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Binary expansion of n = 2m + `

Denote

n = (bmbm−1 . . .b1b0)2

where bi ∈ {0,1} and bm = 1.

This notation stands for

n = bm2
m +bm−12

m−1 + . . .+b12+b0

For example

20 = (10100)2 and 83 = (1010011)2



Binary expansion of n = 2m + ` , where 06 ` < 2m

Observations:

1 ` = (0bm−1 . . .b1b0)2.

2 2` = (bm−1 . . .b1b00)2.

3 2m = (10 . . .00)2 and 1 = (00 . . .01)2.

4 n = 2m + ` = (1bm−1 . . .b1b0)2.

5 2`+1 = (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2 = (bm−1 . . .b1b0 1 )2

shift



Binary expansion of n = 2m + ` , where 06 ` < 2m

Observations:

1 ` = (0bm−1 . . .b1b0)2.

2 2` = (bm−1 . . .b1b00)2.

3 2m = (10 . . .00)2 and 1 = (00 . . .01)2.

4 n = 2m + ` = (1bm−1 . . .b1b0)2.

5 2`+1 = (bm−1 . . .b1b01)2

Corollary

J(( 1 bm−1 . . .b1b0)2 = (bm−1 . . .b1b0 1 )2

shift



Binary expansion of n = 2m + ` , where 06 ` < 2m

Example

100 = 64+32+4

J(100) = J((1100100)2) = (1001001)2

J(100) = 64+8+1 = 73



Iterating the Josephus function

Consider a sequence x0,x1, . . . ,xk , . . . where:

x0 = n is an arbitrary positive integer; and

xk = J(xk−1) for every k ≥ 1.

Questions:

1 Will the sequence reach a �xed point?

That is: will xk+1 = xk for every k large enough?

2 If so: what are the possible �xed points?



Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence de�ned by:

x0 = n ,

xk = J(xk−1) ∀k > 1

reaches the �xed point 2ν(n)−1, where ν(n) is the number of bits

equal to 1 in the binary representation of n.



Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence de�ned by:

x0 = n ,

xk = J(xk−1) ∀k > 1

reaches the �xed point 2ν(n)−1, where ν(n) is the number of bits

equal to 1 in the binary representation of n.

Proof that xn reaches a �xed point:

For every n = 2m + ` we have J(n) = 2`+16 n.

Then the sequence xk is nonincreasing in k :
If k 6m, then xk > xm.

But a nonincreasing sequence of positive integers is ultimately

constant.



Iterating the Josephus function: the answer

Proposition A

For every positive integer n, the sequence de�ned by:

x0 = n ,

xk = J(xk−1) ∀k > 1

reaches the �xed point 2ν(n)−1, where ν(n) is the number of bits

equal to 1 in the binary representation of n.

Proof that the �xed point is 2ν(n)−1:

The binary representation of J(n) is obtained from that of n
by a circular permutation.

But after such a permutation, a leading 0 disappears, while a

leading 1 is preserved.

Then the binary writing of any �xed point must be made

entirely of 1s.
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Generalization

Josephus function J : N−→ N

was de�ned using recurrences:

J(1) = 1 ;

J(2n) = 2J(n)−1 for n > 1 ;

J(2n+1) = 2J(n) +1 for n > 1 .

Introducing integer constants α , β and γ , generalize it as follows:

J(1) = α ;

J(2n) = 2J(n) + β for n > 1 ;

J(2n+1) = 2J(n) + γ for n > 1 .

Our J(n) corresponds to α = 1, β =−1, γ = 1.



The repertoire method

To �nd closed form of a function f :

Step 1 Find few initial values for f .

Step 2 Find (or guess) closed formula from the values found

by Step 1:

examine a repertoire of cases and combine them to

�nd general closed formula.

Step 3 Verify the closed formula constructed as the result of

Step 2.

The idea is to examine a repertoire of cases and use it to �nd

a general closed formula for the recurrently de�ned function.



