\gamma-2=0$
Hence

$$
n^{2}=A(n) \cdot 0+B(n) \cdot(-1)+C(n) \cdot 2
$$

Due to Lemma 2 we get

$$
n^{2}=-n+2 C(n)
$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get:
$1 R_{n}=1$ for all n

$$
\Longrightarrow \quad A(n)=1
$$

$$
2 R_{n}=n \text { for all } n \quad \Longrightarrow \quad B(n)=n
$$

$$
3 R_{n}=n^{2} \text { for all } n \quad \Longrightarrow \quad C(n)=\left(n^{2}+n\right) / 2
$$

Hence,

$$
R_{n}=\alpha+n \beta+\left(\frac{n^{2}+n}{2}\right) \gamma
$$

The sum for arithmetic sequence we obtain taking $\alpha=\beta=a$ and $\gamma=b$:

$$
S_{n}=\sum_{k=0}^{n}(a+b k)=(n+1) a+\frac{n(n+1)}{2} b
$$

Next subsection

1 Binary representation of the Josephus function

3 Intermezzo: The repertoire method
4 Dinam. Manementation of antioulizad idsephus function
5 Sequences

- N1atations foul sums

7 Sums and Recurrences

- The repertoire method

■ Perturbation method

- Reduction to known solutions
- Summation factors

Perturbation method

Finding the closed form for $S_{n}=\sum_{0 \leqslant k \leqslant n} a_{k}$:

- Rewrite S_{n+1} by splitting off first and last term:

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{1 \leqslant k \leqslant n+1} a_{k} \\
& =a_{0}+\sum_{1 \leqslant k+1 \leqslant n+1} a_{k+1} \\
& =a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1}
\end{aligned}
$$

- Work on last sum and express in terms of S_{n}.
- Finally, solve for S_{n}.

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0
\end{aligned}
$$

- Splitting off the first term gives

$$
\begin{aligned}
S_{n}+a_{n+1} & =a_{0}+\sum_{0 \leqslant k \leqslant n} a_{k+1} \\
& =a+\sum_{0 \leqslant k \leqslant n} a x^{k+1} \\
& =a+x \sum_{0 \leqslant k \leqslant n} a x^{k} \\
& =a+x S_{n}
\end{aligned}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0 .
\end{aligned}
$$

- Hence, we have the equation

$$
S_{n}+a x^{n+1}=a+x S_{n}
$$

- Solution:

$$
S_{n}=\frac{a-a x^{n+1}}{1-x}
$$

Example 2: geometric sequence

Geometric sequence: $a_{n}=a x^{n}$

Recurrent equation for the sum $S_{n}=a_{0}+a_{1}+a_{2}+\cdots+a_{n}=\sum_{0 \leqslant k \leqslant n} a x^{k}$:

$$
\begin{aligned}
& S_{0}=a \\
& S_{n}=S_{n-1}+a x^{n}, \text { for } n>0
\end{aligned}
$$

- Hence, we have the equation

$$
S_{n}+a x^{n+1}=a+x S_{n}
$$

- Solution:

$$
S_{n}=\frac{a-a x^{n+1}}{1-x}
$$

Closed formula for geometric sum:

$$
S_{n}=\frac{a\left(x^{n+1}-1\right)}{x-1}
$$

Next subsection

1 Binary representation of the Josephus function

3 Intermezzo: The repertoire method
4 n. 4 alp
5 Sequences
6 nionations soums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

This sequence can be transformed into geometric sum using the following manipulations:

- Divide both equalities by 2^{n} :

$$
\begin{aligned}
& T_{0} / 2^{0}=0 \\
& T_{n} / 2^{n}=T_{n-1} / 2^{n-1}+1 / 2^{n}
\end{aligned}
$$

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

This sequence can be transformed into geometric sum using the following manipulations:

- Divide both equalities by 2^{n} :

$$
\begin{aligned}
& T_{0} / 2^{0}=0 \\
& T_{n} / 2^{n}=T_{n-1} / 2^{n-1}+1 / 2^{n}
\end{aligned}
$$

- Set $S_{n}=T_{n} / 2^{n}$ to have:

$$
\begin{aligned}
& S_{0}=0 \\
& S_{n}=S_{n-1}+2^{-n}
\end{aligned}
$$

(This is geometric sum with the parameters $a=1$ and $x=1 / 2$.)