Repertoire method for generalized f : STEP 1

n f (n) Calculation
1 α f (1) = α

2 2α + β f (2) = 2f (1) + β

3 2α + γ f (3) = 2f (1) + γ

4 4α +3β f (4) = 2f (2) + β

5 4α +2β + γ f (5) = 2f (2) + γ

6 4α + β +2γ f (6) = 2f (3) + β

7 4α + 3γ f (7) = 2f (3) + γ

8 8α +7β f (8) = 2f (4) + β

9 8α +6β + γ f (9) = 2f (4) + γ



Repertoire method for generalized f : STEP 2

Observations:

For n = 1,2, . . . ,9, taking n = 2k + `:

The coe�cient of α is 2k ;

The coe�cient of β is 2k −1− `;

The coe�cient of γ is `.



Repertoire method for generalized f : STEP 3

Proposition

If the function f is de�ned by the recurrence formula:

f (1) = α ;

f (2n) = 2J(n) + β for n > 1 ;

f (2n+1) = 2J(n) + γ for n > 1 .

then letting n = 2k + `,

f (n) = A(n)α +B(n)β +C(n)γ ,

where:

A(n) = 2k ;

B(n) = 2k −1− ` ;

C(n) = ` .



Proof of the Proposition (1)

Lemma 1. A(n) = 2k , where n = 2k + ` and 06 ` < 2k .

Proof.

Let α = 1 and β = γ = 0. Then f (n) = A(n) and:

A(1) = 1 ; A(2n) = 2A(n) for n > 0 ;A(2n+1) = 2A(n) for n > 0 .

Proof by induction over k:

Basis: If k = 0, then n = 20 + ` and 06 ` < 1. Thus n = 1 and

A(1) = 20 = 1 .

Step: Let us assume that A(2k−1 + t) = 2k−1, where 06 t < 2k−1 Two
cases:

If n is even, then ` is even and `/2< 2k−1, thus

A(n) = A(2k + `) = 2A(2k−1 + `/2) = 2 ·2k−1 = 2k

If n is odd, then `−1 is even and (`−1)/2< 2k−1, thus

A(n) = A(2k + `) = 2A(2k−1 + (`−1)/2) = 2 ·2k−1 = 2k



Proof of the Proposition (2)

Lemma 2. A(n)−B(n)−C (n) = 1, for all n ∈ N.

Proof.

Let f be the constant function f (n) = 1. Then:

f (1) = α ; f (2n) = 2f (n) + β ; f (2n+1) = 2f (n) + γ

or equivalently,
1 = α ; 1 = 2+ β ; 1 = 2+ γ .

As this must hold for every n ≥ 1, it must be α = 1 and β = γ =−1.



Proof of the Proposition (3)

Lemma 3. A(n) +C (n) = n, for all n ∈ N.

Proof.

Let f (n) = n. Then:

f (1) = α ; f (2n) = 2f (n) + β ; f (2n+1) = 2f (n) + γ

or equivalently,
1 = α ; 2n = 2n+ β ; 2n+1 = 2n+ γ .

As this must hold for every n ≥ 1, it must be α = 1, β = 0 and γ = 1.



Proof of the Proposition (4)

From Lemma 3 and Lemma 1 we can conclude:

2k +C (n) = A(n) +C (n) = n = 2k + ` ,

which gives:

C (n) = ` .

From Lemma 2 follows:

B(n) = A(n)−1−C (n) = 2k −1− ` .
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The repertoire method: Basic ideas

Let the recursion scheme

g(0) = α ,
g(n+1) = Φ(g(n)) + Ψ(n;β ,γ, . . .) for n ≥ 0 .

have the following properties:

1 Φ is linear in g : if g(n) = λ1g1(n) + λ2g2(n), then
Φ(g(n)) = λ1Φ(g1(n)) + λ2Φ(g2(n)).
No hypotheses are made on the dependence of g on n.

2 Ψ is linear in each of the m−1 parameters β ,γ, . . .
No hypotheses are made on the dependence of Ψ on n.

Then the whole system is linear in the parameters α,β ,γ, . . .
We can then look for a general solution of the form

g(n) = αA(n) + βB(n) + γC (n) + . . .



The repertoire method: Description

Suppose we have a repertoire of m pairs of the form

((αi ,βi ,γi , . . .),gi (n)) satisfying the following conditions:

1 For every i = 1,2, . . . ,m, gi (n) is the solution of the system

corresponding to the values α = αi ,β = βi ,γ = γi , . . .

2 The m m-tuples (αi ,βi ,γi , . . .) are linearly independent.

Then the functions A(n),B(n),C (n), . . . are uniquely determined.

The reason is that, for every �xed n,

α1A(n) +β1B(n) +γ1C (n) + . . . = g1(n)
... =

...

αmA(n) +βmB(n) +γmC (n) + . . . = gm(n)

is a system of m linear equations in the m unknowns

A(n),B(n),C (n), . . . whose coe�cients matrix is invertible.
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Binary representation of generalized Josephus function

De�nition

The generalized Josephus function (GJ-function) is de�ned

for α,β0,β1 as follows:

f (1) = α

f (2n+ j) = 2f (n) + βj for j = 0,1 and n > 0 .

We obtain the de�nition used before if to select β0 = β and β1 = γ.



Binary representation of generalized Josephus function (2)

Case A: Argument is even

If 2n = 2m + `, then the binary notation is

2n = (bmbm−1 . . .b1b0)2

or
2n = bm2

m +bm−12
m−1 + . . .+b12+b0

where bi ∈ {0,1}, b0 = 0 and bm = 1.

Hence
n = bm2

m−1 +bm−12
m−2 + . . .+b22+b1

or
n = (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1 = 2m + `, then the binary notation is

2n+1 = (bmbm−1 . . .b1b0)2

or
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+1

2n = bm2
m +bm−12

m−1 + . . .+b12

n = bm2
m−1 +bm−12

m−2 + . . .+b22+b1

or
n = (bmbm−1 . . .b1)2



Binary representation of generalized Josephus function (3)

Case B: Argument is odd

If 2n+1 = 2m + `, then the binary notation is

2n+1 = (bmbm−1 . . .b1b0)2

or
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+b0

where bi ∈ {0,1}, b0 = 1 and bm = 1.

We get
2n+1 = bm2

m +bm−12
m−1 + . . .+b12+1

2n = bm2
m +bm−12

m−1 + . . .+b12

n = bm2
m−1 +bm−12

m−2 + . . .+b22+b1

Same results for cases A and B indicates that we don't need to consider even
and odd cases separately.



Binary representation of generalized Josephus function (4)

Let's evaluate:

f ((bm,bm−1, . . . ,b1,b0)2) = 2f ((bm,bm−1, . . . ,b1)2) + βb0

= 2 · (2f ((bm,bm−1, . . . ,b2)2) + βb1 ) + βb0

= 4f ((bm,bm−1, . . . ,b2)2) +2βb1 + βb0

=
...

= f ((bm)2)2m + βbm−12
m−1 + . . .+ βb12+ βb0

= f (1)2m + βbm−12
m−1 + . . .+ βb12+ βb0

= α2m + βbm−12
m−1 + . . .+ βb12+ βb0 ,

where

βbj =

{
β1, if bj = 1
β0 if bj = 0

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2



Binary representation of generalized Josephus function (4)

Let's evaluate:

f ((bm,bm−1, . . . ,b1,b0)2) = 2f ((bm,bm−1, . . . ,b1)2) + βb0

= 2 · (2f ((bm,bm−1, . . . ,b2)2) + βb1 ) + βb0

= 4f ((bm,bm−1, . . . ,b2)2) +2βb1 + βb0

=
...