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S_{n} & =\frac{0.5\left(0.5^{n}-1\right)}{0.5-1}\left(a_{0}=0 \text { has been left out of the sum }\right) \\
& =1-2^{-n}
\end{aligned}
$$

$$
T_{n}=2^{n} S_{n}=2^{n}-1
$$

Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S_{n} & =\frac{0.5\left(0.5^{n}-1\right)}{0.5-1}\left(a_{0}=0 \text { has been left out of the sum }\right) \\
& =1-2^{-n}
\end{aligned}
$$

$$
T_{n}=2^{n} S_{n}=2^{n}-1
$$

Just the same result we have proven by means of induction! :))

Next subsection

1 Binary representation of the Josephus function
2 Generalization of Josephus function
3 Intermezzo: The repertoire method
4 -inary representation of generailzed Josephus function
5 Sequences
б Notations for sums
7 Sums and Recurrences

- The repertoire method
- Perturbation method
- Reduction to known solutions
- Summation factors

Linear recurrence in form $a_{n} T_{n}=b_{n} T_{n-1}+c_{n}$

Here $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are arbitrary sequences and the initial value T_{0} is a constant.

The idea:

Find a summation factor s_{n} satisfying the following property:

$$
s_{n} b_{n}=s_{n-1} a_{n-1} \text { for every } n \geqslant 1
$$

If such a factor exists, one can do following transformations:

- $s_{n} a_{n} T_{n}=s_{n} b_{n} T_{n-\mathbf{1}}+s_{n} c_{n}=s_{n-\mathbf{1}} a_{n-\mathbf{1}} T_{n-\mathbf{1}}+s_{n} c_{n}$.
- Set $S_{n}=s_{n} a_{n} T_{n}$ and rewrite the equation as:

$$
\begin{aligned}
& S_{0}=s_{0} a_{0} T_{0} \\
& S_{n}=S_{n-1}+s_{n} c_{n}
\end{aligned}
$$

- This yields a closed formula (!) for solution:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{0} a_{0} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)
$$

Finding a summation factor

Assuming that $b_{n} \neq 0$ for every n :

- Set $s_{0}=1$
- Compute the next elements using the property $s_{n} b_{n}=s_{n-1} a_{n-1}:$

$$
\begin{aligned}
s_{1} & = \\
s_{2} \quad & =\frac{a_{0}}{b_{1}} \\
s_{3} \quad & =\quad \frac{s_{1} a_{1}}{b_{2}}=\frac{a_{0} a_{1}}{b_{1} b_{2}} \\
& \ldots \ldots \ldots \\
s_{n} \quad & =\frac{s_{0} a_{2}}{b_{3} b_{2} b_{3}} \\
&
\end{aligned}
$$

(To be proved by induction!)

Example: application of summation factor

$a_{n}=c_{n}=1$ and $b_{n}=2$ gives the Hanoi Tower sequence:
Evaluate the summation factor:

$$
s_{n}=\frac{s_{n-1} a_{n-1}}{b_{n}}=\frac{a_{0} a_{1} \ldots a_{n-1}}{b_{1} b_{2} \ldots b_{n}}=\frac{1}{2^{n}}
$$

The solution is:

$$
T_{n}=\frac{1}{s_{n} a_{n}}\left(s_{1} b_{1} T_{0}+\sum_{k=1}^{n} s_{k} c_{k}\right)=2^{n} \sum_{k=1}^{n} \frac{1}{2^{k}}=2^{n}\left(1-2^{-n}\right)=2^{n}-1
$$