= f ((bm)2)2m + βbm−12
m−1 + . . .+ βb12+ βb0

= f (1)2m + βbm−12
m−1 + . . .+ βb12+ βb0

= α2m + βbm−12
m−1 + . . .+ βb12+ βb0 ,

where

βbj =

{
β1, if bj = 1
β0 if bj = 0

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0 )2



Example

Original Josephus function: α = 1, β0 =−1, β1 = 1 i.e.

f (1) = 1

f (2n) = 2f (n)−1

f (2n+1) = 2f (n) +1

Compute

f ((bmbm−1 . . .b1b0)2) = (αβbm−1βbm−2 . . .βb1βb0)2

f (100) = f ((1100100)2) = (1,1,−1,−1,1,−1,−1)2

= 64+32−16−8+4−2−1 = 73



Generalized Josephus function: Multiple bases

Let c ,d > 2 be integers.

Consider the following recurrent problem:

f (j) = αj for 16 j < d ;
f (dn+ j) = cf (n) + βj for 06 j < d and n > 1 .

How can we compute f (n) for an arbitrary positive integer n,
without having to go through the entire iterative process?



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm 6= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d ) + βb0

= c · (cf ((bm,bm−1, . . . ,b2)d ) + βb1 ) + βb0

= c2f ((bm,bm−1, . . . ,b2)d ) +cβb1 + βb0

=
...

= cm · f (bm) +cm−1βbm−1 + . . .+cβb1 + βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 + βb0



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm 6= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d ) + βb0

= c · (cf ((bm,bm−1, . . . ,b2)d ) + βb1 ) + βb0

= c2f ((bm,bm−1, . . . ,b2)d ) +cβb1 + βb0

=
...

= cm · f (bm) +cm−1βbm−1 + . . .+cβb1 + βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 + βb0

With a slight abuse of notation: (the βi 's need not be base-c digits)

f ((bmbm−1 . . .b1b0)d ) = (αbmβbm−1βbm−2 . . .βb1βb0 )c



Multiple bases representation

We can actually use the same technique!

Let (bmbm−1 . . .b1b0)d be the base-d writing of n. Then bm 6= 0 and:

f ((bm,bm−1, . . . ,b1,b0)d ) = cf ((bm,bm−1, . . . ,b1)d ) + βb0

= c · (cf ((bm,bm−1, . . . ,b2)d ) + βb1 ) + βb0

= c2f ((bm,bm−1, . . . ,b2)d ) +cβb1 + βb0

=
...

= cm · f (bm) +cm−1βbm−1 + . . .+cβb1 + βb0

= cmαbm +cm−1βbm−1 + . . .+cβb1 + βb0

Or, more precisely:

f ((bmbm−1 . . .b1b0)d ) = p(c) where p(x) = αbmx
m + βbm−1x

m−1 + . . .+ βb1x + βb0
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Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A,
where N is the set of natural numbers.

Notations used:
f = {an}, where an = f (n);

{an}n∈N;
〈a0,a1,a2,a3, . . .〉.

an is called the nth term of the sequence f



Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A,
where N is the set of natural numbers.

Notations used:
f = {an}, where an = f (n);
{an}n∈N;
〈a0,a1,a2,a3, . . .〉.

an is called the nth term of the sequence f

Example

a0 = 0, a1 =
1

2 ·3
, a2 =

2

3 ·4
, a3 =

3

4 ·5
, · · ·

or〈
0,

1

6
,
1

6
,
3

20
,
2

15
, · · · , n

(n+1)(n+2)
, · · ·
〉



Sequences

De�nition

A sequence of elements of a set A is a function f : N→ A,
where N is the set of natural numbers.

Notations used:
f = {an}, where an = f (n);
{an}n∈N;
〈a0,a1,a2,a3, . . .〉.

an is called the nth term of the sequence f

Notation

f (n) =
n

(n+1)(n+2)

or

an =
n

(n+1)(n+2)



Sets of indices

N � set of indices of the sequence f = {an}n∈N
Any countably in�nite set can be used as an index set.
Examples of other frequently used indices are:

N+ = N−{0} ∼ N.

N−K , where K is any �nite subset of N.

The set Z of relative integers.

{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.
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Examples of other frequently used indices are:

N+ = N−{0} ∼ N.

N−K , where K is any �nite subset of N.

The set Z of relative integers.

{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.



Sets of indices

N � set of indices of the sequence f = {an}n∈N
Any countably in�nite set can be used as an index set.
Examples of other frequently used indices are:

N+ = N−{0} ∼ N.

N−K , where K is any �nite subset of N.

The set Z of relative integers.

{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.

A∼ B denotes that sets A and B are of the same cardinality,

i.e. |A|= |B|.



Sets of indices

N � set of indices of the sequence f = {an}n∈N
Any countably in�nite set can be used as an index set.
Examples of other frequently used indices are:

N+ = N−{0} ∼ N.

N−K , where K is any �nite subset of N.

The set Z of relative integers.

{1,3,5,7, . . .}= Odd.
{0,2,4,6, . . .}= Even.

Two sets A and B have the same cardinality if there exists a

bijection, that is, an injective and surjective function, from A to B.

(See http://www.mathsisfun.com/sets/injective-surjective-

bijective.html for detailed explanation)

http://www.mathsisfun.com/sets/injective-surjective-bijective.html 
http://www.mathsisfun.com/sets/injective-surjective-bijective.html 


Finite sequences

A �nite sequence of elements of a set A is a function

f : K → A,
where K is set a �nite subset of natural numbers

For example: f : {1,2,3,4, · · · ,n}→ A, n ∈ N

Special case: n = 0, i.e. empty sequence: f ( /0) = e



Domain of the sequence

f : T → A

an =
n

(n−2)(n−5)

The domain of f is T = N−{2,5}.
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Notation

For a �nite set K = {1,2, · · · ,m} and a given sequence

f : K → R with f (n) = an we write

m

∑
k=1

ak = a1 +a2 + · · ·+am

Alternative notations

m

∑
k=1

ak = ∑
16k6m

ak = ∑
k∈{1,··· ,m}

ak = ∑
K

ak



Notation

For a �nite set K = {1,2, · · · ,m} and a given sequence

f : K → R with f (n) = an we write

m

∑
k=1

ak = a1 +a2 + · · ·+am

Alternative notations

m

∑
k=1

ak = ∑
16k6m

ak = ∑
k∈{1,··· ,m}

ak = ∑
K

ak



Warmup: What does this notation mean?

0

∑
k=4

qk

Options:

1 ∑
0
k=4 qk = q4 +q3 +q2 +q1 +q0 = ∑k∈{4,3,2,1,0} qk = ∑

4
k=0 qk .

This seems the sensible thing�but:

2 ∑4≤k≤0 qk = 0 also looks like a feasible interpretation�but:

3 If
n

∑
k=m

qk = ∑
k≤n

qk − ∑
k<m

qk ,

(provided the two sums on the right-hand side exist �nite)

then ∑
0
k=4 qk = ∑k≤0 qk −∑k<4 qk =−q1−q2−q3.
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2 ∑4≤k≤0 qk = 0 also looks like a feasible interpretation�but:

3 If
n

∑
k=m

qk = ∑
k≤n

qk − ∑
k<m

qk ,

(provided the two sums on the right-hand side exist �nite)

then ∑
0
k=4 qk = ∑k≤0 qk −∑k<4 qk =−q1−q2−q3.
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Warmup: Interpreting the Σ-notation

Compute ∑{0≤k≤5} ak and ∑{0≤k2≤5} ak2 .

First sum

{0≤ k ≤ 5}= {0,1,2,3,4,5} :

thus, ∑{0≤k≤5} ak = a0 +a1 +a2 +a3 +a4 +a5.

Second sum

{0≤ k2 ≤ 5}= {0,1,2,−1,−2} :

thus,

∑{0≤k≤5} ak2 = a02 +a12 +a22+a(−1)2 +a(−2)2 = a0 +2a1 +2a2.
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Sums and Recurrences

Computation of any sum

Sn =
n

∑
k=1

ak

can be presented in recursive form:

S0 = a0

Sn = Sn−1 +an

⇒ from CHAPTER ONE can be used for �nding closed formulas

for evaluating sums.



Recalling the repertoire method

Given
g(0) = α

g(n) = Φ(g(n−1)) + Ψ(β ,γ, . . .) for n > 0 .

where Φ and Ψ are linear, for example, if g(n) = λ1g1(n) + λ2g2(n) then
Φ(g(n)) = λ1Φ(g1(n)) + λ2Φ(g2(n)).

Closed form is :
g(n) = αA(n) + βB(n) + γC(n) + · · · (1)

Functions A(n),B(n),C(n), . . . can be found from the system of equations

α1A(n) + β1B(n) + γ1C(n) + · · · = g1(n)

=
...

αmA(n) + βmB(n) + γmC(n) + · · · = gm(n)

where αi ,βi ,γi · · · are constants committing (1) and recurrence relationship for
the repertoire case gi (n) and any n.
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Example 1: arithmetic sequence

Arithmetic sequence: an = a+bn

Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an:

S0 = a

Sn = Sn−1 + (a+bn) , for n > 0 .

Let's �nd a closed form for a bit more general recurrent equation:

R0 = α

Rn = Rn−1 + (β + γn) , for n > 0 .
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Recurrence equation for the sum Sn = a0 +a1 +a2 + · · ·+an:

S0 = a

Sn = Sn−1 + (a+bn) , for n > 0 .

Let's �nd a closed form for a bit more general recurrent equation:

R0 = α

Rn = Rn−1 + (β + γn) , for n > 0 .



Evaluation of terms Rn = Rn−1 + (β + γn)

R0 = α

R1 = α + β + γ

R2 = α + β + γ + (β +2γ) = α +2β +3γ

R3 = α +2β +3γ + (β +3γ) = α +3β +6γ

Observation

Rn = A(n)α +B(n)β +C (n)γ

A(n),B(n),C(n) can be evaluated using repertoire method:
we will consider three cases

1 Rn = 1 for all n

2 Rn = n for all n

3 Rn = n2 for all n
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Observation
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Repertoire method: case 1

Lemma 1: A(n) = 1 for all n

1 = R0 = α

From Rn = Rn−1 + (β + γn) follows that 1 = 1+ (β + γn).
This is possible only when β = γ = 0

Hence

1 = A(n) ·1+B(n) ·0+C (n) ·0



Repertoire method: case 2

Lemma 2: B(n) = n for all n

α = R0 = 0

From Rn = Rn−1 + (β +γn) follows that n = (n−1) + (β +γn).
I.e. 1 = β + γn.
This gives β = 1 and γ = 0

Hence

n = A(n) ·0+B(n) ·1+C (n) ·0



Repertoire method: case 3

Lemma 3: C (n) = n2+n
2 for all n

α = R0 = 02 = 0.

Equation Rn = Rn−1 + (β + γn) can be rewritten as:

n2 = (n−1)2 + β + γn.
n2 = n2−2n+1+ β + γn.
0 = (1+ β ) +n(γ−2).

This is valid i� 1+ β = 0 and γ−2 = 0

Hence

n2 = A(n) ·0+B(n) · (−1) +C (n) ·2

Due to Lemma 2 we get

n2 =−n+2C (n)



Repertoire method: summing up

According to Lemma 1, 2, 3, we get:

1 Rn = 1 for all n =⇒ A(n) = 1

2 Rn = n for all n =⇒ B(n) = n

3 Rn = n2 for all n =⇒ C(n) = (n2 +n)/2

Hence,

Rn = α +nβ +

(
n2 +n

2

)
γ

The sum for arithmetic sequence we obtain taking α = β = a and γ = b:

Sn =
n

∑
k=0

(a+bk) = (n+1)a+
n(n+1)

2
b
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Perturbation method

Finding the closed form for Sn = ∑06k6n ak :

Rewrite Sn+1 by splitting o� �rst and last term:

Sn +an+1 = a0 + ∑
16k6n+1

ak

= a0 + ∑
16k+16n+1

ak+1

= a0 + ∑
06k6n

ak+1

Work on last sum and express in terms of Sn.

Finally, solve for Sn.



Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .



Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .

Splitting o� the �rst term gives

Sn +an+1 = a0 + ∑
06k6n

ak+1

= a+ ∑
06k6n

axk+1

= a+x ∑
06k6n

axk

= a+xSn

Hence, we have the equation

Sn +axn+1 = a+xSn

Solution:

Sn =
a−axn+1

1−x



Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .

Hence, we have the equation

Sn +axn+1 = a+xSn

Solution:

Sn =
a−axn+1

1−x



Example 2: geometric sequence

Geometric sequence: an = axn

Recurrent equation for the sum Sn = a0 +a1 +a2 + · · ·+an = ∑06k6n ax
k :

S0 = a

Sn = Sn−1 +axn , for n > 0 .

Hence, we have the equation

Sn +axn+1 = a+xSn

Solution:

Sn =
a−axn+1

1−x

Closed formula for geometric sum:

Sn =
a(xn+1−1)

x−1

provided that x 6= 1. . . but in that case, the recurrence is very easy!
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1



Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1

This sequence can be transformed into geometric sum using the following
manipulations:

Divide both equalities by 2n:

T0/2
0 = 0

Tn/2
n = Tn−1/2

n−1 +1/2n

Set Sn = Tn/2
n to have:

S0 = 0

Sn = Sn−1 +2−n

(This is geometric sum with the parameters a = 1 and x = 1/2.)
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Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1

Hence,

Sn =
0.5(0.5n−1)

0.5−1
(a0 = 0 has been left out of the sum)

= 1−2−n

Tn = 2nSn = 2n−1



Example 3: Hanoi sequence

The Tower of Hanoi recurrence:

T0 = 0

Tn = 2Tn−1 +1

Hence,

Sn =
0.5(0.5n−1)

0.5−1
(a0 = 0 has been left out of the sum)

= 1−2−n

Tn = 2nSn = 2n−1

Just the same result we have proven by means of induction! :))
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Linear recurrence in form anTn = bnTn−1 + cn

Here {an}, {bn} and {cn} are arbitrary sequences and the initial value T0 is a constant.

The idea:

Find a summation factor sn satisfying the following property:

snbn = sn−1an−1 for every n > 1

If such a factor exists, one can do following transformations:

snanTn = snbnTn−1 + sncn = sn−1an−1Tn−1 + sncn.

Set Sn = snanTn and rewrite the equation as:

S0 = s0a0T0

Sn = Sn−1 + sncn

This yields a closed formula (!) for solution:

Tn =
1

snan

(
s0a0T0 +

n

∑
k=1

skck

)
=

1

snan

(
s1b1T0 +

n

∑
k=1

skck

)



Finding a summation factor

Assuming that bn 6= 0 for every n:

Set s0 = 1

Compute the next elements using the property

snbn = sn−1an−1:

s1 =
a0
b1

s2 =
s1a1
b2

=
a0a1
b1b2

s3 =
s2a2
b3

=
a0a1a2
b1b2b3

. . . . . . . . .

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

(To be proved by induction!)



Example: application of summation factor

an = cn = 1 and bn = 2 gives the Hanoi Tower sequence:

Evaluate the summation factor:

sn =
sn−1an−1

bn
=

a0a1 . . .an−1
b1b2 . . .bn

=
1

2n

The solution is:

Tn =
1

snan

(
s1b1T0 +

n

∑
k=1

skck

)
= 2n

n

∑
k=1

1

2k
= 2n(1−2−n) = 2n−1
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